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Arginine is a functional amino acid essential for various physiological processes in
poultry. The dietary essentiality of arginine in poultry stems from the absence of
the enzyme carbamoyl phosphate synthase-I. The specific requirement for
arginine in poultry varies based on several factors, such as age, dietary factors,
and physiological status. Additionally, arginine absorption and utilization are also
influenced by the presence of antagonists. However, dietary interventions can
mitigate the effect of these factors affecting arginine utilization. In poultry, arginine
is utilized by four enzymes, namely, inducible nitric oxide synthase arginase,
arginine decarboxylase and arginine: glycine amidinotransferase (AGAT). The
intermediates and products of arginine metabolism by these enzymes mediate
the different physiological functions of arginine in poultry. The most studied
function of arginine in humans, as well as poultry, is its role in immune
response. Arginine exerts immunomodulatory functions primarily through the
metabolites nitric oxide (NO), ornithine, citrulline, and polyamines, which take part
in inflammation or the resolution of inflammation. These properties of arginine
and arginine metabolites potentiate its use as a nutraceutical to prevent the
incidence of enteric diseases in poultry. Furthermore, arginine is utilized by the
poultry gut microbiota, the metabolites of which might have important
implications for gut microbial composition, immune regulation, metabolism,
and overall host health. This comprehensive review provides insights into the
multifaceted roles of arginine and arginine metabolites in poultry nutrition and
wellbeing, with particular emphasis on the potential of arginine in immune
regulation and microbial homeostasis in poultry.
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1 Introduction

Amino acids are organic compounds containing both amino (—NH2) and carboxyl
(—COOH) groups. Due to the presence of asymmetric carbon, all amino acids except glycine
exhibit optical activity and exist as D- and L-isoforms or enantiomers (Lehninger et al.,
2005). The asymmetric α-carbon imparts chirality, a phenomenon where the molecule is not
superimposable to its mirror images in space. Due to this, amino acids except glycine exist in
different stereoisomeric forms (Grishin et al., 2020). The amino acids’ biochemical
properties and physiological functions vary widely depending on the side chains, which
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impart charge to the amino acids and their isoforms (Wu, 2009;
Grishin et al., 2020). There are 20 amino acids that function as
building blocks of proteins in animal tissues. Based on their dietary
requirements, amino acids are broadly classified as essential
(indispensable) and non-essential (dispensable) for the growth
and nitrogen balance of the animal. Essential amino acids are
derived from the diet, as the organism cannot synthesize the
carbon skeleton of those amino acids or synthesize them in
amounts not adequate to meet the requirements (Watford, 2008;
Wu, 2009). Conversely, non-essential amino acids can be
synthesized de novo by the organism in sufficient amounts to
meet the requirements in a species-dependent manner
(Lehninger et al., 2005; D’mello, 2003a). However, some amino
acids that are traditionally considered non-essential, are required in
increased amounts under some pathological conditions,
necessitating dietary supplementation, and are termed
conditionally essential amino acids (D’mello, 2003b).

Recently, the concept of functional amino acids was introduced
byWu, (2009). Functional amino acids can be nutritionally essential,
non-essential, or conditionally essential during different
physiological stages of the animal. Functional amino acids play a
pivotal role in gene expression (Leong et al., 2006), oxidative
homeostasis, and cell signaling (Wang et al., 2008) and they
regulate various physiologic and metabolic processes such as
growth, development, immunity, health, reproduction, and
endocrine status (Leong et al., 2006; Wang et al., 2008; Tan et al.,
2009; Jimoh et al., 2021). Functional amino acids essential to
maintaining whole-body homeostasis include methionine,
arginine, proline, glutamine, leucine, glycine, tryptophan, and
cysteine (Wu, 2010). These amino acids exert their functional
roles directly or through their metabolites, exerting antioxidant,
immunomodulatory, and growth-promoting effects (Fagundes et al.,
2020; Liu et al., 2023). The cellular mechanisms by which these
amino acids, notably arginine (Rubin et al., 2007; Tan et al., 2009;
Tan et al., 2010; Al-Daraji and Salih, 2012; Tan et al., 2014; Zhang
et al., 2017; Dao et al., 2022a), exert their beneficial effects, their
functional roles, and their potential use as nutraceuticals in poultry
feed have been investigated lately.

Arginine is a functional amino acid essential for growth, energy
metabolism, immune response, wound healing, and protein
synthesis (Wu et al., 2009). Additionally, arginine is the
precursor for various bioactive molecules such as NO,
polyamines, agmatine, creatine, glutamine, glutamate, and proline
(Almquist et al., 1941; Montanez et al., 2008). Supplementation of
arginine and its metabolites such as guanidinoacetic acid (GAA) and
citrulline in poultry feed improves growth performance, carcass
yield, lean meat yield, bone development, immunity, and
antioxidant capacity (Al-Daraji and Salih, 2012; Tan et al., 2014;
Chowdhury et al., 2017; Zhang et al., 2018; Dao et al., 2021a; Dao
et al., 2022a). This review article delves into the intricate facets of
arginine, shedding light on its absorption, metabolism, and
physiologic functions in poultry. This review also briefly explores
the commercially available arginine metabolites, GAA, and
citrulline, shedding light on their roles within the broader
context of poultry physiology and health. A particular emphasis
is given to the interaction of arginine with the gut microbial
community during health and disease, with a specific focus on
necrotic enteritis as the disease model. Therefore, this review aims to

offer an encompassing perspective on the present understanding of
arginine’s functional role in enhancing poultry health and
production.

2 Arginine in poultry production

Arginine is a dibasic amino acid (Rubin et al., 2007) consisting of
a linear chain of four carbon molecules and a distal complex
guanidinium group, displaying resonance hybrid properties that
impart the chemical properties of arginine (Khajali and Wideman,
2010). Arginine is an essential amino acid in poultry due to the
absence of a functional urea cycle (as illustrated in Figure 1)
(Application of Nutritional Immunology, 2022). This dietary
indispensability of arginine in chickens arises from the lack of
the enzyme carbamoyl phosphate synthase-I, which is necessary
for the synthesis of L-arginine from ornithine, ammonia, and
amino-nitrogen of aspartate. Additionally, poultry exhibits lower
activities of ornithine transcarbamoylase and hepatic arginase
(Khajali and Wideman, 2010), reinforcing their dependency on
dietary arginine. Nevertheless, in the presence of dietary
citrulline, arginine synthesis can occur in chicken macrophages
and kidneys (Allen and Fetterer, 2000). Citrulline can replace
arginine in the diet because of argininosuccinate and
argininosuccinate synthetase enzymes in poultry. However, due
to the lack of the enzyme carbamoyl phosphate synthetase,
chicks cannot utilize ornithine (Tamir and Ratner, 1963a) as a
source of arginine. In addition, hepatic arginine synthesis does not
occur in chickens as the arginase activity is relatively higher in the
liver.

Arginine is the fifth-limiting amino acid in a corn-soybeanmeal-
based poultry diet. The National Research Council (NRC)
requirement of arginine for broilers is 1.25%, 1.10%, and 1.00%
of the diet for up to 3 weeks, 3–6 weeks, and 6–8 weeks of age,
respectively (National Research Council, 1994b). However, the last
updated version of the NRC recommendations for poultry was
published in 1994. Commercial broilers were genetically selected
in the last few decades to improve body weight gain, feed efficiency,
and breast muscle yield (Applegate and Angel, 2014). The
requirements for this increased growth and production
performance, changes in management practices, and feed-related
changes have not been accounted for in the NRC (1994)
recommendations (Applegate and Angel, 2014). According to
recent research findings, the NRC recommendations for arginine
might not be adequate to support increased growth, prevent
pulmonary hypertension due to stressful environmental
conditions, and support arginine-dependent immune responses
(Khajali and Wideman, 2010). However, other studies suggest the
arginine requirements are close to the NRC (1994)
recommendations (Jahanian, 2009). Nonetheless, the arginine
requirement for optimum cellular and humoral immune
responses in poultry is thought to be higher than that required
for maximum growth rate in poultry (Jahanian, 2009).

Arginine is not a limiting amino acid in a corn-soybean meal-based
poultry diet with an arginine: lysine ratio ranging from 100 to 107 (2022-
Cobb500-Broiler-Performance-Nutrition-Supplement, 2022; Ross-
BroilerNutritionSpecifications2022-EN, 2022). However, recent studies
indicate that a higher arginine: lysine ratio is recommended for improved
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BWG and FCR (Zampiga et al., 2018; Sirathonpong et al., 2019; Corzo
et al., 2021). Arginine supplementation is also recommended when birds
are raised at high altitudes, during heat and cold stress, and when
increasing the stocking density (Brake et al., 1998; SRINONGKOTE
et al., 2004; Kodambashi Emami et al., 2017). The increased use of low
crude protein feed formulations, replacement of soybean meal with by-
products such as corn distillers’ dried grains, and reduced use of animal
sources of protein in poultry diet necessitates arginine supplementation
(DeGroot et al., 2018). The requirement for arginine can vary depending
on several other factors, such as dietary protein level, source of protein,
digestibility of feed ingredients, stage of growth, and physiological status
of the bird (McNab, 1994).

The proteins’ nutritional value and amino acid composition vary
with the dietary ingredients used in poultry feed formulation. Amino
acid availability is a valuable measure and indicator of protein
quality (McNab, 1994; Ravindran et al., 1999) Estimating the
amino acid availability of feed ingredients enables the efficient
formulation of poultry feed, accounting for endogenous losses.
Amino acid availability is defined as “the proportion of dietary
amino acids that is in a form suitable for digestion, absorption, and
utilization by the animal” (McNab, 1994). Amino acid digestibility is
a sensitive indicator of dietary amino acid availability for poultry.
Excreta analysis is the most common method used to assess the
amino acid digestibility in poultry. Nonetheless, since the urine and
feces are excreted together in poultry, excreta analysis measures
amino acid metabolizability rather than digestibility (Ravindran
et al., 1999). Analysis of ileal contents is a more reliable method
for assessing amino acid digestibility in poultry as it takes into
account the hindgut fermentation, preventing underestimation of
the amino acid requirement (Investigation of protein quality, 1968).

In addition, there are differences in the amino acid digestibility
among different feed ingredients. Amino acid digestibility is highest
in oilseed meals, particularly soybean and sunflower meals. Arginine
digestibility was highest in oilseed meals (except for cottonseed
meal), grain legumes, wheat middling, and rice polishings. Among
animal protein sources, blood meal had the highest amino acid
digestibility coefficient, followed by fish meal, meat meal, meat, bone
meal, and feather meal, respectively (Ravindran et al., 2005). These
factors affecting the digestibility and estimation of the digestibility of
arginine influence the arginine requirement of the birds as well.

In growing chicks, the requirement for arginine will be greatly
increased (when expressed as g/day) with high demand for the
amino acid for muscle protein accretion (Ball et al., 2007).
Similarly, during infections, the immune system is activated,
which significantly affects the amino acid availability for
muscle protein accretion, thus compromising growth. Arginine
requirement will be increased during an active inflammatory
response (Rochell et al., 2017; Nogueira et al., 2021) indicated by
a decreased plasma arginine concentration in infected birds. The
increased demand for arginine during enteric infections such as
coccidiosis might be due to its role in polyamine synthesis which
is required for mucosal tissue repair (Rochell et al., 2017). Thus,
the body prioritizes the immune response over protein
deposition during stress conditions (Nogueira et al., 2021)
reducing the metabolic availability of arginine and negatively
impacting growth (Allen and Fetterer, 2000). Similarly, during
stress conditions, especially during heat stress, the sodium-
dependent and sodium-independent uptake of arginine is
depressed, increasing the arginine requirement in birds
(Khajali and Wideman, 2010). The requirement for arginine

FIGURE 1
Birds lack the enzyme carbamoyl phosphate synthase-1 (incomplete urea cycle), making L-arginine dietary essential. However, poultry can
synthesize arginine from citrulline via arginosuccinate synthase and lyase. Created with biorender.com (21 May 2022).

Frontiers in Physiology frontiersin.org03

Fathima et al. 10.3389/fphys.2023.1326809

http://biorender.com
https://www.frontiersin.org/journals/physiology
https://www.frontiersin.org
https://doi.org/10.3389/fphys.2023.1326809


can also vary based on its relationship other amino acids such as
lysine and methionine (Chamruspollert et al., 2002),
methodology used to estimate the requirement, and type of
birds used (Lima et al., 2020). However, determining the
actual requirement for arginine hinges on its bioavailability,
contingent upon both digestibility and post-digestion
utilization of the amino acid. Thus, comprehending the
intricate processes of absorption, transport, and metabolism of
arginine in poultry is crucial, and these aspects will be explored
further in the subsequent sections.

3 Arginine absorption and transport
mechanisms

Arginine, being a cationic amino acid, shares transport
proteins with other cationic amino acids such as ornithine and
lysine (Closs and Mann, 2000). The carrier proteins for cationic
amino acids belong to the solute carrier family 7 (SLC7) and
include members 1,7 and 9. The sodium-independent transporter
SLC7A1 preferably transports arginine, followed by lysine and
histidine. However, the sodium-dependent transporters
SLC7A7 and SLC7A9 prefer lysine (Bröer and Fairweather,
2018). Arginine, in most cells, is taken up by a Na+-
independent transport system, termed system y+. The system
y+ is constituted by the cationic amino acid transporter (CAT)
proteins CAT-1, CAT-2B, and CAT-3 (Closs et al., 2004). The
CAT transporters cater to the cationic amino acid requirements
for protein synthesis and the synthesis of bioactive substances
such as NO, creatine, proline, polyamines, agmatine, glutamine,
and urea (San Martín and Sobrevia, 2006). The glycoprotein-
associated heterodimeric b0,+AT/rBAT transporter is a Na+-
independent transporter located in the luminal side of the
epithelium and facilitates the inward transport of dibasic
amino acids such as arginine and lysine in exchange for
neutral amino acids (Torras-Llort et al., 2001). The neutral
amino acids necessary for exchange with arginine are
transported by PepT1, PepT2, or B0AT and y+LAT1 at the
apical and basolateral membranes, respectively (Closs et al.,
2004). In addition, amino acid transporters are present on the
basolateral membrane of the enterocytes that facilitate the
exchange of amino acids between the vascular system and the
epithelial cells. The transporters y+ LAT1 and y+ LAT2 transport
neutral and cationic amino acids, whereas CAT1 and
CAT2 transport cationic amino acids across the basolateral
membrane of the enterocytes (Miska and Fetterer, 2017).

The expression of these amino acid transporters is significantly
decreased during infections, leading to malabsorption, weight loss,
and immune dysfunction (Miska and Fetterer, 2017). Further,
intestinal immunopathology is significantly increased during
infection-associated arginine deficiency. This infection-induced
damage can be reversed by administering supplemental arginine
(Zhang et al., 2019). During such conditions, arginine is mobilized
from body protein to satisfy the increased demand or to compensate
for the decreased availability (Faure et al., 2007). However, the
absorption and utilization of arginine is also influenced by the amino
acid balance, acid-base balance, and the presence of antagonists in
the diet (Jones et al., 1967; Khajali and Wideman, 2010). These

interrelationships of arginine with other dietary components
affecting its absorption and utilization are discussed below.

4 Nutritional antagonism: interaction of
other amino acids with arginine

A dietary balance of micronutrients, such as essential amino
acids, is important for optimum growth and development (Zampiga
et al., 2018). The amino acids interact with each other to maximize
the growth and production performance in poultry (Kidd et al.,
1997). A change in the dietary inclusion level of one amino acid can
cause a marginal deficiency of other amino acids if the balance is not
maintained. Antagonism occurs due to the competition among
amino acids for absorption and transport systems and common
enzymes used in their catabolism due to similarities in their chemical
structures. Moreover, antagonists might inhibit the uptake or
utilization of the amino acid, affecting its availability for
physiological functions. Factors such as dietary imbalances in
amino acid composition, competition for transporters, or
metabolic interactions can contribute to amino acid antagonism
(Bell, 2003; Maynard and Kidd, 2022).

The balance between arginine and lysine is important in poultry
feed. The nutritional antagonism of arginine and lysine was first
identified in 1952 (Anderson and Combs, 1952). The antagonism is
explained by the fact that arginine and lysine are basic amino acids
competing for renal tubular reabsorption. The antagonism is more
pronounced with excess lysine than with excess arginine. The
antagonistic effects are observable when the lysine content in the
poultry diet is approximately 2%–3.5% or when the lysine-to-
arginine ratio is 2.2–2.6: 1 (Ball et al., 2007). A high lysine:
arginine ratio enhances renal arginase activity, leading to
increased degradation and urinary excretion of arginine (Khajali
and Wideman, 2010). Excess lysine affects the muscle amino acid
concentration and growth in poultry. The suppression of weight
gain by diets high in lysine was first reported by Anderson and
Combs (Anderson and Combs, 1952) whereas, the growth-
depressing effect of a high arginine diet was first reported by
D’mello and Lewis (D’mello and Lewis, 1970). The optimum
dietary arginine: lysine ratio recommended by the NRC is 1.14,
1.10, and 1.18 for 0–3 weeks, 3–6 weeks, and 6–8 weeks respectively
(National Research Council, 1994a). The effect of high lysine on
arginine can be attenuated by supplementing sodium, potassium,
calcium, or magnesium salts of organic acids, such as sodium and
potassium acetate (Khajali and Wideman, 2010).

In contrast to the above-discussed findings, in a study conducted
by Kadirvel and Kratzer (1974), it was observed that leucine
significantly inhibited the uptake of arginine more than lysine.
This antagonism can be due to the faster absorption of leucine
and lysine. Arginine deficiency produced by lysine can be due to the
metabolic effect rather than competitive inhibition of intestinal
absorption as well (Jones et al., 1967). Kidney arginase activity
and urea excretion have a significant impact on arginine
requirements and homeostasis. Several amino acids such as
lysine, isoleucine, phenylalanine, histidine, and tyrosine
significantly increase kidney arginase activity (Austic and
Nesheim, 1970) while glycine and threonine suppress kidney
arginase activity (Austic and Nesheim, 1970).
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Non-protein amino acids such as canavanine, homoarginine,
and indospicine are structural analogues of arginine (Figure 2),
implicated in antagonistic activity against arginine. Canavanine is a
non-protein structural analogue of arginine and is found
predominantly in legumes and crops such as alfalfa, clover, bitter
vetch, and trefoils. The seed of bitter vetch contains 28.5% crude
protein and can be used as an alternative source of protein in poultry
feeds. However, the presence of canavanine limits its use as an
alternative feedstuff in monogastric animals (Sadeghi et al., 2004;
Sadeghi et al., 2009a; Sadeghi et al., 2009b). Canavanine is stored in
leguminous plants as a chemical barrier against diseases causing
pathogens and predation. In animals, canavanine can replace
arginine during protein synthesis, leading to the synthesis of
non-functional proteins (Sadeghi et al., 2009b). In addition,
canavanine replaces ornithine in the urea cycle, leading to the
formation of canavaninosuccinate. Canavaninosuccinate inhibits
the ornithine decarboxylate enzyme, hindering the biosynthesis
of polyamines such as spermine, spermidine, and putrescine
(D’mello, 2003a). Canavanine also inhibits Na+- dependent
transport of arginine across the intestinal epithelium (Khajali
and Wideman, 2010). Canavanine in poultry feed can adversely
affect growth performance and cause pancreatic hypertrophy
(Sadeghi et al., 2004). However, canavanine in the feedstuffs can
be inactivated by different treatment methods, primarily soaking,

acid treatment, alkali treatment, or heat treatment (Sadeghi et al.,
2004).

L-homoarginine, a non-protein amino acid, is synthesized from the
catabolism of lysine or transamination of arginine in the small intestine,
liver, and kidneys (Adams et al., 2019). Homoarginine can affect NO
production by acting as a substrate for the enzyme NOS. As
L-Homoarginine uses the same intestinal amino acid transporter as
lysine, feeding homoarginine was found to decrease feed consumption
in birds and cause lysine deficiency in rats (Adams et al., 2019).
Homoarginine acts as a competing substrate for the enzymes that
use arginine as a substrate (Haghikia et al., 2017). The effect of
homoarginine on nitric oxide production can be positive or
negative, depending on several factors, such as the cell type,
intracellular and extracellular concentrations of arginine, and the
activity of other arginine metabolizing enzymes. Feeding
homoarginine in poultry inhibits the secretion of alkaline
phosphatase, which is important for the maintenance of gut health
and intestinal homeostasis (Adams et al., 2019). Alkaline phosphatase
plays an important role in bone formation as well; hence, homoarginine
levels are inversely proportional to the parameters of bone formation
(Linder, 2016; Adams et al., 2019). Hence, homoarginine plays an
important role in differentmetabolic processes in poultry. However, the
normal level of serum homoarginine and its implications for poultry
health and wellbeing have not been well established.

FIGURE 2
Nutritional antagonists of arginine. Created with BioRender.com (26 November 2023).
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Indospicine, a non-proteinogenic amino acid, is a competitive
inhibitor of arginine. Indospicine is found in Indigofera plant
species. The compound causing Indigofera toxicity was identified
in 1970 as indospicine by Hegarty and Pound (Hegarty and Pound,
1970). Indospicine acts as a cation on ion exchange resins, is not
metabolized by arginase, and interferes with the incorporation of
arginine in proteins (Hegarty and Pound, 1970; Bell, 2003).
Livestock, grazing on pasture, accumulates toxins in their meat,
which leads to the secondary poisoning of animals consuming the
meat of grazers. Indospicine interferes with the arginine metabolic
pathways in mammals and is highly hepatotoxic and teratogenic
(Fletcher et al., 2015). In poultry, feeding 5% I. spicata meal caused
decreased growth rate and paralysis of the neck, wings, and legs,
followed by death (Rosenberg and Zoebisch, 1952). It has been
suggested that poultry, being a uricotelic species, is less susceptible to
the adverse effects of indospicine than ureotelic animals (Bell, 2003).
Nevertheless, the current literature on the effect of indospicine on
poultry health is sparse.

5 Arginine metabolism and
physiological effects of metabolites in
poultry

In poultry, the fate of arginine is determined by the activities of
CATs, arginosuccinate synthase, and the arginine-degrading
enzymes- NOS and arginases (Wu and Morris, 1998). The key
enzymes involved in arginine catabolism are 1. NOS, 2. arginase 3.
arginine decarboxylase (ADC), and 4. arginine: glycine
amidinotransferase (AGAT), summarized in Figure 3. The
expression of these enzymes is cell-specific. The three isozymes
of NOS, namely, neuronal NOS (nNOS or NOS 1), endothelial NOS

(eNOS or NOS 3), and iNOS or NOS2 differ in their structure,
distribution, and synthetic capacity, but catalyze the same reaction
(Stuehr et al., 2004). The enzyme NOS incorporates molecular
oxygen at the terminal guanidino nitrogen group of arginine,
yielding NO and citrulline. The gene expressions of nNOS and
eNOS are constitutive, whereas the expression of iNOS is inducible.
While nNOS and eNOS-mediated production of NO is “low-output”
and is important for normal physiological functions, the production
of NO by iNOS is classified as “high-output” and is involved in
infection and inflammation (MacMicking et al., 1997).

Under physiological conditions, NO (produced by the
expression of eNOS and nNOS) is necessary for vasodilation,
parasympathetic neuronal action, smooth muscle relaxation,
spermatogenesis, gene expression, and embryogenesis in poultry.
For instance, in ovo, inoculation of arginine in chicks improves egg
weight, hatchability, chick weight, production performance,
lymphoid organ weight, and liver and pectoral muscle energy
storage (Nabi et al., 2022), that might contribute to the increased
survivability of chicks. In addition, arginine supplementation in
poultry raised at high altitudes helps to regulate vasodilation and
prevent heart disease and subsequent ascites syndrome in poultry
(Miri et al., 2022) due to the production of NO. eNOS expression is
upregulated during hypertension, hypoxia, and hypoxemia. This will
promote calcium entry into the endothelial cells transiently, which
forms the calcium-calmodulin complex and stimulates NO
production. NO acts as a vasodilator, relieving hypertension and
increasing the blood supply to the tissues (Bowen et al., 2007).
However, during inflammation, pro-inflammatory cytokines such as
IFN-γ, IL-1β, IL-12, tumor necrosis factor- α (TNF-α), and bacterial
lipopolysaccharides (LPS) induce the expression of iNOS (Qureshi,
2003; Bowen et al., 2007). The activity of the different isoforms of
NOS has been reviewed previously (MacMicking et al., 1997).

FIGURE 3
Metabolism of arginine by the major arginine metabolizing enzymes L-arginine: glycine amidinotransferase, arginase, NOS, and arginine
decarboxylase in poultry. Created with Biorender.com (8 October 2022).
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Arginine is the only known substrate for all three isoforms of NOS
and the precursor of NO in the body (Wu and Morris, 1998) and
hence, NOS competes with other arginine-degrading enzymes, such
as arginase.

Arginase exists predominantly in two isoforms-liver-type
arginase I and non-hepatic-type arginase II. Arginase I is present
in the cytosol of hepatocytes and erythrocytes, whereas arginase II is
present in the mitochondrial matrix of enterocytes and the cells of
the kidney. In poultry, arginase activity is highest in the kidney, liver,
andmacrophages (Tamir and Ratner, 1963b). Expression of arginase
I in macrophages is induced by the cytokines IL-4 and IL-13.
Arginase downregulates NO production by competing with NOS
for arginine (MacMicking et al., 1997). Prolonged production of NO
is toxic to macrophages and other cells in the vicinity. Arginase,
induced during the later stages of inflammation, depletes
intracellular arginine, thus preventing the overproduction of NO.
Arginase acts on L-arginine, yielding ornithine, which is
decarboxylated by ornithine decarboxylase to form putrescine
(MacMicking et al., 1997). In the presence of decarboxylated
S-adenosylmethionine, spermine and spermidine can be formed
from putrescine by ornithine decarboxylase and
S-adenosylmethionine decarboxylase (Seiler, 1987). The
polyamines spermine, spermidine, and putrescine are associated
with cell repair, cell proliferation, and wound healing (Wu and
Morris, 1998). Ornithine can be converted to pyrroline-5-
carboxylate further converted to proline and hydroxyproline.
Proline and its metabolites regulate gene expression, mTOR
pathway (van Meijl et al., 2010), protein synthesis, cell survival,
and scavenge free radicals (Kaul et al., 2008). Besides,
hydroxyproline is required for the synthesize of glycine, glucose,
and pyruvate and is known to scavenge free radicals (Phang et al.,
2008).

Decarboxylation of arginine by the mitochondrial enzyme ADC
yields the cationic amine agmatine. Agmatine is a precursor for
synthesizing polyamines and is important for maintaining
mitochondrial membrane permeability (Akasaka and Fujiwara,
2020). Agmatine is a pleiotropic molecule involved in various
physiological functions such as NO synthesis, polyamine
metabolism, glucose metabolism, carnitine synthesis, and
neurotransmission (Molderings and Haenisch, 2012). Agmatine
has been discovered to have therapeutic applications and is
considered a nutraceutical in mammals (Molderings and
Haenisch, 2012). The role of agmatine in poultry is largely
unexplored. ADC activity is highest in the kidney and liver.
Studies on agmatine revealed the antagonistic activity of
agmatine aldehyde on NOS (Satriano, 2004). Agmatine inhibits
polyamine biosynthesis by binding to the enzyme ornithine
decarboxylase and promoting its degradation. Additionally,
agmatine induces the antizyme- I, an enzyme that converts
higher-order polyamines to lower-order polyamines (spermine →
spermidine → putrescine) (Satriano, 2004). Thus, in general,
agmatine possesses antiproliferative and anti-inflammatory activity.

Creatine cannot be synthesized in birds de novo. The creatine
balance in poultry is dependent on dietary arginine. The enzyme
transamidinase (AGAT) catalyzes the transfer of an amidino group
from arginine to the N-terminal amine of glycine to yield ornithine
and guanidinoacetate (GAA). Guanidinoacetate methyltransferase
catalyzes the methyl group transfer from S-adenosylmethionine to

GAA, yielding creatine (Portocarero and Braun, 2021). Creatine
plays a pivotal role in energy metabolism by acting as a phosphate
reservoir for adenosine triphosphate (ATP) formation (Portocarero
and Braun, 2021). Though creatine can be endogenously synthesized
in mammals, birds fully rely on dietary sources. Creatine is highly
unstable and is not approved as a feed additive for poultry. However,
GAA acts as a precursor of creatine and is approved as a feed
additive in broilers (Majdeddin et al., 2020).

6 Arginine sparing effects of arginine
metabolites

The lack of commercially available, economical sources of
L-Arginine prompted the use of arginine metabolites that fuel
arginine’s non-protein functions, sparing more arginine for
muscle protein accretion (DeGroot et al., 2018). Citrulline and
GAA are metabolites of arginine that are commercially available
and exhibit arginine-sparing effects. GAA, also known as
glycocyamine, is formed from arginine and glycine by the activity
of the enzyme arginine: glycine amidinotransaminase in the kidneys.
GAA is methylated in the liver by the action of the enzyme
guanidinoacetate-N-methyltransferase to form creatine (Khajali
et al., 2020). Creatine is transported to the tissues with high
energy demands such as the skeletal muscles, spermatozoa, brain,
heart, and retina. Creatine and phosphocreatine play a significant
role in cellular energy metabolism through the formation of high-
energy phosphate bonds (Lemme et al., 2007). However, the tissues
have a limited storage capacity for creatine and hence, high
circulating creatine levels induce a negative feedback mechanism
that inhibits the formation of GAA (Khajali et al., 2020). Though
creatine synthesis represents a major proportion of arginine
utilization, the thermal instability of creatine limits its use as a
feed additive (Vraneš et al., 2017; Khajali et al., 2020). Synthetic
GAA is highly thermostable and has a high recovery rate from feed,
making it a suitable feed additive in pelleted and extruded feed
(Vraneš et al., 2017). GAA supplementation also bypasses the
negative feedback inhibition by creatine (DeGroot et al., 2018).
Hence, GAA can be considered as a readily available source of
creatine and can reduce or spare arginine requirement in broilers
(Arginine sparing potential of guanidinoacetic acid in broiler
nutrition, 2018). DeGroot, A. A., Braun, U., & Dilger, R. N.
(2018) demonstrated that supplementation of 0.12% GAA in an
arginine-deficient diet fed to broiler chickens reversed the arginine
deficiency-induced reduction in growth performance, muscle
glycogen concentration, and muscle phosphagen concentration
(DeGroot et al., 2018). GAA supplementation in a low-protein
diet during heat stress in chickens improves growth performance
and feed conversion ratio (Amiri et al., 2019). GAA supplementation
also improves sperm concentration and motility and decreases
sperm abnormality in broiler breeder roosters, contributing to
improved semen quality and fertility. Creatine phosphate is
important for the energy homeostasis of sperm and is required
for sperm motility (Tapeh et al., 2017). Creatine also has anti-
apoptotic and anti-oxidative effects on cells, which aids in
maintaining the plasma membrane integrity of spermatozoa and
preventing abnormalities (Meyer et al., 2006). Creatine
supplementation also plays a significant role in muscle
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development, indicated by an improved feed: gain ratio in broilers
supplemented with creatine monohydrate. GAA supplementation in
energy energy-deficient diet partially reverses the adverse effects of
dietary energy reduction on the growth performance of poultry
(Fosoul et al., 2018). Supplementation of GAA, even in arginine-
sufficient diets, is found to have an arginine-sparing effect, diverting
arginine from creatine formation to protein accretion in broilers
(Portocarero and Braun, 2021). Supplementation of GAA in an
adequate protein diet for broilers improves BWG and FCR, which
might be due to increased energy efficiency. Moreover, GAA also
promotes polyamine synthesis required for the synthesis of RNA,
DNA, and proteins, and promotes the production of growth
hormones (Ahmadipour et al., 2018).

Citrulline is a non-protein amino acid formed from arginine by
the action of the enzyme nitric oxide synthase. Citrulline can be
converted to arginine by the sequential action of the enzymes
argininosuccinate synthase and argininosuccinate lyase
(Chowdhury et al., 2017). Dietary arginine is metabolized by the
hepatic arginase during first-pass metabolism or is degraded by the
intestinal mucosal arginase, limiting its presence in plasma (Zheng
et al., 2017). Citrulline bypasses the hepatic metabolism and can be
converted to arginine in the kidneys and released into the
bloodstream (El-Hattab et al., 2012). Hence, citrulline can be
used for the de novo synthesis of arginine in poultry (Uyanga
et al., 2023). Several studies in human subjects highlight the
therapeutic applications of citrulline in different conditions such
as skeletal muscle atrophy (Ham et al., 2015), metabolic syndrome
(Sailer et al., 2013), and urea cycle disorders (Johnson, 2017).
However, the potential role of citrulline in poultry health and
disease is not understood completely. Citrulline can be used to
partially replace arginine in broiler diets without causing a
detrimental effect on the growth performance and intestinal
health of the birds (Uyanga et al., 2023). Citrulline
supplementation in poultry increases the activity of the NOS
enzyme, improves antioxidant synthesis, reduces lipid
peroxidation, and modulates the availability of the free amino
acids arginine, ornithine, and citrulline (Uyanga et al., 2020).
Citrulline supplementation during heat stress in chicks was found
to be beneficial in reducing the rectal temperature down to the level
of non-heat-stressed birds (Chowdhury et al., 2017). The regulation
of core body temperature by citrulline is mediated through its effects
on the secretion of inflammatory cytokines, initiating a
neuroendocrine immunoregulatory cascade (Uyanga et al., 2022).
Citrulline supplementation also promotes muscle protein synthesis
by activating themTORC1 pathway (Osowska et al., 2006; Le Plenier
et al., 2011).

Though citrulline and GAA were able to replace arginine in low-
protein poultry diets and demonstrate arginine-sparing effects
(Esser et al., 2017), GAA was found to be less effective in
replacing arginine (Dao et al., 2021b). However, the inclusion
levels of the GAA and citrulline supplementation should also be
considered; GAA at doses higher than 0.15% in poultry diets is
demonstrated to have toxic effects on day 35 in Ross 308 male
cockerels fed a low protein diet (Dao et al., 2021b), whereas doses
ranging from 0.06%–0.12% promote growth and production in Ross
308 cockerels fed a basal diet on day 35 (Tossenberger et al., 2016).
However, as indicated by several studies, the physiological effects of
GAA and citrulline depend on factors such as the dose

supplemented and the physiological status of the birds
((Ahmadipour et al., 2018; Uyanga et al., 2022)). Further studies
are warranted to elucidate the biological events that underlie the
response of poultry to citrulline and GAA supplementation.

7 Arginine and the macrophage
dichotomy

Arginine and its metabolites serve as important mediators of
several physiological processes affecting the health and production
of poultry, extensively elaborated elsewhere (Ghamari Monavvar
et al., 2020). This review focuses on the role of arginine and its
metabolites in immune responses of poultry. Arginine is
demonstrated to play a pivotal role in humoral and cell mediated
immune responses in poultry (Ruan et al., 2020). Macrophages are
professional cells of the innate immune system, which performs
diverse functions. Macrophages are involved in the induction and
resolution of an inflammatory reaction, tissue repair, and the
activation of lymphocyte-mediated adaptive immune response
(Miyashita et al., 2022). Macrophages adapt to the respective
microenvironment and tissue niches in which they function. This
adaptability enables macrophage polarization, which is the process
by which macrophages mount a specific phenotypic and functional
response to the microenvironmental stimuli encountered in a
specific tissue (Sica and Mantovani, 2012). The polarization of
macrophages is not fixed due to their multifaceted functions.
Polarization of macrophages occurs in response to cell-to-cell
interactions and cell-to-molecule interactions during an
inflammatory response to maintain homeostasis. Macrophage
polarization is regulated by arginine availability in the
microenvironment and its metabolism by macrophages (Gharavi
et al., 2022). Macrophage polarization can be categorized into M1
(classically activated macrophages or pro-inflammatory) and M2
(alternatively activated macrophages or anti-inflammatory)
macrophages based on the arginine metabolism (Lumeng et al.,
2007). M1 macrophages are induced by inflammatory mediators
such as bacterial lipopolysaccharides and are characterized by the
production of proinflammatory cytokines such as IFN-γ, IL-1β, IL-
12, iNOS, TNF-α, and reactive oxygen species. M2 macrophages are
induced by IL-4 and IL-13, which are Th2 cytokines important for
the resolution of inflammation, tissue repair, and wound healing
(Benoit et al., 2008). M1 macrophages are microbicidal and
inflammatory, whereas M2 macrophages are anti-inflammatory
and poor microbicides (Benoit et al., 2008).

Polarization of macrophages along the M1 and M2 axes occurs
based on the activities of the arginine metabolizing enzymes NOS
and arginase, respectively (Wentzel). Activation of macrophages by
microbial products such as LPS, Th1 cytokines such as IL-1β, IFN-γ,
or TNF-α, or stress such as hypoxia recruits macrophages to the
M1 pathway and induces the expression of the iNOS gene, also
known as macNOS because it was first discovered in activated
macrophages (Molecular and epigenetic basis of, 2015).
Furthermore, the M1 macrophages mediate their anti-microbial
activity through the activation of the nicotinamide adenine
dinucleotide phosphate (NADPH) oxidase system and the
subsequent production of reactive oxygen species (Shapouri-
Moghaddam et al., 2018). The availability of arginine and
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endogenous or pharmacological analogs of arginine can constrain
NO synthesis. However, the effects of NO can be detrimental to the
host tissues as well. The local concentrations of NO play an important
role in cytotoxicity; under normal physiological conditions, NO is
produced in picomolar quantities, whereas during inflammation, NO
is produced in micromolar quantities (Abramson et al., 2001).
Sustained increased production of NO damages the surrounding
cells and tissues of the host as well, in addition to the pathogens
(Abramson et al., 2001). Furthermore, NO causes lipid peroxidation
and decreases the activity of serum antioxidants such as glutathione,
causing oxidative stress (Qiu et al., 2019).

Unlike M1 macrophages, M2 macrophages metabolize arginine
using the arginase pathway, which is stimulated by cytokines such as
IL-4, IL-6, IL-10, IL-13, TGF-β, and other factors such as GM-CSF,
PGE-2, cAMP, and catecholamines (Martí i Líndez and Reith, 2021).
As the cytokines indicate, the arginase pathway in macrophages
primarily promotes wound repair, matrix deposition, and healing
(Martí i Líndez and Reith, 2021). These functions are mediated by
the metabolism of L-arginine by arginase, yielding ornithine and
urea. Ornithine is further metabolized by ornithine
aminotransferase and ornithine decarboxylase to proline and
polyamines, respectively. Proline is essential for collagen
synthesis, while polyamines mediate diverse functions such as
gene expression, translation, cell proliferation, cell growth, cell
signaling, membrane stability, and cell death (Kusano et al., 2008;
Li et al., 2022). Arginine supplementation thus reduces
inflammation, intestinal injury, and oxidative stress, restoring
intestinal homeostasis (Qiu et al., 2019). Arginase competes with
NOSs for the common endogenous substrate L-arginine, preventing
the overproduction of NO and associated tissue damage during
prolonged inflammation. In short, during inflammation, the
metabolism of arginine follows a biphasic pattern; initially, there
will be a burst of microbicidal NO synthesis followed by an increase
in the synthesis of ornithine, proline, and polyamines to promote the

resolution of inflammation and wound healing (Martí i Líndez and
Reith, 2021). However, iNOS can control arginase activity by
generating hydroxy-L-arginine, an intermediate in NO synthesis,
to inhibit arginase activity. Arginase, in turn, can deplete arginine in
the extracellular milieu, thus regulating NO production (Choi et al.,
2009). This chasm between the metabolic pathways of arginine in
M1 and M2 macrophages is summarized in Figure 4.

Thus, arginine plays an important role in macrophage activation
and function by serving as the sole endogenous substrate for the
macrophage enzymes iNOS and arginase, mediating inflammation
and resolution of inflammation, respectively.

8 Arginine and the gut microbiota

L-arginine is a metabolically versatile amino acid that serves
as a source of carbon, nitrogen, and energy through different
catabolic pathways in bacteria. Even though there is a vast
diversity of gut microbiota, their metabolic redundancy and
interaction with other microbiota species make their survival
easier. The interaction between different species of gut
microbiota and their metabolic products can have important
implications for gut microbial composition, immune regulation,
metabolism, and host health as well. It is thought that microbial
amino acid utilization in the small intestine is for the synthesis of
bacterial proteins. In contrast, amino acid catabolism dominates
in the large intestine due to the lower availability of
carbohydrates (Dai et al., 2011).

Arginine biosynthesis in bacteria occurs through the linear
pathway, present in E. coli, or the recycling pathway, present in
Bacillus. In the linear pathway, acetyl CoA condenses with glutamate
to yield arginine through a series of eight steps, while in the recycling
pathway, the acetyl group from acetylornithine is transferred to
glutamate by the enzyme ornithine acetyltransferase. Both pathways

FIGURE 4
Metabolism of arginine in M1 and M2 macrophages. Created with BioRender.com (18 Nov 2022).
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are regulated by a negative feedback mechanism based on the
concentration of arginine (Lu, 2006). The expression of these
enzymes can be affected by other gut microbes and the intestinal
compartment as well. In the case of Lactobacillus plantarum, it was
observed that the expression of argininosuccinate synthase, an
enzyme involved in arginine biosynthesis, increased significantly
in mice’s gastrointestinal tract compared to its in vitro expression
(Bron et al., 2004). Furthermore, the expression of argininosuccinate
synthase is specifically induced in the small intestine of mice,
compared to other sections of the gastrointestinal tract (Marco
et al., 2007).

The bacteria catabolize arginine via the arginase pathway,
arginine deaminase pathway, arginine dehydrogenase/
transaminase/oxidase pathway, and arginine succinyl transferase
pathway (Lu, 2006). The expression of these enzymes can be affected
by other gut microbes and the intestinal compartment. An outline of
the bacterial catabolism by the four major enzymes is schematically
represented in Figure 5.

The arginase pathway in bacteria is important to modulate the
intracellular levels of arginine and ornithine in response to
environmental conditions and physiological needs. Arginase
expression or activity increases in the presence of exogenous
arginine (Ide et al., 2020) In the arginase pathway, ornithine and
urea are formed from arginine. Ornithine is transformed into
glutamate by the enzymes ornithine aminotransferase and Δ-
pyrroline-5-carboxylate dehydrogenase. Glutamate is converted
into 2-ketoglutarate or 2-oxoglutarate, entering the Krebs cycle.
Ornithine and urea generated by the arginase pathway can serve as
carbon and nitrogen sources for other gut microbial species (Lu,
2006). In microorganisms producing the enzyme urease, the urea
formed as a by-product is further hydrolyzed to carbon dioxide and

ammonia, serving as a source of nitrogen (Hernández et al., 2021)
Moreover, the arginase pathway serves as a survival mechanism for
pathogenic bacteria such as H. pylori. H. pylori arginase inhibits the
host NO synthesis by depleting the substrate arginine, thus
promoting bacterial survival (Gobert et al., 2001).

The enzyme arginine decarboxylase (ADC) decarboxylates
arginine to yield agmatine, which is further hydrolyzed to urea
and putrescine by agmatinase. Putrescine, in turn, can be
metabolized to pyruvate and alanine. Though putrescine can be
metabolized to pyruvate, the ADC pathway is aimed at polyamine
synthesis rather than an energy source (Schriek et al., 2007).

The arginine deiminase (ADI) pathway is induced in bacteria
under microaerobic and anaerobic conditions. The ADI gene is
expressed by several microbes such as Bacillus licheniformis,
Clostridium perfringens, and Enterococcus faecalis (Lu, 2006). ADI
deiminates arginine to citrulline and ammonia. Citrulline is further
converted into ornithine and carbamoyl phosphate by the enzyme
ornithine transcarbamoylase. Carbamate kinase mediates ATP
production from carbamoyl phosphate with carbon dioxide and
ammonia as by-products. Thus, the ADI pathway produces ATP for
energy and ammonia as a nitrogen source for the bacteria (Lu, 2006).
In addition, ammonia aids in the survival of pathogenic bacteria,
such as C. perfringens, under acidic conditions (Myers et al., 2006) In
bacteria expressing arginase and ADI enzymes, the arginase pathway
is predominant under aerobic conditions, whereas the ADI pathway
predominates during anaerobic conditions (Hernández et al., 2021).

The arginine succinyl transferase (AST) enzyme mediates the
transfer of the succinyl group from succinyl CoA to arginine and
further the production of succinate and glutamate through a series of
chemical reactions. The AST pathway is the preferred pathway for
arginine catabolism in Pseudomonas (Hernández et al., 2021);

FIGURE 5
Different pathways of arginine catabolism in gut microbiota. Created with BioRender.com (16 September 2023).
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however, in E. coli, the AST pathway is stimulated during carbon
starvation, when the priority is cell survival using arginine as a
nitrogen source. In some Pseudomonas species, such as P.
aeruginosa, arginine transaminase supplements succinate
production under aerobic conditions. Arginine transaminase uses
ketoarginine as a substrate, produced by L-arginine: pyruvate
transaminase, arginine oxidase, and arginine dehydrogenase (Li
and Lu, 2009). Thus, arginine functions as a microbial energy
source, governs the expression of bacterial virulence genes, and
actively modulates the host’s immune response to the gut microbiota
(Choi et al., 2012). Despite these known roles, understanding the
specific impact of arginine on poultry gut microbiota and enteric
pathogens, and its precise involvement in shaping the pathogenesis
of enteric diseases requires further elucidation.

9 Arginine and necrotic enteritis

The use of arginine in low-protein diets to improve gut health is
recently being investigated in poultry, especially in relation to the
control of necrotic enteritis (Zhang et al., 2019; Dao et al., 2022a;
Dao et al., 2022b; Dao et al., 2022c). Arginine can modulate the
birds’ innate and adaptive immune responses to the C. perfringens
challenge (Zhang et al., 2019). Arginine exerts its effect primarily
through the metabolites NO and ornithine, which further take part
in downstream reactions or are metabolized to bioactive molecules
that take part in inflammation or the resolution of inflammation
(Zhang et al., 2019). Arginine modulates macrophage polarization
towards the M1 or M2 pathway, significantly affecting the innate
immune response to pathogens, including C. perfringens (Kim et al.,
2022). Apart from its role in shaping the innate immune response,
arginine is important in regulating the adaptative immune response
to necrotic enteritis and alleviating inflammatory damage caused by
necrotic enteritis (Zhang et al., 2019).

During infection by C. perfringens, the Toll-like Receptor (TLR)-
2 recognizes lipoteichoic acid in the cell wall of C. perfringens and
initiates downstream signaling, leading to the activation of the
transcription factor NFκB, which translocates to the nucleus and
induces the expression of iNOS (Korhonen et al., 2002). Inducible
NOS converts arginine to NO. Nitric oxide (NO) reacts with
superoxide anions to form peroxynitrite (ONOO-), which causes
DNA damage, membrane lipid peroxidation, protein dysfunction by
nitration of tyrosine residues, and the disruption of tight junction
proteins (Potoka et al., 2002), thus increasing intestinal permeability
(Korhonen et al., 2002). nNOS and eNOS are expressed and produce
picomolar quantities of NO. In contrast, iNOS, expressed in
response to inflammation, produces micromolar quantities of NO
(Nathan and Xie, 1994). The apoptotic effect of sustained high
concentrations of NO and peroxynitrite is due to the inhibition of
mitochondrial respiration by S-nitrosylation of complex-I.
Additionally, the inhibition of mitochondrial respiration can
decrease the transmembrane potential, leading to the release of
cytochrome-c, which interacts with the cytoplasmic apoptosis
activating factor-1 (Apaf-1) and procaspase-9 initiating the
apoptotic cascade (Potoka et al., 2002). Previous research findings
indicate an upregulation of NOS gene expression, increased gut
permeability, and decreased expression of tight junction proteins
and nutrient transporters during necrotic enteritis (Dao et al.,

2022d). However, NO can play a significant role in the resolution
of enteritis as well. NO can cause nitrosation of the p50 subunit of
NFκB or activate IκB, the inhibitor protein for NFκB, and thus
regulate the production of proinflammatory cytokines (McCafferty
et al., 1997). Sustained overproduction of NO reduces the circulating
levels of IL-6 and TNF, downregulating the expression of adhesion
molecules. This, in turn, will reduce neutrophil adhesion in
inflammatory sites and host tissue damage (Muñoz-Fernández
and Fresno, 1998). A schematic representation of the pathway
through which arginine mediates the proinflammatory and anti-
inflammatory roles during necrotic enteritis is shown in Figure 6.

At the cellular level, the mechanistic target of rapamycin complex
I (mTORC1) regulates eukaryotic cell metabolism, growth,
proliferation, and survival in response to environmental signals
such as nutrients and growth factors (Cummings and Lamming,
2017). Under adequate arginine conditions, the cytosolic arginine
sensor cellular arginine sensor formTORC1 (CASTOR) interacts with
the GAP activity toward Rags (GATOR), a negative regulator of
mTORC1. GATOR2 lies upstream of GATOR1 and suppresses the
RagA/BGTPase-Activating Protein (GAP) activity of GATOR1 under
sufficient arginine conditions. Activated RagA/B binds GTP, and
RagC/D binds GDP and is anchored to the lysosome by the
Ragulator protein (Wolfson et al., 2016; Jung et al., 2019). Rag
proteins mediate lysosomal recruitment of mTORC1, which is
subsequently activated by Ras homologs enriched in the brain
(Rheb) present on the lysosomal membrane. Activation of
mTORC1 leads to the phosphorylation of S6 kinase-1 (S6K1) and
eukaryotic translation initiation factor 4E-binding protein-1 (4EBP1),
which stimulates protein translation and cell growth (Wolfson and
Sabatini, 2017). A diagrammatic representation of the regulatory
pathway of mTORC1 in cells is presented in Figure 7.

L-arginine is one of the three amino acids (arginine, glutamine, and
leucine) that can directly regulate mTORC1 activation and, thus, cell
proliferation and apoptosis. Arginine interacts with the transcriptional
regulators in the mTOR pathway, enhancing T-cell survival and
memory T-cell formation (Geiger et al., 2016). Intracellular arginine
availability is thus an important determinant of T-cell function.
Arginine metabolism by arginase depletes arginine in the
microenvironment, causing T-cell hypo responsiveness. Arginine
depletion inhibits proliferation, downregulates the expression of
activation markers, and decreases cytokine production in T-cells.
Arginase-mediated arginine starvation arrests the cell cycle at the
G0-G1 phase (Rodriguez et al., 2007). Arginine availability in cells
regulates T-cell survival and activity by producing NO. NO exerts
proapoptotic effects on T-cells by regulating the intracellular signaling
protein expression (Choi et al., 2009).

Arginine supplementation during necrotic enteritis depletes the
arginine degradation pathways in gut microbiota, including C.
perfringens, sparing arginine for T-cell proliferation and function
and thus inhibiting disease progression (Dao et al., 2022c)
T-lymphocytes, particularly Th1 cells, play an important role in
pathogen clearance and adaptive immunity during necrotic enteritis
(Fathima et al., 2022). Dietary arginine supplementation increases
the T-cell population and promotes T-cell activation and survival
(Kishton et al., 2016), thus helping faster recovery. Naïve or
quiescent T-cells use oxidative phosphorylation for their energy
supply and require little nutrients, whereas activated T-cells rely on
glycolytic and glutaminolytic pathways for their energy needs and
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FIGURE 6
Created with BioRender.com (September 15, 2023).

FIGURE 7
Created with BioRender.com (September 18, 2023).
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consume large amounts of amino acids, glucose, and fatty acids in the
process (Geiger et al., 2016). Activated T-cells heavily consume
arginine, causing a marked drop in serum arginine levels. This
drop in serum arginine is observed during poultry coccidiosis
(Allen and Fetterer, 2000), an important predisposing factor for
necrotic enteritis. This can be due to the increased requirement for
nutrients to enhance the survival of T-cells during infection and the
development of memory T-cells during recovery. Further, this can be
correlated with the increased proliferation of intestinal epithelial cells,
protein synthesis, and reduced intestinal epithelial cell damage during
arginine supplementation in vitro (Tan et al., 2010). L-arginine
supplementation upregulates the mRNA expression of the tight
junction proteins ZO-1, claudin-1, and occludin, resulting in
reduced intestinal injury, improved intestinal permeability, and
increased villus height: crypt ratio in poultry. Arginine
supplementation also inhibits C. perfringens colonization, reduces
the gross pathology associated with necrotic enteritis and hepatic
translocation of C. perfringens, improves intestinal absorption and
barrier function, and attenuates intestinal inflammatory responses
(Zhang et al., 2017; Zhang et al., 2019).

10 Emerging trends and future
prospects of arginine in poultry
production

Arginine is a functional amino acid of paramount importance in
ensuring the health and wellbeing of poultry. It assumes a multitude
of critical roles within avian physiology, encompassing functions
such as growth, metabolism, immune response, and gut microbial
homeostasis. Together, these interconnected aspects highlight the
pivotal role of arginine in shaping the nutritional status, immune
response, and overall wellbeing of poultry. Arginine offers a
promising avenue for improving poultry health and the
sustainability of the poultry industry. Though existing research
acknowledges the importance of arginine in poultry nutrition
beyond protein synthesis, further research is warranted to
investigate the optimum levels of arginine and arginine
metabolites in poultry diets under different production systems,
stages of production, breeds, and physiological states. The potential
role of arginine in preventing enteric diseases such as coccidiosis and

necrotic enteritis in poultry has been explored to some extent. Still, it
offers wider arenas for further understanding arginine’s specific
mode of action during these disease processes. The possible
modulation of gut microbiota by arginine and its association
with disease incidence, severity, and gut health during enteric
diseases is poorly investigated in poultry. An understanding of
the impact of arginine on gut barrier function, immune response,
and gut microbial homeostasis can give insights into the potential
use of arginine for improving the health and production in poultry.
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