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Stem/progenitor cells have been widely evaluated as a promising therapeutic
option for heart failure (HF). Numerous clinical trials with stem/progenitor cell-
based therapy (SCT) for HF have demonstrated encouraging results, but not
without limitations or discrepancies. Recent technological advancements in
multiomics, bioinformatics, precision medicine, artificial intelligence (AI), and
machine learning (ML) provide new approaches and insights for stem cell
research and therapeutic development. Integration of these new technologies
into stem/progenitor cell therapy for HF may help address: 1) the technical
challenges to obtain reliable and high-quality therapeutic precursor cells, 2)
the discrepancies between preclinical and clinical studies, and 3) the
personalized selection of optimal therapeutic cell types/populations for
individual patients in the context of precision medicine. This review
summarizes the current status of SCT for HF in clinics and provides new
perspectives on the development of computation-aided SCT in the era of
precision medicine and AI/ML.
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Introduction

Heart failure (HF) typically arises from prolonged cardiomyopathy, a chronic and
progressive pathological condition characterized by weakening, loss, and/or stiffening of the
heart muscle (i.e., myocardium) (Dassanayaka and Jones, 2015). Without proper
intervention, cumulative reductions in the cardiac capacity to pump blood likely lead to
HF or even death. Unfortunately, HF is irreversible and incurable because human hearts do
not have sufficient innate regenerative capacity to restore severe myocardial damage (Uygur
and Lee Richard, 2016). HF has become a major global healthcare burden that progressively
deteriorates the physiological capability of the affected population and significantly impacts
their quality of life (Savarese et al., 2022). In the United States alone, HF affects around 2.5%
and 1.7% of all men and women, respectively (Tsao et al., 2022). Importantly, the overall
age-adjusted mortality rate for HF has notably increased from 2.36 to 3.16 per
100,000 people over the recent two decades (1999–2019) (Jain et al., 2022).
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TABLE 1 Summary of recent clinical trials with stem cell therapy for heart failure. This table summarizes the key parameters and findings of major human trials with stem/progenitor cell therapy for heart failure since
2015.

Trial Name Author Year of
Publication Trial Phase

Administration Route and
Type of Stem Cells

Type of HF
(Pt #)

Randomization and Sample
Size

Average Age (%
Male)

Average
EF

NYHS
Class

Key Findings

REGENERATE-DCM Hamshere et al.
(2015) Phase II

Intracoronary administration of
autologous BMC

NICM S/C Saline:15 S/C G-CSF:15 IC BM serum:15
IC BMC: 15

56 (63%) 36% ≥II At 3 months post-treatment, the IC BMC
therapy group showing 1) 5.37% increase
in LVEF: 38.3% ± 13.0% vs. 32.9% ±
16.5% (p = 0.0138) for up to 1 year. 2)
Decrease in NYHA classification, reduced
plasma NT-proBNP,increased exercise
capacity, and improved quality of life. 3)
No notable change in LVEF in remaining
intervention groups

MiHeart Study Martino et al. (2015) Phase
II/II

Intracoronary administration of autologous
BMNC

NICM Placebo: 78 IC BMNC: 82 56 (73%) 24% III/IV At 12 months post-treatment, no
significant differences between the
intervention and placebo groups for
LVEF, LVESV, LVEDV, and mortality
rate

MPC-HF Perin et al. (2015) Phase II Transendocardial administration of
allogenic MSC

ISCM(38) and
NICM (7)

25M MPC: 20 75M MPC: 20 150M MPC: 20
(15 treated and 5mock control 5mock control

each per group)

62 (97%) 31% II/III 1) No difference between the groups for
adverse events, clinically significant
immune response, survival probability,
MACE-free probability, and all-cause
mortality. 2) Significant reduction in HF-
related MACE (HF hospitalization,
successfully resuscitated cardiac death, or
cardiac death) in the 150M MPC group
compared to all other groups (p = 0.025)

MSC-HF trial Mathiasen et al. (2020)
Phase II

Intracoronary administration of autologous
BM derived MSC

ISCM Placebo: 20 MSC: 40 66 (36%) 28% II/III At 3 months post-treatment, the MSC
therapy group showing: 1) Significant
reduction in LVESV (−7.6 mL, p = 0.001).
2) No significant change in LVEF, stroke
volume, and myocardial mass

REGENERATE-AMI Choudry et al. (2016)
Phase II

Intracoronary administration of
allogenic BMC

ISCM BMC: 55 Placebo: 45 56 (84%) 48% ≥I 1) At 1 year, a greater myocardial salvage
index by MRI in the BMC-treated group,
compared with placebo (p = 0.048). 2) No
difference in rare major adverse events
between groups. 3) At the 5-year follow-
up, there was no difference in the clinical
outcomes between the two groups.
Mathur et al. (2022)

IMPACT-CABG Noiseux et al. (2016)
Phase II

Intramyocardial administration of autologous
BM derived CD133+ Cells

ISCM Intervention: 19 Placebo: 14 66 (89.5%) 40% II-IV 1) At 6 months post-treatment,
improvements in LVEF and LV volumes
in all patients by MRI with no significant
difference between the two groups. 2) One
death and four cases of transient renal
insufficiency during the 6-month follow-
up period

Ixmyelocel-T for ISCM Patel et al. (2016)
Phase IIB

Intramyocardial administration of autologous
Ixmyelocel-T (BM deribed-CD90+ MSC and

Cd 45+CD14+macrophages

ISCM Ixmyelocel-T: 66 Placebo: 60 35% III/IV At 12 months post-treatment, the
Ixmyelocel-T therapy comparing to the
placebo group: 37% reduction in cardiac
events (risk ratio: 0.63 [95% CI 0.42–
0.97]; p = 0.0344). Less serious adverse
events (53% vs 75%, p = 0.0197)

(Continued on following page)
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TABLE 1 (Continued) Summary of recent clinical trials with stem cell therapy for heart failure. This table summarizes the key parameters and findings of major human trials with stem/progenitor cell therapy for heart
failure since 2015.

Trial Name Author Year of
Publication Trial Phase

Administration Route and
Type of Stem Cells

Type of HF
(Pt #)

Randomization and Sample
Size

Average Age (%
Male)

Average
EF

NYHS
Class

Key Findings

CHART-1 Study Teerlink et al. (2017)
Phase II/III

Intramyocardial administration of autologous
cardiopoietic MSC

ISCM Cardiopoietic MSC (C3BS- CQR-1): 120
Sham procedure: 151

62 (89%) 27% II-IV 1) At 12 months post-treatment, the
cardiopoietic MSC group showing
decreases in LVEDV by 17 mL (p = 0.006)
and increases in LVESV by 12 mL (p =
0.017). 2)The treatment group with a
moderate number of repeated injections
(>16 to <20) exhibiting the largest reverse
remodeling

PERFECT Steinhoff et al. (2017) Phase III Intramyocardial administration of autologous
BM derived CD133+ stem cells

ISCM CD133+ SC: 41 Placebo: 41 63 (85%) 32% I-IV 1) At 180 days post-treatment, no notable
difference in survival, adverse events, or
change in LVEF by MRI from baseline. 2)
Increased Erythropoeitin (p = 0.02) and
SH2B3 mRNA expression (p = 0.073) in
preoperative peripheral blood of the
responders (ΔLVEF≥ 5% after 180 days);
reduced CD133+ EPC (p = 0.005) and
thrombocytes (p = 0.004) in the
preoperative peripheral blood of the non-
responders. 3) Preoperative
discrimination with 80% (responders) and
84% (non-responders) accuracy after 10-
fold cross-validation by machine learning-
identified 20 biomarker response
parameters

REGENERATE-IHD Choudhury et al.
(2017) Phase II

Intramyocardial and intracoronary
administration of autologous BMSC with

G- CSF

ISCM Peripheral: S/C G-CSF: 15 S/C Placebo: 15
Intramyocardial: IM BMC: 15 S/C Placebo: 15
Intracoronoary: IC BMC: 15 IC Placebo: 15

61 (100%) 30% II-IV 1) At 1 year post-treatment, significant
improvement in LVEF of 4.99% by MRI
with intramyocardial BMC therapy (p =
0.038); no difference in LVEF in all other
groups. 2) Reduced NT-proBNP at 6
months and a reduction in NYHA class at
1 year with intramyocardial BMC therapy

Muscle-derived SC with connexin-43 gene
overexpression for HF Gwizdala et al.

(2017) Phase I

Intramyocardial administration of allogenic
engineered muscle derived stem/progentor

cells

ISCM (11) and
NICM (2)

13 61 (92%) 25% II/III At 6 months, compared to the baseline: 1)
Improved exercise capacity: NYHA (3 ± 0
vs. 1.8 ± 0.7, p = 0.003), exercise duration
(388.7 ± 141.8 s vs. 462.1 ± 176.7 s, p =
0.025), peak O2 consumption (14.4 ± 4.0
vs. 15.8 ± 3.7 mL/kg.min, p = 0.022), and
O2 pulse (10.6 ± 2.9 vs. 18.9 ± 22.6
mLO2/heart rate, p = 0.012). 2)
Improvement in the levels of BNP, LVEF,
and LVED. 3) Significant improvement in
the mean unipolar voltage amplitudes in
the injected segments (9.6 ± 2.6 vs. 11.6 ±
3.5 mV, p = 0.014) and the entire LV (8.8
± 2.8 vs. 10.2 ± 3.4mV, p = 0.041). 4) No
deaths reported; one subject with
ventricular tachycardia

(Continued on following page)
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TABLE 1 (Continued) Summary of recent clinical trials with stem cell therapy for heart failure. This table summarizes the key parameters and findings of major human trials with stem/progenitor cell therapy for heart
failure since 2015.

Trial Name Author Year of
Publication Trial Phase

Administration Route and
Type of Stem Cells

Type of HF
(Pt #)

Randomization and Sample
Size

Average Age (%
Male)

Average
EF

NYHS
Class

Key Findings

TRIDENT study Florea et al. (2017)
Phase II

Transendocardial administration of allogenic
BM derived MSC

ISCM 20M-MSC: 15 100M-MSC: 15 66 (90%) 36% I-III At 12 months post-treatment: 1) Similar
reduction in scar size in both groups by
CT. 2) Increase in LVEF only with 100M-
MSC Tx (by 3.7U, p = 0.04).3) Improved
NYHA class in the 20M-MSC (35.7%) and
100M-MSC (42.9%) groups 4) Increased
proBNP in the 20M-MSC group (0.32 log
pg/mL p = 0.039), but not in the 100M-
MSC group (−0.07 log pg/mL)

RIMECARD Trial Bartolucci et al. (2017)
Phase I/II

Peripheral infusion of allogenic umbilical
cord derived MSC

ISCM (21) and
NICM (9)

UC-MSC: 15 Placebo: 15 57 (80%) 33% I-III At 3, 6, and 12 months post-treatment, the
US-MSC group had: significant
improvement in LVEF compared to baseline
(+7.07 ± 6.22% vs. +1.85 ± 5.60%; p = 0.028)
improvements of NYHA class (p= 0.0167 vs.
baseline) and MLHFQ (p<0.05 vs. baseline).
no difference in mortality, HF admissions,
arrhythmias, or incidentmalignancy between
the two groups

IV-MSC for NICMP Butler et al. (2017)
Phase IIA

Peripheral infusion of allogenic ischemia-
tolerant MSC (itMSC) grown in chronic

hypoxia

NICM itMSC: 10 Placebo: 12 47 (59%) 32% II/III No difference in mortality, adverse events,
or hospitalization. No significant change
in LVEF and LV volume. Increased 6-min
walk distance (+36.47 m, 95% CI 5.98–
66.97; p = 0.02) with itMSC Tx. 3)
Improved Kansas City Cardiomyopathy
clinical summary (+5.22, 95% CI
0.70–9.74; p = 0.02) and functional status
scores (+5.65, 95% CI −0.11 to 11.41; p =
0.06) with itMSC Tx

IC BMC and MSC in HF Xiao et al. (2017)
Phase II

Intracoronary administration of autologous
BM mononuclear cells or MSC

NICM BMMC: 16 BMSC: 17 Control: 20 50 (64%) 33% II-IV At 3 months, improvement in LVEF (p =
0.004), NYHA class (p= 0.02) andmyocardial
perfusion (p= 0.019)with BMSCTx as well as
LVEF (p = 0.04) and NYHA class (p = 0.047)
with BMMCTx. At 12months, improvement
in LVEF (p = 0.005), NYHA class (p = 0.05)
and myocardial perfusion (p = 0.038) only
with BMSC Tx. No difference in major
adverse cardiovascular events between the
three groups

POSEIDON-DCM Hare et al. (2017) Phase
I/II

Transendocardial administration of allogenic
or autologous BM derived MSC

NICM Autologous BMSC: 19 Allogenic BMSC: 18 56 (71%) 26% I-III At 1 year post-treatment: 1) Increase in
LVEF in allo-BMSC group by 8.0% (p =
0.004) compared with auto-BMSC; 2)
Increase in the 6-min walk test with allo-
BMSC by 37.0 m (p = 0.04); 3) Decrease
in MLHFQ score in allo-BMSC (p =
0.0022); 4) Decreases in TNFα overall for
both groups (p = 0.0001) with a greater
decrease in the allo-BMSC group (p =
0.05); 5) No serious adverse events at 30
days; at12 months, serious adverse event
rates: 63.5% in auto-BMSC and 28.2% in
allo-BMSC (p = 0.1)

(Continued on following page)
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TABLE 1 (Continued) Summary of recent clinical trials with stem cell therapy for heart failure. This table summarizes the key parameters and findings of major human trials with stem/progenitor cell therapy for heart
failure since 2015.

Trial Name Author Year of
Publication Trial Phase

Administration Route and
Type of Stem Cells

Type of HF
(Pt #)

Randomization and Sample
Size

Average Age (%
Male)

Average
EF

NYHS
Class

Key Findings

Repeat CD34+ Vrtovec et al. (2018) Phase II Transendocardial administration of
autologous peripheral blood stem cells

NICM Group A: Repeated stem cell treatment in 6
months: 30 Group B: Single stem cell

treatment: 30

55 (88%) 31% III 1) From baseline to 6 months,
improvement in both groups: a. LVEF:
+6.9 ± 3.3% in Group A, p = 0.001 and
+7.1 ± 3.5% in Group B, p = 0.001. b. NT-
proBNP: −578 ± 211 pg/mLin Group A, p
= 0.02 and −633 ± 305 pg/mL in Group B,
p = 0.01. c. 6-min walk test: +87 ± 21 m
in Group A, p = 0.03 and +92 ± 25 m in
Group B, p = 0.02)

RECARDIO Bassetti et al. (2018) Phase I Intramyocardial administration of autologous
BM derived CD133+ cells

ISCM 10 69 (100%) 38% II-IV 1) At 6 months, improved baseline
myocardial perfusion in: Summed stress
scores (from 18.2 ± 8.6 to 13.8 ± 7.8, p =
0.05). Difference stress scores (from 12.0
± 5.3 to 6.1 ± 4.0, p = 0.02). Improvement
at 6 months compared to baseline in
Canadian Cardiovascular Society
(p≤0.001) and NYHA classes (p = 0.007).
Positive correlation between changes in
summed stress score and ATMP-CD133
release of proangiogenic cytokines HGF (r
= 0.80, p = 0.009) and PDGF-bb (r = 0.77,
p = 0.01). Negative correlation between
changes in summed stress score and the
proinflammatory cytokines RANTES (r =
−0.79, p = 0.01) and IL-6 (r = −0.76, p
= 0.02)

MPC in LVAD Yau et al. (2019) Phase II Intramyocardial administration of
allogenic MPC

ISCM (70) and
NICM (89)

MPC: 106 Control: 53 55 (88.7%) 15% II-IV No difference between the groups in terms
of successful temporary weaning from
LVAD after 6 months of randomization,
rate of adverse events, rate of readmission,
and 1-year mortality

HUC-HEART Trial Ulus et al. (2020) Phase
I/II

Intramyocardial administration of allogenic
umbilical derived MSC vs BM mononuclear

cells

ISCM Control: 16 BM-MNC: 12 Umbilical MSC: 25 59 (100%) 35% I/II At the 6-month follow-up: decline in NT-
proBNP levels compared to baseline in
both cell-treated groups. At the 6- to 12-
month follow-up: increase in LVEF (5.4%)
and stroke volume (19.7%) only in the
umbilical MSC group. Decreasing necrotic
myocardium by 2.3% in the control, 4.5%
in the BM-MNC group, and 7.7% in the
umbilical MSC group. Increase in the 6-
min walking test in the control (14.4%)
and the umbilical MSC group (23.1%)

CCTRN SENECA Trial Bolli et al. (2020)
Phase I

Intramyocardial administration of allogenic
BM derived MSC

NICM MSC: 14 Placebo: 17 54 (24%) 33% II/III No significant difference in clinical
outcomes between the two groups

Collagen scaffold MSC in HF He et al.
(2020) Phase I

Intramyocardial administration of allogenic
MSC with cell-laden hydrogel scaffold

ISCM CABG + Cell + Hy drogel: 18 CABG + Cell:
17 Control: 15

62 (78%) <10% III/IV No significant difference in serious
adverse events. At 12 months post-
treatment, cardiac MRI showing
significant reduction in the mean infarct
size only in the collagen/cell group: −3.1%
(95% CI, −6.20% to −0.02%, p = 0.05)

(Continued on following page)
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TABLE 1 (Continued) Summary of recent clinical trials with stem cell therapy for heart failure. This table summarizes the key parameters and findings of major human trials with stem/progenitor cell therapy for heart
failure since 2015.

Trial Name Author Year of
Publication Trial Phase

Administration Route and
Type of Stem Cells

Type of HF
(Pt #)

Randomization and Sample
Size

Average Age (%
Male)

Average
EF

NYHS
Class

Key Findings

ALLSTAR Makkar et al. (2020) Phase II Intracoronary administration of allogenic
cardiosphere derived cells

ISCM CDC: 90 Placebo: 44 55 (84.4%) 40% I/II A1 month post-treatment, no primary
safety endpoint events. At 6-month
follow-up, no change in scar size
percentage. At 6-month follow-up, CDC-
treated patients showing notable
reductions in LVEDV (p = 0.02), LVESV
(p = 0.02), and NT-proBNP (p = 0.02)

CCTRN CONCERT-HF Bolli et al. (2021)
Phase II

Intracoronary administration of autologous
bone marrow derived MSC and c-kit + CPC

ISCM MSC + CPC: 33 MSC: 29 CPC: 31 Placebo: 32 62 (87%) 28% II/III Lowest HF-related major adverse cardiac
events in the CPC- treated group compared
to placebo (−22%, p = 0.043) Significantly
improved QOL scores in the MSC-alone
group (p = 0.05) and the MSC + CPC group
(p = 0.023) vs. placebo. No significant
difference among groups in LVEF, LV
volumes, scar size, 6-min walking distance,
and peak O2 consumption

Danish Trial Qayyum et al. (2023a) Phase II Intramyocardial administration of allogenic
adipose derived MSC

ISCM ASC: 54 Placebo: 27 67 (81%) 34% II No significant change in LVESV, LVEDV,
LVEF, NYHA class and 6 min walk test
between groups

SCIENCE Trial Qayyum et al. (2023b)
Phase II

Intramyocardial administration of allogenic
adipose derived MSC

ISCM ASC: 90 Placebo: 43 66 (93%) 32% II/III No significant differences between groups in
LVESV, LVEDV, LVEF, NYHA class, 6-min
walk test, NT-proBNP, CRP, or QOL.

MPC in HF Perin et al. (2023) Phase III Transendocardial administration of allogenic
BM derived MSC

ISCM (319) and
NICM (244)

BMSC: 283 Control: 282 63 (78%) 28% II/III At 12 months post-treatment, BMSC group
vs. control group (analysis population: n =
537): Increasing LVEF, especially in patients
with inflammation. Decrease in the risk of
TTFE forMI or stroke by 58% (cause- specific
HR: 0.42, 95% CI: 0.23–0.76). Red uction in
the risk of TTFE for the 3-point MACE by:
28% (HR: 0.72, 95% CI: 0.51–1.03) Reducing
risks of MI/stroke and the 3-point MACE by
75% and 38%, respectively, in patients with
inflammation (hsCRP≥2 mg/L)

Legend Abbreviations.

ATMP: Autologous advanced therapy medicinal product BM: bone marrow.

BMC: Bone marrow-derived cells BMNC: Bone marrow mononuclear cells CI: confidence interval.

CRP: C-reactive protein CT: Computed tomography EF: ejection fraction.

EPC: endothelial progenitor cell.

G-CSF: Granulocyte colony-stimulating factor HF: heart failure.

hsCRP: High-sensitivity C-reactive protein IC: intracoronary.

ISCM: Ischemic cardiomyopathy LV: left ventricule.

LVEF: Left ventricular ejection fraction LVESV: Left ventricular end-systolic volume LVEDV: Left ventricular end-diastolic volume M: million.

MACE: Major adverse cardiovascular events MSC: mesenchymal stem cells.

MLHFQ: Minnesota Living with Heart Failure Questionnaire MRI: magnetic resonance imaging.

NICM: Non-ischemic cardiomyopathy.

NT-proBNP: N-terminal pro-B-type natriuretic peptide Pt: Participants.

QOL: quality of life.

RANTES: regulated on activation, normal T cell expressed and secreted; also known as Chemokine (C-C motif) ligand 5 (CCL5). ProBNP: pro-B-type natriuretic peptide.

S/C: subcutaneous.

TNFα: Tumor necrosis factor-α TTFE: Time-to-first-event.

Tx: Treatment.
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The current medical regimen for clinical Stage C symptomatic
HF includes a combination of vasodilators, beta blockers, sodium-
glucose cotransporter-2 inhibitors, mineralocorticoid receptor
antagonists, and diuretics (Heidenreich et al., 2022). Regardless
of the recommended medical treatment, about 5% of HF patients
develop Stage D HF or end-stage heart disease that requires either
heart transplantation or mechanical support with a left ventricular
(LV) assist device (LVAD) (Costanzo et al., 2008). However, these
advanced therapies for end-stage HF have their individual
limitations. For example, there is a constant shortage of matching
hearts for transplantation as well as a higher incidence of sudden
cardiac death in heart transplant recipients compared to the general
population (Colvin et al., 2022; Bonnet et al., 2023). Patients with
LVAD are at an increased risk for thromboembolic complications,
bleeding, driveline infection, and right ventricular failure (Chaudhry
et al., 2022). Thus, there is an unmet need for alternative medical
approaches that fundamentally stop or revert the progression of HF
pathologies as well as biologically enable the preservation and/or
regrowth of functional myocardium.

Stem cells are precursor cells that have the ability to self-renew
and differentiate into functionally mature, specialized cells in
various human tissues (i.e., pluripotent or multipotent) (Evans
and Kaufman, 1981; Pittenger et al., 2019). Numerous efforts
have been poured into stem cell research over the last two
decades, resulting in abundant laboratory discoveries and
translational applications of distinct human stem/progenitor cell
types: embryonic stem cells (ESCs), induced pluripotent stem cells
(iPSCs), lineage-restricted or tissue-specific stem/progenitor cells
(e.g., hematopoietic stem cells, skeletal muscle satellite cells, and
intestinal stem cells) (Martello and Smith, 2014; Pizzute et al., 2015;
Moradi et al., 2019), and adult mesodermal multipotent precursor
cells (e.g., mesenchymal stem/stromal cells) (Pittenger et al., 2019).
Many human clinical trials using stem cell-based regenerative
therapy for treating HF have thus arisen from promising basic
stem cell research and demonstrated encouraging results (Table 1).
(Hare et al., 2012; Perin et al., 2012; Heldman et al., 2014; Hare et al.,
2017; Teerlink et al., 2017) In this review, we will summarize the
current status of stem/progenitor cell therapy for HF, persistent
challenges and possible solutions, as well as the future perspectives
of stem cell-based cardiac regenerative medicine in the era of
precision medicine and artificial intelligence (AI) (Figure 1).

The clinical scope of stem cells in
heart failure

Bone marrow-derived stem cells
In 2001, bone marrow-derived stem cells (BMSCs) were first

transplanted into animal models of ischemic cardiac injury where
the donor cells were shown to produce de novo myocardial and
vascular structures in the peri-infarcted regions of the myocardium
(Jackson et al., 2001; Orlic et al., 2001). The observed benefits were
largely attributed to the paracrine release of tissue trophic factors by
the donor cells, for example, VEGF and HGF promoting
angiogenesis and cardiomyocyte (CM) survival, respectively
(Gnecchi et al., 2005; Mabotuwana et al., 2022).

Human phase 2 clinical trials, such as FOCUS CCTRN and
TAC-HFT, were conducted in patients with ischemic

cardiomyopathy (ICM) who received multiple transendocardial
injections of bone marrow mononuclear cells (BMMCs) in the
infarcted territory. However, the results failed to demonstrate any
significant improvement in LV chamber size, ejection fraction (EF),
or quality of life (Perin et al., 2012; Heldman et al., 2014). Similarly,
the REGENERATE AMI trial studied the impact of intracoronary
infusion of autologous BMMCs in patients with ICM (Choudry
et al., 2016). Despite the encouraging results at the 1-year follow-up
that showed significant decreases in the infarct size and improved
myocardial salvage indices in the intervention group, the 5-year
follow-up did not exhibit improved clinical outcomes, suggesting
short-term benefits of intracoronary BMMC infusion (Mathur et al.,
2022). Interestingly, analysis of pre-transplant bone marrow (BM)
samples of patients who responded to autologous BMMC therapy in
the FOCUS CCTRN trial showed a higher frequency of CXCR4+
and B cells and fewer monocytes/macrophages and endothelial
colony-forming cells in their BM compared to non-responders
(Taylor et al., 2016). Therefore, the presence of certain subset(s)
of BM progenitor and/or immune cell populations may indicate the
potency of donor cells for autologous BMMC therapy (Taylor et al.,
2016). The CardiAMP trial utilized the abovementioned concept
and screened their subject’s BM cell potency by flow cytometry prior
to the enrollment (Johnston et al., 2018; Raval et al., 2021). Subjects
with ICM and favorable BM cellular composition were selected for
the trial and underwent BM aspiration, followed by an enrichment
process to separate the nucleated cell fraction from the plasma phase
using a density-tuned dual buoy column; the enriched BM aspirate
was then injected into the infarcted myocardium (Raval et al., 2021).
The 12-month follow-up data on 10 patients reported significant
improvement in 6-min walk distances and trends towards improved
NYHA class, LVEF, and quality of life (Raval et al., 2021).

Mesenchymal stem cells
Mesenchymal stem cells (MSCs) are allogeneic STRO-1/STRO-

3+ cells, a subpopulation of stromal cells that express CD73, CD90,
and CD105 and can be extracted from BM, adipose, and other
tissues (Simmons and Torok-Storb, 1991; Haynesworth et al., 1992;
Zuk et al., 2001; Karantalis and Hare, 2015). MSCs are adult
multipotent precursor cells with great potential for cardiac repair
since they can be easily isolated from autologous sources and rapidly
expanded ex vivo (Pittenger et al., 1999; Halvorsen et al., 2000; Miura
et al., 2003; Dominici et al., 2006; Chen et al., 2015; Melo et al., 2017).
MSCs have been shown to improve cardiac function in multiple
preclinical animal models of cardiac injury (Amado et al., 2005;
Alfaro et al., 2008; Qi et al., 2008; Chen et al., 2013). Their primary
mechanism of action for cardiac repair is paracrine secretion of
multiplex tissue trophic factors that stimulate cellular repair and
regeneration via angiogenesis, endothelization, anti-inflammation,
and anti-fibrosis (Kocher et al., 2001; Chen et al., 2009; Abdalmula
et al., 2017). The direct differentiation of MSCs into desired cardiac
cell types, if any, did not appear to contribute significantly to the
functional recovery observed in prior studies (van der Spoel TI. et al.,
2011a; Guo et al., 2020).

The MSC-HF trial reported that ICM patients treated with
multiple intramyocardial injections of autologous BM-derived
MSCs exhibit progressive improvement in LV end-systolic
volume (LVESV), EF, and myocardial mass 12 months after their
initial treatment, even reducing hospitalization for angina in the
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MSC-treated group after 4 years (Mathiasen et al., 2020). On 1-year
follow-up, the DREAM-HF trial demonstrated that single-dose
transendocardial injection of allogenic BM-derived MSCs
improved LVEF, LVESV, LV end-diastolic volume (LVEDV) of
treated HF patients, with 12% reduction in MI or stroke risk in
patients with elevated high-sensitivity CRP (≥2 mg/L) (Perin et al.,
2023). These results suggest that MSC treatment can improve
clinical outcomes in HF patients for up to several years,
especially for those with systemic inflammation.

In contrast, human clinical trials using adipose-derived MSCs
for HF treatment failed to show any significant beneficial outcomes
(Qayyum et al., 2023a; Qayyum et al., 2023b). Yau et al. reported that
intramyocardially injecting allogenic BM-derived MSCs during
LVAD implantation did not improve the successful weaning
from LVAD, 1-year mortality, or the rate of serious adverse
events (Yau et al., 2019). Currently, the STEMVAD trial
(NCT03925324) is evaluating the safety and efficacy of three
serial doses of allogenic MSCs by intravenous infusions in
patients with end-stage HF requiring LVAD. The results of this
study will help clarify the utility of MSC therapy in patients with
end-stage HF.

Cardiosphere-derived cells
Cardiosphere-derived cells (CDCs) are characterized by their

ability to separate from cardiac tissues and form spheroids in
suspension cultures (Messina et al., 2004). They can function as
adult stem/progenitor cells and have been shown to differentiate
into myocytes and vascular cells in SCID beige mice (Messina et al.,
2004). CDCs mainly contribute to cardiac repair by releasing
paracrine factors and exosomes which inhibit cellular apoptosis
and promote angiogenesis and CM proliferation (Chimenti et al.,
2010; Ibrahim et al., 2014). The ALLSTAR trial evaluated the safety
and efficacy of intracoronary delivery of allogenic CDCs in ICM
patients with >15% scar burden (Makkar et al., 2020). At the 6-
month follow-up, the intervention group showed significant
reductions in LVESV, LVEDV, N-terminal pro-B-type natriuretic
peptide (NT-proBNP) levels, and decreased segmental
circumferential strain with MRI, but no improvement in their LV
scar size, suggesting that CDCs could functionally benefit such
patients but are not anti-fibrotic (Ostovaneh et al., 2021).

Induced pluripotent stem cells
In 2006, Yamanaka and colleagues first described a cocktail of

four transcription factors (Oct3/4, Sox2, c-Myc, and Klf4) capable of
artificially reprogramming mouse embryonic cells and adult
fibroblasts into iPSCs that exhibit the self-renewability and
pluripotency similar to ESCs (Takahashi and Yamanaka, 2006).
iPSCs possess multiple translational advantages over ESCs: 1) no
ethical concerns regarding the cellular origin; (Zheng, 2016);
2) autologous immunocompatible cell sources (if applicable),
such as patient’s own fibroblasts, obviating the need for
immunosuppression; (Mandai et al., 2017; Schweitzer et al.,
2020); 3) direct reprogramming approaches available for
differentiating into desired tissue-specific cell types without going
through the pluripotent stage, for example, direct reprogramming of
human fibroblasts into CMs. (Qian et al., 2012). Cardiomyogenesis
from iPSCs has been attempted previously (Yang et al., 2017; Wu
et al., 2023); however, iPSC-derived CMs (iPSC-CMs) largely

expressed fetal phenotypes and failed to efficiently function as
adult CMs (Liao et al., 2021), limiting their clinical applicability.
Recently, progress has been made to enhance the maturity of iPSC-
CMs (Li et al., 2022; Hsueh et al., 2023). Besides, viral vectors used to
reprogram fibroblasts to iPSCs may have the potential to cause
cancer; (Okita et al., 2007) alternative non-viral delivery systems to
induce iPSCs are under investigation, for example, the targeted
nanoparticles (Anokye-Danso et al., 2011; Ye et al., 2016; Wang
et al., 2020). iPSCs have the potential for clinical cell therapy in HF
patients, and currently, two phase 1 trials are ongoing to assess the
safety and efficacy of human allogenic iPSC-CMs in patients
with ICM (ClinicalTrials.gov Identifier: NCT04945018 and
NCT04696328).

Stem/progenitor cell-derived exosomes
Exosomes are extracellular vesicles that carry various

proteins, lipids, and/or RNAs and play a major role in
intercellular communications (Rezaie et al., 2022). Since the
paracrine effect is an essential mechanism for stem/progenitor
cell-mediated cardiac repair, exosomes derived from those cells
that contain secretory trophic factors (e.g., pro-angiogenic and
pro-survival cytokines) may constitute an alternative therapeutic
approach to direct cell transplantation (Bolli et al., 2021). For
instance, exosomes derived from human iPSCs had proliferative
and protective effects on cardiac mesenchymal stromal cells,
impacting their transcriptomic and proteomic profiles. (Bobis-
Wozowicz et al., 2015). CDC-derived exosomes delivered via
intramyocardial injections were shown to improve cardiac
function and decrease scar size in porcine MI models (Gallet
et al., 2017). A meta-analysis of ten studies using preclinical
animal models of MI revealed that exosomal therapy had the
potential to reduce cellular apoptosis and autophagy as well as
improve cardiac function, fibrogenesis, and inflammatory
response (Zheng et al., 2022).

Potential mechanisms of action of exosomal therapy in ischemic
hearts include: 1) protection against myocardial reperfusion injury by
reducing oxidative stress through inhibition of caspase 3/7 activation
and delivery of cardioprotective microRNAs (miRs) such as miR-21
and miR-210; (Wang et al., 2015); 2) enhancement of intracellular
calcium homeostasis and cardiomyocyte contraction by rescuing the
expression and function of reticulumCa2+ATPase 2a (SERCA-2a) and
ryanodine receptor 2 (RyR-2); (Li et al., 2023); and 3) improvement of
cellular energy metabolism and myocardial bioenergetics without
increasing the risk of arrhythmia (Gao et al., 2020). Intriguingly,
besides modulating immune responses and inflammation, immune
cell-derived exosomes facilitate crosstalk between immune cells and
myocardial cells, which sustains ventricular function and promotes
cardiac repair post-MI (Wen et al., 2021).

The use of exosomal therapy in HF patients is still under
investigation, (Marbán, 2018; Duong et al., 2023), and current
challenges for clinical applications include exosomal delivery,
tissue targeting, and immunogenicity (Balbi and Vassalli, 2020).
Moreover, exosomes may possibly carry inherent limitations or
defects of their cellular origins that could impact their
therapeutic efficacy (Riva et al., 2019; Andreeva et al., 2021).
Thus, selecting appropriate, healthy stem/progenitor cell sources
from which beneficial exosomes can be efficiently extracted is key to
improving exosome-based HF therapy.
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Challenges and alternatives for discrepancy
between animal and human studies

Human trials involving stem cell therapy often fail to replicate
the remarkable successes in animal models of cardiac injury
(Table 1). (Rheault-Henry et al., 2021; Bolli et al., 2022; Bolli and
Tang, 2022) This could be attributed to multiple reasons: 1) rodent
hearts may not accurately mimic the pathophysiology of human HF
because they differ from human hearts in terms of size, intrinsic
heart rate, (Wessels and Sedmera, 2003), and epigenomic and
transcriptomic profiles; (Lin et al., 2014); 2) a number of
confounding factors that can be controlled in a laboratory
experiment may not be adequately controlled in a human clinical
trial, leading to differences in observed outcomes (e.g., diet and
genetic background); (Hasenfuss, 1998; van der Spoel et al., 2011a);
3) inconsistent results in clinical trials may be due to the variability

in study protocols between different research groups/institutions in
terms of donor cell types and sources, treatment dose and duration,
routes of administration, and timing of stem cell therapy.
(Golpanian et al., 2015).

Besides, isolating specific stem/progenitor cells out of their
native niche environment could disrupt important cell-to-cell
and/or microenvironmental signaling, which may lead to
suboptimal therapeutic potency including reduced cell
proliferation, survival, differentiation, and/or paracrine function.
(Kuchina et al., 2011). Furthermore, the cardiac disease cascade in
humans is complex and consists of a dynamic process of progressive
tissue ischemia, hypoxia, inflammation, and/or myocardial fibrosis,
making the host environment harsh for transplanted cells to survive.
Another issue is inadequate cell retention and reduced cell survival
after administration because only ~11% of the delivered cells are
retained in the myocardium, decreasing the overall efficiency of cell

FIGURE 1
Next-generation stem/progenitor cell therapy for heart failure. To design next-generation personalized stem cell treatment for HF that ensures
sustainable functional and structural recovery with minimal side effects, it is essential to integrate new components, including AI/ML, bioinformatics, and
precision medicine, into stem cell research and therapeutic development. The emerging streamlined high-throughput testing platforms, such as
organoid and organ-on-a-chip diseasemodels, may greatly shorten the preclinical development phase and accelerate the progress of human trials.
The Figure was partly generated using Servier Medical Art, provided by Servier, licensed under a Creative Commons Attribution 3.0 unported license.
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therapy (Hou et al., 2005). Currently, the process of stem/progenitor
cell homing to areas of myocardial damage is not fully understood,
and strategies to improve targeted cardiac delivery are under
investigation (Liesveld et al., 2020).

Also, there are variabilities among patients in terms of
comorbidities, risk factors, lifestyle, and genomic differences;
presently, it is not clear which type of individuals will benefit
most from stem cell therapy (Patel et al., 2010; Gambini et al.,
2012). Additionally, the majority of human trials used LVEF,
LVESV, and LVEDV as surrogates for cardiac recovery;
alternative endpoints may be needed to assess the efficacy of
stem/progenitor cells since multiple clinical studies have reported
improvement in subjects’ quality of life and exercise tolerance
without any significant increases in LVEF (Bolli et al., 2022).
Thus, it may be essential to investigate alternative endpoint
surrogates rather than solely relying on notable improvement in
LVEF as the marker for therapeutic success (Borow et al., 2019).

There remain other challenges to solve, including 1) designing
optimal cell banking strategies to maintain the therapeutic quality of
donor stem/progenitor cells; 2) establishing appropriate high-
throughput experimental protocols or computation algorithms to
select or predict stem/progenitor cells ideal for treating a particular
HF stage or pathology, respectively; and 3) building more non-
invasive tools to measure how transplanted precursor cells function
within the human subjects. Addressing these challenges may help
improve the efficacy of stem cell therapy in human trials.

The application of stem cells in precision
medicine for heart failure

Precision medicine is the anticipated future of medicine where
therapy will be tailored according to the patient’s genetic
composition, environment, lifestyle, and risk factors (Ashley,
2016; Delpierre and Lefèvre, 2023). Stem cells can be used for a
number of applications in precision medicine: 1) stem cell-derived
CMs can be used to understand or simulate the pathophysiology of
patient-specific cardiac conditions; (Musunuru et al., 2018) 2)
cardiac diseases caused by genetic mutations can be replicated in
patient-derived or engineered cell models with the assistance of the
iPSC technology or genome editing tools, respectively; (Musunuru
et al., 2018) 3) stem cell-derived cardiac cellular models can be used
to test the efficacy and safety of personalized medication for
individual patients; (Chen et al., 2016) and 4) autologous stem
cell-derived cardiac cells may be used as a personalized therapeutic
tool (Musunuru et al., 2018; Lightner and Chan, 2021).

Alternatively, cardiac organoid models derived from stem cells
have been used to substitute animal and human subjects for the
initial testing of the safety and/or efficacy in drug development,
reducing animal and human morbidity and mortality (Azar et al.,
2021). Thus, utilizing stem cells in precision medicine will not only
improve our understanding of acquired cardiac disease (e.g., ICM
and HF), (Bolli et al., 2022) inherent conditions (e.g., familial
cardiomyopathies), (Jiang et al., 2021) and congenital heart
defects (e.g., hypoplastic left heart syndrome, Ebstein anomaly,
Fontan circulation with right ventricular dysfunction),
(Tsilimigras et al., 2017) but also has the potential to be used as
adjuvant treatment to current medical or surgical therapies.

Furthermore, large clinical datasets that comprise patient
histories and characteristics, body fluid compositions, diagnostic
results, tissue pathologies, imaging studies, and/or treatment
effects may be used to identify, classify, or even predict the
distinct signatures or behaviors of genome, epigenome,
transcriptome, proteome, and/or phenome associated with a
particular cardiac pathology in individual patients, and vice
versa (Attia et al., 2019; Qiu et al., 2020; Segar et al., 2020; Liu
et al., 2022). Also, many biological samples of patient-specific stem
cells used in clinical trials are currently stored in biobanks
(Musunuru et al., 2018; Annaratone et al., 2021). Combining
the big data of multiomics with the cellular background and
clinical information may facilitate a personalized multi-level
analysis (Shi and Xu, 2019; Hu et al., 2020). Such
comprehensive personalized analysis may improve our
understanding of how stem cells behave and/or interact with
other cell types under specific pathological conditions or disease
stages (e.g., terminal-stage HF), ultimately aiding in the design of
precision stem cell therapy for personalized medicine (Figure 1).

Computational tools to aid future
development of stem cell-based
therapeutics

The fields of AI and machine learning (ML) are rapidly
expanding and contributing to various medical applications,
including medical imaging, personalized medicine, and robotic-
assisted surgeries (Krajcer, 2022; Haug and Drazen, 2023). AI-
driven decision-making is exemplified in scenarios where
algorithms can process environmental and biological inputs, such
as changes in the culture media, intercellular signals, or cellular
behaviors, and respond accordingly based on predefined parameters
(Adlung et al., 2021). For instance, AI may autonomously detect and
sustain predetermined cellular phenotypes by adjusting the
conditions in human stem/progenitor cell cultures (e.g., infusing
specific cytokines to stimulate cell growth or adding bicarbonate to
maintain consistent pH levels), keeping the culture quality and
streamlining routine wet-lab tasks (Capponi and Daniels, 2023).

AI’s capability to analyze large preclinical and clinical datasets
from biobanks, research data depositories, public health databases,
and healthcare systems has immense implications for stem cell
therapeutics in the context of precision medicine. AI/ML can be
leveraged to identify common genomic traits, individual genetic
polymorphism, disease-associated mutations, morphological
patterns, and/or cellular functions in a personalized manner
(Capponi and Daniels, 2023). This transdisciplinary knowledge
helps: 1) determine the developmental stage and maturation of
stem cells, (Guan et al., 2021; Kim et al., 2022) 2) assess their
regenerative potentials and/or limitations, (Fischbacher et al., 2021),
and 3) predict their therapeutic efficacy and/or side-effects in
individual subjects. (Mota et al., 2021). For example, ML
algorithms were used to identify biomarkers for predicting
positive patient responses to BMSC therapy, (Steinhoff et al.,
2017), characterize CMs non-invasively using video microscopy
and image analysis, (Maddah and Loewke, 2014), analyze the
effects of drugs on the calcium signals of iPSC-CMs, (Juhola
et al., 2021), identify cell lines with/without genetic defects using
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cellular images, (Kim et al., 2023), and identify neural stem cell
differentiation. (Zhu et al., 2021).

Moreover, by analyzing the unique DNA methylation profiles,
investigators devised a linear classification learning model to discern
iPSCs, ESCs, somatic cells, and embryonal carcinoma cells, achieving
94.23% accuracy. (Nishino et al., 2021). Another group utilized
convolutional neural networks (CNNs) to effectively differentiate
pluripotent cells from initial differentiating cells. (Waisman et al.,
2019). The training of the CNN model involved the use of light
microscopic images of PSCs captured at different intervals after the
induction process, including mouse-embryonic cells being induced to
epiblast-like cells. (Waisman et al., 2019). Notably, the results
demonstrated CNN’s remarkable capability to distinguish between
differentiated and undifferentiated cells with 99% accuracy.

Importantly, AI can leverage information from separate studies,
extensive datasets, and stem cell biobanks to create models that
predict the outcomes of stem cell therapy for specific disease states.
These models can potentially be applied to enhance stem cell
proliferation, optimize their functions in the host environment,
and/or predict the most effective population(s) for individuals
with specific phenotypes of cardiomyopathy (Capponi and
Daniels, 2023). Thus, integrating AI/ML into stem cell research
holds great promise for advancing precursor cell-based therapy for
HF by: 1) facilitating our understanding of stem cell biology within
specific cardiac disease contexts at a systems level; 2) improving the
good manufacturing practice for clinical-grade cellular products;
and 3) establishing personalized therapeutic prediction models for
individual patients (Figure 1).

Discussion

A considerable number of recent clinical trials in stem cell
therapy for HF have demonstrated its promise and substantially
increased our understanding of the behaviors and working
mechanisms of stem/progenitor cells in patients (Table 1).
(Hamshere et al., 2015; Martino et al., 2015; Perin et al., 2015;
Choudry et al., 2016; Noiseux et al., 2016; Patel et al., 2016;
Bartolucci et al., 2017; Butler et al., 2017; Choudhury et al., 2017;
Florea et al., 2017; Gwizdala et al., 2017; Hare et al., 2017; Steinhoff
et al., 2017; Teerlink et al., 2017; Xiao et al., 2017; Bassetti et al., 2018;
Vrtovec et al., 2018; Yau et al., 2019; Bolli et al., 2020; He et al., 2020;
Makkar et al., 2020; Mathiasen et al., 2020; Ulus et al., 2020; Bolli
et al., 2021; Qayyum et al., 2023a; Qayyum et al., 2023b; Perin et al.,
2023) In the next phase of clinical stem cell research, it is critical to
address the outcome discrepancy between preclinical and clinical

studies and expand the scope of stem cell-based therapy to other
forms of cardiomyopathy, such as chemotherapy- or arrhythmia-
induced cardiomyopathy. Exploiting the power of AI/ML and
computational tools will facilitate our understanding of the
benefits and limitations of stem cell therapy and provide a
systems perspective for properly applying stem cell therapeutics
in the context of precision and personalized medicine.
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