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Minimal circuit motifs for
second-order conditioning in the
insect mushroom body

Anna-Maria Jürgensen*, Felix Johannes Schmitt and
Martin Paul Nawrot

Computational Systems Neuroscience, Institute of Zoology, University of Cologne, Cologne, Germany

In well-established first-order conditioning experiments, the concurrence of
a sensory cue with reinforcement forms an association, allowing the cue to
predict future reinforcement. In the insect mushroom body, a brain region
central to learning and memory, such associations are encoded in the synapses
between its intrinsic and output neurons. This process is mediated by the activity
of dopaminergic neurons that encode reinforcement signals. In second-order
conditioning, a new sensory cue is paired with an already established one
that presumably activates dopaminergic neurons due to its predictive power
of the reinforcement. We explored minimal circuit motifs in the mushroom
body for their ability to support second-order conditioning using mechanistic
models. We found that dopaminergic neurons can either be activated directly
by the mushroom body’s intrinsic neurons or via feedback from the output
neurons via several pathways. We demonstrated that the circuit motifs differ in
their computational efficiency and robustness. Beyond previous research, we
suggest an additional motif that relies on feedforward input of the mushroom
body intrinsic neurons to dopaminergic neurons as a promising candidate for
experimental evaluation. It differentiates well between trained and novel stimuli,
demonstrating robust performance across a range of model parameters.
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Introduction

By forming associations between sensory cues and reinforcement during classical
conditioning (first-order conditioning, FOC), animals can learn to predict the emergence of
environmental factors relevant to their survival. Once a sensory cue has been established as
a predictor of such reinforcement, it can act as reinforcement in second-order conditioning
(SOC). SOC has been observed across species with experiments conducted in Drosophila
(Brembs andHeisenberg, 2001; Tabone and de Belle, 2011; König et al., 2019; Rachad, 2023;
Yamada et al., 2023) and other invertebrate (Bitterman et al., 1983; Hawkins, Greene, and
Kandel, 1998; Hussaini et al., 2007; Mizunami et al., 2009) as well as vertebrate (Murphy
and Miller, 1957; Holland and Rescorla, 1975; Cook and Mineka, 1987) species. SOC
experiments involve two initially neutral stimuli (stimulus 1 and stimulus 2). Stimulus 1
is first paired directly with reinforcement during FOC, whereby it acquires a valence as a
cue for reinforcement. Afterward, stimulus 2 is paired with stimulus 1 (SOC), causing an
expansion of the acquired valence of stimulus 1 onto stimulus 2, without stimulus 2 itself
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being paired with the reinforcer. Afterward, both stimuli initiate a
behavioral response based on their acquired valence.

The mushroom body (MB) is a crucial brain structure for
learning and encoding relationships between sensory cues and
reinforcement in Drosophila (De Belle and Heisenberg, 1994;
Heisenberg, 1998; Zars, 2000; Heisenberg, 2003) and other insects
(Mizunami, Weibrecht, and Strausfeld, 1998; Zars, 2000;Menzel and
Giurfa, 2001; Rössler, 2023) alike. Its intrinsic neurons (Kenyon cells,
KCs) have been shown to encode the identity of sensory inputs in
Drosophila (Wang et al., 2004; Turner, Bazhenov, and Laurent, 2008;
Honegger, Campbell, and Turner, 2011; Lin et al., 2014) and other
insects (Perez-Orive et al., 2002; Stopfer, Jayaraman, and Laurent,
2003; Szyszka et al., 2005; Demmer and Kloppenburg, 2009). Across
species, they relay their output onto a much smaller number
of MB output neurons (MBONs) (Rybak and Menzel, 1993; Li
and Strausfeld, 1997; Fahrbach, 2006; Tanaka, Tanimoto, and Ito,
2008; Aso et al., 2014a; Strube-Bloss and Rössler, 2018). Plasticity
at the synapses from KCs to MBONs (KC>MBON) allows MBONs
to encode the learned valence of a sensory cue, according to
extensive experimental evidence obtained in Drosophila (Strube-
Bloss, Nawrot, and Menzel, 2011; Aso et al., 2014b; Hige et al.,
2015; Owald et al., 2015; Owald and Waddell, 2015; Barnstedt et al.,
2016). Neuromodulators, such as dopamine mediate this plasticity
(Schwaerzel et al., 2003; Waddell, 2010; Kim et al., 2013; Hige et al.,
2015; Aso and Rubin, 2016; Sachse and Beshel, 2016; Mizunami and
Matsumoto, 2017). In Drosophila, it has been shown that either an
inherently punishing or rewarding stimulus (electric shock, sugar)
(Tabone and de Belle, 2011; Rachad, 2023; Yamada et al., 2023)
or direct optogenetic activation of dopaminergic neurons (DANs)
(Yamada et al., 2023) can be utilized to deliver a reinforcement signal
during FOC phase of such experiments to establish second-order
memory later. Experiments in Drosophila have demonstrated that
stimulus 1 itself causes activation of DANs and enhances it after
being paired with reinforcement (Riemensperger et al., 2005; Mao
and Davis, 2009; Dylla et al., 2017; Rachad, 2023; Yamada et al.,
2023). The mechanism inducing synaptic plasticity, not only during
FOC but also during SOC, likely relies on DAN activation. During
FOC, reward or punishment mediating DANs are activated directly
by the reward or punishment and indirectly by the altered network
response to stimulus 1 during SOC. The strength of the behaviorally
expressed stimulus 1 and stimulus 2 valence after SOC can be similar
(Tabone and de Belle, 2011; Yamada et al., 2023) or weaker (Rachad,
2023; Yamada et al., 2023) for stimulus 2.

Two different circuit mechanisms lend themselves to achieving
such post-FOC activation of DANs by stimulus 1: Firstly, a stimulus
1 representation among the KCs could serve as direct feed-forward
stimulus-specific input to the DANs (Cervantes-Sandoval et al.,
2017; Dylla et al., 2017; Eichler et al., 2017; Takemura et al., 2017;
Saumweber et al., 2018; Eschbach et al., 2020; Scheffer et al.,
2020). Alternatively, the input could be supplied via MBON
feedback (Ichinose et al., 2015; Eichler et al., 2017; Takemura et al.,
2017; Eschbach et al., 2020). Their response to stimulus 1,
altered by learning, could serve as a manifestation of stimulus-
specific valence.

Here, we tested possible circuit motifs that could underlie SOC
in the insect MB using abstract and simplified network models
inspired by the Drosophila olfactory pathway and the MB. For
simplicity, we focus on a reward learning paradigm that could

be adapted to punishment learning by introducing an additional
DAN for the encoding of a respective negative reinforcement signal.
Starting from a basic model of the MB, we explored different circuit
configurations and their capacity to produce SOC in an olfactory
learning protocol to identify promising candidates for experimental
testing. To define our solution space, we assumed that learning in
the MB depends on KC>MBON plasticity, mediated by a dopamine
signal during both FOC and SOC. Model circuits should be able
to produce both FOC and SOC without generalizing associations
with reinforcement unspecifically to novel stimuli. We tested all
models in classical conditioning experiments and demonstrated
their ability to support FOC and SOC. Additionally, we evaluated
differences in their biological plausibility by quantifying robustness
and discussing functional and anatomical evidence for the respective
circuits. We found that a particular circuit that achieves DAN
activation through plastic excitatory KC input during SOC
outperforms the other candidates and appears compatible with
the MB anatomy. We suggest this circuit motif, which differs
from previously reported mechanisms (König et al., 2019; Rachad,
2023; Yamada et al., 2023), as an additional, novel candidate for
experimental tests.

Materials and methods

The basic model of a minimal circuit motif in the MB for
FOC (Figure 1A) was extended with different mechanisms for
SOC (Figure 1B) and trained and tested in simulated classical
conditioning experiments (Figure 1C) using three different odors
(Figure 1D).

Network input

Odor and reward signals were provided to all models via the
KCs and the DAN (Figures 1A, B), respectively. Three odors were
used in the experiments. In the most simple case, each exclusively
activates an independent combination of (10%) of the 2000 KCs
(Figure 1D) with a rate of 3 Hz to match the levels of population
sparseness and low odor-response rates reported in KCs (Perez-
Orive et al., 2002; Ito et al., 2008; Turner, Bazhenov, and Laurent,
2008). The first experiment combined the three odors. For each
model instance, odor 1 activates a combination of 200 randomly
chosenKCs.KCs activated by odor 2 andodor 3 are then sequentially
drawn from the combination of remaining KCs.When odors 1 and 2
were presented together during the experiments, each component of
this compound odor activated a random 50% of the KCs, activated
by each of the individual odors. This ensured the proportion of
activated KC would not exceed 10% (Honegger, Campbell, and
Turner, 2011).

A peculiarity for the quantification of model SOC performance
arises from this implementation of compound odors. During SOC,
odors 1 and 2 are presented as a compound, activating 200 KCs
in total (50% of odor 1% and 50% of odor 2 activated KCs).
We quantified the approach bias (Eq. 1) for odors 1 and 2 as
a measure of learning during FOC and SOC, respectively. This
measure is based on the ratio between the two approach and
avoidance MBON (MBON+, MBON−) output rates R. The model
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FIGURE 1
Experimental design for testing second-order conditioning. (A) Basic circuit motif for first-order conditioning, consisting of 2000 Kenyon cells (green),
two output neurons (dark blue, red), and a single dopaminergic neuron (light blue). The co-occurrence of odor and reward input elicits plasticity at the
mushroom body output synapses. (B) During second-order conditioning, the dopaminergic neuron (light blue) is indirectly activated by the previously
trained odor 1 and paired with odor 2. We test different candidate mechanisms for this indirect activation of the dopaminergic neuron via the Kenyon
cells (green) or the mushroom body output neurons (dark blue, red). (C) The experimental paradigm consists of two phases (first and second-order
conditioning, FOC and SOC). During first-order conditioning, odor 1 is paired with a reward. Subsequently, a novel odor 2 is paired with odor 1 during
second-order conditioning. Odor valences are tested after first and second-order conditioning. (D) Initially, three non-overlapping odors were used in
the experiments. Odors are encoded as Kenyon cell activity patterns. The joint presentation of odor 1 and odor 2 during second-order conditioning
retains a randomly chosen 50% of the individual odor representations to maintain the same overall activation as with individually presented odors.

parameters were optimized in a way that guaranteed a perfect
approach bias for odor 1 after FOC (see Results: Identifying optimal
parameters for each model). Mathematically, this entails that the
200 KC>MBON− weights altered for odor 1 during FOC will
be at 0. In comparison, only 100 KC>MBON− weights targeted
by odor 2 will be altered during SOC due to the compound
odor activation pattern. Given inital KC>MBON weights of 0.083
(Table 1) and a KC odor response of 3 Hz (Table 1), this yielded an
approach bias (Eq. 1) of (49.8–0)/(49.8+ 0) for odor 1 after FOC and
(49.8–24.9)/(49.8+ 24.9) for odor 2 after SOC. In all equations, x⃗
always denotes a vector. R represents the activity of a neuron, which
can be interpreted as a spike rate of a neuron or a vector of neurons
in the case of KCs, and w denotes a synaptic weight or a vector
of weights.

B =
RMBON+ −RMBON−

RMBON+ +RMBON−
(1)

An additional experiment was conducted as a control where the
KC activation patterns for odors 1 and 2 were added during SOC
(yielding 400 active KCs). The maximal performance achieved by
models 2-5 was 1 in this case.

The second experiment aimed to quantify the stability of
the different circuit mechanisms against the generalization of the
learned valence onto novel odors. Therefore, a varying degree of

TABLE 1 Fixed parameters shared between models.

Parameter Value

Seed 999

trials_FOC 3

trials_SOC 3

num_KC 2000

KCbaseline 0 Hz

odor_activation 3 Hz

odor_FOC odor 1

odor_SOC odor 1_2

initKC>MBON+ 0.083

initKC>MBON− 0.083

odor similarity of odor 3 with odor 1 or odor 2 was used. Odor
similarity is implemented as an overlap in activated KCs for odor 1
and odor 2. If any given odor activates 200 KCs, an odor similarity of
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TABLE 2 Equations underlying the different models.

Model 1 RDAN (t) = Ipext (t) + R⃗KC (t) ⋅ w⃗KC>DAN (t) (8)

wij
KC>KC (t+ 1) =

{{{{{{
{{{{{{
{

wij
KC>KC (t) + αKC>KC, if Ri

KC (t) > KCbaseline and

Rj
KC (t) > KCbaseline

wij
KC>KC (t) , otherwise

(9)

Model 2 RDAN (t) = Ipext (t) + R⃗KC (t) ⋅ w⃗KC>DAN (t) (10)

wi
KC>DAN (t+ 1) =

{{{
{{{
{

wi
KC>DAN (t) + αKC>DAN ⋅RDAN (t) , if Ri

KC (t) > 0

wi
KC>DAN (t) , otherwise

(11)

Model 3 RDAN (t) = Ipext (t) +RMBON+ (t) ⋅wMBON+>DAN (t) −RMBON− (t) ⋅wMBON−>DAN (t) (12)

Model 4 RDAN (t) = Ipext (t) +RDANbaseline −RMBON− (t) ⋅wMBON−>DAN (t) (13)

Model 5 RDAN (t) = Ipext (t) +RMBON+ (t) ⋅ w⃗MBON+>DAN (t) (14)

w⃗MBON+>DAN (t+ 1) =
{{{
{{{
{

w⃗MBON+>DAN (t) + αMBON+>DAN ⋅RDAN (t) , if RMBON+ (t) > 0

w⃗MBON+>DAN (t) , otherwise
(15)

50%would yield odors 1 and 2 to have an overlap of 100 KCs.During
the joint presentation of both odors, 150 KCs would be activated.

Parameter optimization

Some parameters were fixed to a specific value (Table 1) across
all models (Table 2, see Results: Candidate circuits for second-
order conditioning). The remaining parameters were optimized for
FOC and SOC performance using a grid search, if possible, within
the same boundaries and with the same step size (Table 3). Some
parameters were fixed to the same value for all models to adhere
to biological constraints (Table 1). KCs show very little spontaneous
activity (Perez-Orive et al., 2002; Ito et al., 2008; Turner, Bazhenov,
and Laurent, 2008) and sparse activation (Perez-Orive et al., 2002;
Ito et al., 2008; Turner, Bazhenov, and Laurent, 2008; Vrontou et al.,
2021). MBON rates of up to 40 Hz have been shown for one
MBON (Hige et al., 2015). We chose the initial weights for all
KC>MBON synapses to achieve plausible MBON rates of no higher
than 50 Hz. The upper limit of the DAN rate was 20 Hz to match the
experimental literature (Huang et al., 2022).

A grid search was conducted for eachmodel to optimize the free
model parameters (Table 3) for FOC and SOC while minimizing
reward generalization to novel odors (see Results: Identifying
optimal parameters for each model). All searches contained
1004 = 100 ⋅ 106 parameter combinations for testing (Table 3). The
grid searches for all models were run on the same server (X86_
64 architecture, Ubuntu 20.04.3). The simulation of the parameter
combinations was distributed across 24 independent processes
using the same random seed. The resulting data were first filtered
for the fulfillment of the rate criteria for MBONs and the DAN
and the performance in the FOC and SOC tests to determine
all equally good parameter combinations, which we term optimal
learners. Grid search for all models 1-5 yielded several optimal
learners. We computed the average optimal learner by averaging
all optimal learners within every parameter. We argue that this

average optimal learner approximates the center of all equally good
parameter combinations. Next, Euclidean distances were computed
between all z-standardized optimal learners and the average optimal
learner. The parameter combination with the smallest distance
to the average parameter combination in an n-dimensional z-
standardized space (n = number of optimized parameters) was
selected as the most central optimal learner (Table 3). We assume
that parameter combinations closer to the average can be considered
biologically more plausible because their central location makes
them more robust to parameter deviations in all directions
(see Discussion).

Hypersphere sampling

To compare the robustness in a larger parameter space between
the different models, we used a sphere with an increasing radius
around a central point to sample parameter combinations and
evaluate their effect on the respective model’s learning performance.
We positioned a 4-dimensional hypersphere (Krauth, 2006) with
radius r around the most central optimal learner (Table 3). For each
model, we increased r of the hypersphere in 100 linearly spaced steps
from 0 to 1 in a standardized space for easier comparison between
the different models. Standardization was done by multiplying each
coordinate of the 4-dimensional points with the range (max-min,
Table 3) for the respective parameter and model and adding the
initial position (central optimal learner) to it.

We then sampled 700 points x uniformly from the surface of
the 4-dimensional hypersphere for each radius r by drawing all
four components independently of Gaussian distributions with a
standard deviation σ and scaling with the norm ‖x‖ (Eq. 2):

σ← 1

x⃗← [Gauss (σ) ,Gauss (σ) ,Gauss (σ) ,Gauss (σ)]

x⃗← r ⋅ x⃗
‖x⃗‖
.

(2)
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TABLE 3 Optimized model parameters. For all models, 100 equally
distributed values per parameter between the minimum and maximum
values were used to construct a regular grid of parameter combinations.

Parameter Min Max Optimum

Model 1

initKC>KC 0 0 0

initKC>DAN 0.0 0.001 0.001

αKC>MBON− 0.001 0.004 0.004

αKC>KC 0.0 0.004 0.000162

DAN_activation 1.0 10.0 7.272,727

Model 2

initKC>DAN 0.0 0.001 0.000505

αKC>MBON− 0.001 0.004 0.003333

αKC>DAN 0.0 0.001 0.000677

DAN_activation 1.0 10.0 5.727,273

Model 3

initMBON+>DAN 0.0 1.0 0.272,727

initMBON−>DAN 0.0 1.0 0.262,626

αKC>MBON− 0.001 0.004 0.003121

DAN_activation 1.0 10.0 5.00

Model 4

initMBON−>DAN 0.0 0.5 0.131,313

αKC>MBON− 0.001 0.004 0.003182

RDANbaseline 0.0 30.0 11.212,121

DAN_activation 1.0 10.0 3.727,273

Model 5

initMBON+>DAN 0.0 0.4 0.080808

αKC>MBON− 0.001 0.004 0.003182

αMBON+>DAN 0.001 0.01 0.003

DAN_activation 1.0 10.0 4.727,273

Each sample was evaluated by an indicator function (Eq. 3):

1O (x⃗) ≔
{
{
{

1 if x⃗ ∈ O optimalset, optimalperformance,

0 if x⃗ ∉ O.
(3)

A parameter combination x⃗ is an element of the set of optimal
learners O if it shows the same optimal performance in the FOC and
SOC tests as the most central optimal learner for the specific model.
The code for implementing the circuit models can be obtained at
https://github.com/nawrotlab/exploring_SOC_circuits.

Results

First-order conditioning in a basic
mushroom body circuit

The basic network consists of 2000 KCs, each innervating
two MBONs (Figure 1A) and a single reward-mediating DAN.
Each neuron is characterized by a rate representing the activation
of a single neuron. It has been shown that MBONs receive
inputs from many of the KCs in adult Drosophila (Aso et al.,
2014a; Takemura et al., 2017). For simplicity, we started by
modeling complete KC>MBON connectivity. Some MBONs can
be categorized as approach or avoidance signaling (Séjourné et al.,
2011; Aso et al., 2014b; Hige et al., 2015; Owald et al., 2015). In the
model, this corresponds to MBON+ (Eq. 4) and MBON− (Eq. 5),
respectively. Other types of MBONs were disregarded here. Initially,
all synaptic KC>MBONweights were set to the same value (Table 1).
The DAN can be activated by the external input, representing
a reinforcer in the environment (Figure 1A, Eq. 6). In a reward
learning experiment, KC>MBON− synapses undergo plasticity
whenever trial-based KC activation, driven by odor input, and DAN
activation coincide. We employ a two-factor learning rule (Eq. 7)
at the KC>MBON− synapses, leading to a decrease in the synaptic
weights with the limitation that they can not take on a negative
value. DAN activation (Eq. 6) is the sum of the model-specific
external input rate Ipext (Table 2) that represents reinforcement and
the network internal input Ipint, provided via the different circuit
mechanisms. In all equations α refers to the learning rate at the
KC>MBON− synapses (Table 1).

RMBON+ (t) = R⃗KC (t) ⋅ w⃗KC>MBON+ (t) (4)

RMBON− (t) = R⃗KC (t) ⋅ w⃗KC>MBON− (t) (5)

RDAN (t) = Ipext (t) + Ipint (t) (6)

wi
KC>MBON− (t+ 1) =

{{
{{
{

wi
KC>MBON− (t) − α ⋅RDAN (t) , ifRi

KC (t) > 0and
wi
KC>MBON− (t) > (α ⋅RDAN (t))

wi
KC>MBON− (t) , otherwise

(7)

Candidate circuits for second-order
conditioning

Using the basic circuit model (Figure 1A) as a starting point, we
implemented five different extended versions of it (Figure 2). These
models either rely on some form of KC>DAN input (model 1, model
2) orMBON>DAN feedback (model 3,model 4,model 5) as ameans
to expand the learned association of odor 1 with reinforcement to
odor 2 during SOC. Unless specified otherwise, the DAN is not
spontaneously active. The equations for all models can be found in
Table 2.

To compare the different circuit motifs in an unbiased
manner, their parameters were optimized using a grid search
(see Materials and methods), except the fixed parameters shared
between all models (Table 1), which were kept constant to allow
better comparison between the candidate mechanisms for SOC
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FIGURE 2
Second-order conditioning in different circuit motifs. Five different circuits were tested for their performance in first (FOC) and second-order
conditioning (SOC) and the extent to which the odor-reward association generalizes to another novel odor. All circuits are constructed with 2000
Kenyon cells (green), two mushroom body output neurons (dark blue, red), and a single dopaminergic neuron (light blue), targeting the synapses
between Kenyon cells and mushroom body output neurons. Additional feed-forward connections from the Kenyon cells (model 1, model 2) or
feedback connections from the mushroom body output neurons onto the dopaminergic neuron (model 3, model 4, model 5) are implemented in the
different circuits.

implemented in the different circuits. The goal for parameter
optimizationwas to identify parameter combinations for eachmodel
that yield the best learning performance in an associative learning
experiment that consisted of a combination of FOC and SOC
learning trials (Figure 1B). In insect learning experiments, forming a
direct or indirect associationwith reward leads to approach behavior
that can manifest in the movement toward the source of an odor
or feeding-related behavior (Bitterman et al., 1983; Hussaini et al.,
2007; Yamada et al., 2023). In ourmodel experiments, the successful
acquisition of an association with reward was quantified using
the approach bias (Eq. 1) because MBON activity has been shown
to initiate approach or avoidance behavior (Aso et al., 2014b;
Owald et al., 2015; Hancock et al., 2022).

Model 1
Model 1 includes KC>DAN synapses of a fixed strength
(Eq. 8) and plastic KC>KC excitatory feedback with
increments of αKC>KC (Table 3), triggered by pre and post-
synaptic KC activation (Eq. 9).

Model 2
Model 2 expands the basic circuit with excitatory plastic
synapses between KCs and the DAN (Eq. 10). They are
each initialized with initKC>DAN (Table 3) and are increased
by αKC>DAN (Table 3) when activation of the respective
KC coincides with DAN activity, yielding DAN activation
(Eq. 11).

Model 3
In model 3, network input into the DAN is implemented
via feedback from both MBONs (Eq. 12). Inhibitory input
with a fixed synaptic strength comes from MBON−, while
excitatory input is provided by the MBON+.

Model 4
Model 4 uses a spontaneously active DAN (RDANbaseline,
(Table 3) in combination with inhibitory MBON−>DAN
input (Eq. 13). Both effects regulate the DAN activation in
the absence of reward.

Model 5
In model 5, an excitatory plastic MBON+>DAN synapse is
added to the basic circuit (Eqn. 14). When MBON+ and
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DAN activity coincide, the synaptic strength is increased
by αMBON+>DAN (Table 3) for each DAN spike (Eq. 15).
During FOC, this synapse is strengthened, allowing for
activation of the DAN during SOC. This allows KCs to
activate the DAN.

Optimal model parameters

All models were trained and tested in a combined FOC and
SOC protocol, where odors were used as stimuli and tested for
their approach bias first after completing FOC with odor 1 and
reward, then after completing SOC with odors 1 and 2 (Figure 1B;
Eq. 1). Plasticity was disabled during testing to isolate odor valence
acquired during the respective training trials without the influence
of the test itself. Additionally, a novel odor 3 was included in both
tests to examine any generalization of the reward association that
might have occurred during the FOC or SOC training processes. To
assess the ability of the different circuit motifs to support SOC, we
optimized each model for the highest possible SOC performance,
which translates to maximizing the approach bias for odor 2 after
three SOC trials. Additionally, we introduce several criteria the
models must fulfill to ensure that the learning effect for odor 2 is
odor-specific and originates from the respective mechanism applied
during the SOC trials. These criteria are:

• post FOC odor 1 approach bias = 1
• post FOC odor 2 approach bias = 0
• post FOC odor 3 approach bias = 0
• post SOC odor 1 approach bias = 1
• post SOC odor 3 approach bias = 0

Additionally, DAN and MBON rates should never exceed 20 Hz
and 50 Hz, respectively, to stay within the biologically realistic
range forMBONs (Hige et al., 2015) andDANs (Huang et al., 2022).
Among all parameter combinations that fulfilled these criteria
(optimal learners), we selected the most centrally located one (see
Materials and methods: Parameter optimization), which we refer to
as the most central optimal learner.

The basic learning model (Figure 1A) fulfilled the criteria for
FOC learning, but no parameter combination could accommodate
SOC, yielding no approach bias for odor 2 after SOC. There
was at least one optimal parameter combination that fulfilled the
optimization criteria for each extended candidate circuit (Figures 2,
3A ). All models acquired an optimal approach bias of 1 for odor
1 at both test times, indicating that the association of odor 1 and
reward is learned during FOC and fully retained throughout the
SOC protocol. Tests with odor 3 always yielded an approach bias of 0
for all models, indicating that the approach bias does not generalize
inadmissibly to novel and fully disjunct odors. All models, except
model 1, achieved equally good SOC performance, as indicated
by an approach bias of 0.33 for odor 2 after SOC. Model 1 only
acquired a bias of 0.02. For each model, the maximum value of SOC
performance is determined by the implementation of the compound
presentation of odors 1 and 2 (see Materials and methods). The
approach bias of 0.33 for SOC (Eq. 1) is the highest value any
model can achieve in this experiment (see Materials and methods:
Network Input). In none of the models, any approach bias for the

disjunct, novel odor 3 was observed. Additionally, we extended the
experimental protocol (Figure 1B) with three trials of presenting
odor 3 alone and without any reward after SOC and included
another test. Depending on the degree of specificity with which the
different model circuits activate the DAN, unwanted generalization
of the valence to odor 3 was observed. Models 1-3 outperformed
models 4 and 5 here (Figure 2).

Learning generalizes with increasing odor
overlap

The overlap of odors 1 and 2 during training and testing was
varied separately (0%,25%,50%,75%,100% overlap), encoded in
the percentage of KCs jointly activated between the individually
presented odor 1 and odor 2 (see Materials and methods: Network
input). Across all models, both FOC and SOC approach biases
(Eq. 1) increase with the overlap between odor 1 and odor
2 (Figure 3A). Between highly overlapping odors, the reward
association generalizes. This results in an approach bias for odor
2 after FOC, even though odor 2 was not presented during FOC
(Figure 3A). A joint presentation of odor 1 and odor 2 during SOC
then leads to an even higher approach bias for odor 2 (Figure 3A).
All models acquire similar biases (Eq. 1) for odor 2, depending on
the degree of overlap, except model 1, where the SOC learning effect
was always lower (Figure 3A).

Keeping odor 1 and odor 2 fully disjunct, we varied the degree
of overlap between odor 3 and either odor 1 (Figure 3B, left) or odor
2 (Figure 3B, right) during both tests. For all models, the approach
bias for odor 3 after FOC scaled with the overlap and reached the
same value as odor 1 if fully overlapping (Figure 3B, dashed purple
lines). Testing again after SOC yielded the same results, which are
not depicted here. When the overlap between odor 3 and odor 2
varied at both test times, no approach bias was observed after FOC
since odor 2 was not presented during the FOC trials (results not
shown). In a test after SOC, all models perform similarly concerning
the upper bound of the approach bias at the magnitude reached by
odor 2 (Figure 3B, dashed orange lines).

Robustness of second-order conditioning
varies across the different model circuits

In the conditioning experiments reported thus far, all model
circuits, except model 1, performed equally well (Figures 2, 3). To
further differentiate between them,wenext examined the robustness
of the model’s performances to variations of their parameters using
three different methods.

We first quantified the percentage of optimal learner parameter
combinations within the searched parameter grid for each
model. A real brain would likely not require a single, extremely
precise combination of physiological parameters to perform any
computational task, such as SOC. Since the parameters of our
computational models are ultimately representations of neuronal
or synaptic characteristics, the stability of SOC performance across
parameter combinations could hint at the degree to which a circuit
motif is biologically plausible. For each respective model, four
parameters were optimized, yielding a grid with 1004 parameter
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FIGURE 3
Reward generalization for overlapping training or test odors. (A) All five models were tested for their odor approach bias (Eq. 1) to odors 1 (purple) and 2
(orange) after first (FOC) and second-order conditioning (SOC). The overlap between odors 1 and 2 was varied. (B) All models were tested for their
approach bias (Eq. 1) to odor 3 after training with non-overlapping odors 1 and 2. Overlap between odors 3 and 1 or 2 was varied, respectively. Orange
and purple dashed lines indicate each model’s FOC and SOC performance from an experiment without odor overlap as a reference (always the first bar).

combinations. In the case of model 1, 5.9–5% of parameter
combinations were equally optimal learners. Model 2 yielded 6.81%,
model 3 only 0.37%, model 4 2.11% and model 5 4.29% optimal
learner parameter combinations. From this perspective, models 2,
4, and 5 thus seem more robust compared to models 1 and 3.

As an additional measure to assessing the optimal portion of the
entire solution space of possible parameter combinations, we used
a method for individually sampling the four-dimensional Euclidean
parameter space for each model. The four-dimensional space for
each model was standardized using the range of the grid (max-
min parameter value, Table 3). A four-dimensional hypersphere was
positioned as the point representing most central optimal learner,
with radius = 0. We then incrementally increased the radius of the
hypersphere from 0 to 1 in the standardized space with 100 linearly
spaced steps and, for each increase, sampled 700 data points from
its surface (see Materials and methods, Hypersphere sampling).
These sampled data points do not necessarily correspond to data
points from the set of equally optimal parameter combinations
found in the grid search for the respective model due to the step
size used in the parameter optimization. The sampled points were
transformed back into their original space and then used to simulate
the respective model to examine if this parameter combination
would yield FOC and SOC performance that fit the criteria for the
optimal learner for the respective model (optimal SOC performance
differs between models two to five and model 1 with 0.33 and 0.02,
respectively, Figure 3). For each radius increment, we calculated the
percentage of sampled points from the hypersphere surface that
exhibit this optimal performance (Figure 4). Since the parameter
space was standardized for each model and the radii used were
the same, the results can easily be compared between models 2–5.
We find that the models differ in their robustness to deviations

of the parameters from their optimal values. Models 2 and 5
strongly outperform the other models. While our grid search
for model 1 yielded no variability in three of the four optimized
parameters (initKC>KC, initKC>DAN, αKC>MBON− , αKC>KC, Table 3),
the hypersphere sampling revealed more optimal parameter
combinations outside the boundaries of our grid search. The highest
SOC performance found was 0.06, confirming the inferiority of
this circuit.

A third approach to comparing the robustness between the
different model circuits is to quantify how well they retain their
FOC and SOC performance when variability is introduced into the
connectivity matrix, the strength of the KC>MBON synapses, or the
learning rate.

We varied either the number of input KCs into each MBON
(Figure 5A) or the strength of the synaptic connections while
retaining full connectivity (Figure 5B) or the learning rate
(Figure 5C) for FOC and ran the same experiments for SOC as
well (Figures 5D–F).

We varied the number of KCs providing input to each MBON
between 25% and 100% for each model instance (N = 100 model
instances) while maintaining the magnitude of the individual
weights (Table 1, initKC>MBON+/initKC>MBON−). For each model
instance, a random number of connections was drawn from
a uniform distribution and applied to each MBON (MBON+,
MBON−) to select the same amount of random connections to
be active. While FOC performance remained very robust across
all models 1–5 (Figure 5A), SOC performance was significantly
impaired in model 1 and model 3 (Figure 5D), compared to SOC
performance with full connectivity (Figure 3A).

Additionally, we evaluated the robustness of the learning
performance when the strength of the KC>MBON weights
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FIGURE 4
Comparison of parameter robustness between models. The five
models (M.1-M.5) were tested for the stability of their second-order
learning performance (Eq. 1) when their optimal parameter
combinations were collectively shifted away from their most central
optimal learner, which we used as the starting point for a hypersphere
with radius = 0. We incrementally increased the radius of the
hypersphere from 0 to 1 with 100 steps in a linear fashion. We sampled
700 data points from its surface for each resulting radius in a
standardized space. Standardization was done using the minimum and
maximum parameters tested and centered using the most central
optimal learner (Table 3). Each sampled parameter combination was
evaluated for optimal SOC performance of 0.33 (models 2–5) or 0.02
(model 1).

was varied in a range of ±5% around their default weight
(Table 1). Again, no significant differences were observed for
FOC performance (Figure 5B). SOC performance was retained for
models 2, 4, and 5 (Figure 5E) compared to the standard model with
the same strength of all synaptic weights (Figure 3A).

Finally, varying the KC>MBON− learning rate within the
corridor provided by the minimum and maximum value of the
parameter optimization (Table 3) (Figure 3C, F) showed overall
increased variability in model FOC and SOC performance, while
retaining equally relatively strong average SOC performance
for models 2–5.

While all five circuit motifs were capable of FOC (Figure 2),
model 1 performed very poorly at SOC compared to the other
models (Figure 2). While model circuits 3–5 fulfill the criteria for
SOC, they differ in their robustness to reward generalization and
variations of their parameters. Model 2, which relies on plastic feed-
forward input of KCs to theDAN, emerges as a promising candidate,
in addition to the circuits that are already being explored (Rachad,
2023; Yamada et al., 2023).

Discussion

While SOC as a phenomenon has been a target of insect
learning experiments for a long time (Bitterman et al., 1983; Brembs
and Heisenberg, 2001; Hussaini et al., 2007; Tabone and de Belle,
2011; König et al., 2019; Yamada et al., 2023), the discovery of the
underlying circuit mechanisms is just at its beginning (Dylla et al.,
2017; König et al., 2019; Rachad, 2023; Yamada et al., 2023). We
used mechanistic models of different variations of a basic, abstract
MB circuit inspired by Drosophila melanogaster and showed that

different circuit motifs, based on either KC or MBON-driven DAN
activation, can support SOC. In the following, we will discuss our
results in light of experimental evidence for SOC in insects and the
extent to which the MB anatomy supports the tested circuit motifs.

Second-order conditioning in insect
experiments and models

In second-order conditioning experiments, learning can be
quantified using different measures. In honeybees (Bitterman et al.,
1983; Hussaini et al., 2007), proboscis extension was measured as
a response to conditioning with odors and sugar. Regardless of
whether the number of SOC trials was equal to (Hussaini et al.,
2007) or 50% of the number of FOC trials (Bitterman et al., 1983),
the conditioned response acquired during FOC was stronger than
that acquired during SOC. In the fly experiments, a combination
of odor and electric shock (Tabone and de Belle, 2011), odor
and sugar (Yamada et al., 2023), or odor and optogenetic DAN
activation (Yamada et al., 2023) were used. The same duration
of pairing an electric shock with odor 1 and pairing odor 1
with odor 2 during SOC yielded a stronger learning effect for
FOC, compared to the SOC effect (Tabone and de Belle, 2011),
as observed in bees (Bitterman et al., 1983; Hussaini et al., 2007).
Yamada et al. (Yamada et al., 2023) used a protocol with longer FOC
than SOC duration in an appetitive conditioning protocol. This led
to similarly strong FOC and SOC effects, given a long enough FOC
training duration.

Potential circuit mechanisms behind SOC were investigated in
some studies conducted in Drosophila (König et al., 2019; Rachad,
2023; Yamada et al., 2023). Evidence for a mechanism based on
MBON>DAN feedback comes from a study that used optogenetic
silencing or activation of MBONs as an indirect punishment
or reward signal for conditioning avoidance or approach of an
odor, thereby circumpassing pairing of reinforcement and stimulus
1 during FOC (König et al., 2019). Yamada et al. (Yamada et al.,
2023) also suggest an MBON>DAN pathway across two layers
of interneurons as a mechanism for SOC. They showed that a
presentation of an odorwith optogenetic DANactivation can induce
suppression of the response of a particular MBON (α1). Decreased
activity of MBON-α could cause disinhibition of multiple pathways
via two interneurons, leading to a net activation of DANs that
encode reward during SOC. The circuit for the disinhibition of the
DAN during SOC is closely related to the motif implemented in
our model 4, which performs well at SOC but appears not to be
very robust to reward generalization onto novel odors. Likewise,
in an aversive conditioning paradigm, it was demonstrated that the
output of a particular MBON, innervating the γ-lobe (MBON-γ1),
is required during the SOC phase of the experiment to induce a
learned valence of the second odor (Rachad, 2023). Similarly, a
single MBON (MBON-α′2) innervating the α’/β′-lobes seems to
play a similar role in these lobes (Rachad, 2023). In summary, all of
these works demonstrate the importance ofMBONoutput pathways
(König et al., 2019; Rachad, 2023; Yamada et al., 2023) and seem to
suggest MBON>DAN feedback as a prime candidate mechanism
for SOC. For the sake of completeness, it has to be stated that each
experiment targeted specific pathways and can not rule out the
presence of different circuit motifs for SOC in other compartments.
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FIGURE 5
Robustness of the learning performance across variations of the KC>MBON connectivity. (A) Mean approach biases (error bars denote standard
deviations, Eq. 1) to odors 1 and 2 after first-order conditioning (FOC) for N = 100 model instances with a varying number of KC>MBON synapses,
between 25% and 100%, drawn randomly from a uniform distribution. Responses to odor 3 are always 0 and not plotted. (B) Mean approach biases
(Eq. 1) to odors 1 and 2 after first-order conditioning (FOC) for N = 100 model instances with a randomly chosen initial KC>MBON weights (full
connectivity), varying ±5% around the default value (Table 1). (C) Mean approach biases (Eq. 1) to odors 1 and 2 after first-order conditioning (FOC) for
N = 100 model instances with a KC>MBON− learning rate, drawn from a uniform distribution ranging from the minimum to the maximum of learning
rates tested (Table 3). (D) Mean approach biases (error bars denote standard deviations, Eq. 1) to odors 1 and 2 after second-order conditioning (SOC)
for N = 100 model instances with a varying number of KC>MBON synapses, between 25% and 100%, drawn randomly from a uniform distribution. (E)
Mean approach biases (Eq. 1) to odors 1 and 2 after second-order conditioning (SOC) for N = 100 model instances with a randomly chosen initial
KC>MBON weights (full connectivity), varying ±5% around the default value (Table 1). (F) Mean approach biases (Eq. 1) to odors 1 and 2 after
second-order conditioning (SOC) for N = 100 model instances with a KC>MBON− learning rate, drawn from a uniform distribution ranging from the
minimum to the maximum of learning rates tested (Table 3).

Some recent models of the adult (Faghihi et al., 2017; Jiang and
Litwin-Kumar 2021) or larval (Eschbach et al., 2020) Drosophila
MB can accommodate SOC. They all suggest KC>MBON plasticity
to learn stimulus 2 during SOC via MBON activity. Either in
the form of net excitatory and inhibitory MBON>DAN feedback
(Eschbach et al., 2020; Jiang and Litwin-Kumar 2021) or via direct
modulation of the KC>MBON synapses by altered MBON activity
(Faghihi et al., 2017).None of themodels allowKC input to theDAN
and thus do not test this alternative pathway.

Since some experimental and modeling studies have
demonstrated or suggested competing circuit mechanisms for SOC,
it seems likely that more than one mechanism exists within the
highly connected structure of the MB. By exploring a variety of
computationally feasible circuits in parallel, we wanted to provide a
different perspective to integrate these opposing views.

Anatomical evidence for the tested circuit
motifs

To evaluate the biological plausibility of our tested circuitmotifs,
we next assessed which DAN-activation pathways are supported by
anatomical evidence. KC>DAN synapses have been found both in
larval (Eichler et al., 2017; Saumweber et al., 2018; Eschbach et al.,
2020) and adult (Cervantes-Sandoval et al., 2017; Takemura et al.,

2017; Scheffer et al., 2020) Drosophila. Since KCs are known to be
cholinergic (Barnstedt et al., 2016) in the adult, it has been suggested
that these connections are excitatory (Eichler et al., 2017) in the
larva. This has also been confirmed in the adult, regarding the effect
on a particular MBON (α2α′2) (Cervantes-Sandoval et al., 2017).

Direct and indirect connections between MBONs and DANs
exist in the larva (Eichler et al., 2017; Eschbach et al., 2020) and
the adult (Ichinose et al., 2015; Takemura et al., 2017) within and
between compartments (Ichinose et al., 2015; Eichler et al., 2017;
Takemura et al., 2017; Eschbach et al., 2020). In the larva, excitatory
and inhibitory synapses have been observed (Eichler et al., 2017;
Eschbach et al., 2020). In the adultDrosophilaMB, differentMBONs
have been found to release excitatory or inhibitory transmitters
(Aso et al., 2014b), supporting the assumption that here both de-
and hyperpolarizing effects of MBONs on DANs exist.

Direct KC>KC synapses have been found in large numbers
in the larva (Eichler et al., 2017). According to the transmitter
released by KCs in the adult (Barnstedt et al., 2016), they have
been speculated to be excitatory (Eichler et al., 2017). In the adult,
KC>KC synapses have also been demonstrated (Takemura et al.,
2017; Manoim et al., 2022). KCs have been shown to express
both muscarinic (Bielopolski et al., 2019; Manoim et al., 2022) and
nicotinic (Crocker et al., 2016; Croset, Treiber, and Waddell, 2018)
receptors, the combination of which likely enables both inhibitory
(Bielopolski et al., 2019; Manoim et al., 2022) and excitatory (Su
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and O’Dowd, 2003) synapses between them, rendering different
interactions plausible.

All tested circuit motifs are sensitive to odor overlap among
the KCs (Figure 3), demonstrating the importance of separable
odor representations to avoid reward generalization. This hints at
the importance of KC coding space, which some of the circuits
would be more or less sensitive to, depending on the degree of
odor specificity of their SOC mechanism (Figure 2). We based
the size of the KC population on adult Drosophila, but as long
as the three odors can be represented in a disjunct manner, the
results (Figure 2) would not be affected. Interestingly, while SOC has
been demonstrated in adult Drosophila (Brembs and Heisenberg,
2001; Tabone and de Belle, 2011; König et al., 2019; Rachad, 2023;
Yamada et al., 2023) and other insects with larger KC population
(Bitterman et al., 1983; Hussaini et al., 2007; Mizunami et al., 2009),
it has never been observed in Drosophila larva, which might be due
to its lack of KC coding space (Eichler et al., 2017).

Limitations

Motivated by isolating SOC as the phenomenon of interest in
our experiments, we decided to reduce our circuit implementations
of computational motifs to their minimum and optimize their
parameters only for FOC and SOC. This allowed us to determine
which circuit motifs are the most efficient in computing SOC
when optimized exclusively for this purpose. This approach neglects
the surrounding network structures in the real insect MB and
thus intentionally disregards other learning phenomena often
addressed when studying the MB, such as prediction error, effects
of stimulus exposure before learning, forgetting, or extinction.
Both forgetting and extinction produce the same observable
behavior in experiments, which is a decline in the response to
repeated presentation of a sensory cue when reinforcement is
omitted after conditioning. As opposed to forgetting, extinction
is characterized by the possibility of recovery of the association
after its temporary loss (Bouton, 2004), has been demonstrated in
adult Drosophila (Hirano et al., 2016; Wang et al., 2019). To retain
the association for recovery, extinction requires the formation of
parallel memory traces for the acquisition and the decline of the
association (Felsenberg et al., 2017; Felsenberg et al., 2018). The
repeated presentation of stimulus 1 without reinforcement during
SOC should lead to the extinction of the learned association
between stimulus 1 and reinforcement. Across many trials, SOC
and extinction learning should be competing phenomena, allowing
SOC to occur only until the extinction process has abolished
the odor approach bias. While some studies found a decline in
the association between stimulus 1 and the reinforcement during
SOC in honeybees (Bitterman et al., 1983; Hussaini et al., 2007),
experiments in Drosophila reported no loss of the association
between stimulus 1 and reinforcement during SOC (Tabone and
de Belle, 2011; Yamada et al., 2023). For our Drosophila-inspired
modeling approach, we thus defined no loss of odor 1 approach
bias between the tests following FOC and SOC as a criterion for
our parameter optimization. We did not include any homeostatic
mechanism for forgetting in the models. The implementation of
extinction would require the extension of the model with additional

compartments for the encoding of an extinction trace in parallel to
one that retains the learned association.

Additionally, the omission of mechanisms for long-term
network stability in combination with the criterion of perfect odor
1 approach bias in both tests after FOC and SOC guarantee the
complete downregulation of all KC>MBON− synapses activated by
odor 1 after three FOC trials of arbitrary duration would not allow
for experiments with more trials.

Aside from the narrow applicability to different learning
phenomena, which is the downside of our minimal circuit design,
another limitation originates from the need to define the limits and
the step size for the model parameter grid search. The success of it
depends on selecting these limits and steps appropriately (Table 3).
If ill-chosen, they could put individual models at a competitive
disadvantage by not including or over-stepping their optimum.

Outlook

We demonstrated that several circuit mechanisms are potential
candidates for SOC.While they vary in computational efficiency and
robustness, multiple models remain good candidates, compatible
with our knowledge of the MB anatomy. A valuable next step would
be to integrate them into more comprehensive MB models to test
how they interact with other phenomena in learning. This could
also be another angle to studying their robustness. Other models of
learning in theMBhave examined a variety ofmore complex aspects
of learning, such as reinforcement expectation and prediction
(Arena et al., 2015; Eschbach et al., 2020; Bennett, Philippides, and
Nowotny, 2021; Jiang and Litwin-Kumar 2021; Springer andNawrot,
2021; Zhao et al., 2021; Jürgensen et al., 2022), reinforcement
generalization to other novel stimuli (Wessnitzer et al., 2012; Peng
and Chittka, 2017; Rapp and Nawrot, 2020) as well as patterning
tasks (Wessnitzer et al., 2012; Haenicke, 2015; Peng and Chittka,
2017), where combinations of stimuli are reinforced, while their
components are not or vice versa. Spiking models, in particular,
also allow the study of temporal dynamics in learning in the MB in
experiments that feature delays or gaps between stimuli (Arena et al.,
2015; Jürgensen et al., 2022). Especially interesting in this regard
would be extinction, with its inherently interfering mechanism,
which has been included in other models as well (Eschbach et al.,
2020; Bennett, Philippides, and Nowotny, 2021; Jiang and Litwin-
Kumar 2021; Springer andNawrot, 2021). SOC relies onmaintaining
the stimulus 1 valence acquired during FOC throughout SOC,which
drives DAN activity. Yet, the absence of reinforcement during SOC
would trigger the extinction of this very valence. It seems possible
that more than one of the circuit motifs could co-exist in different
MB compartments. Ultimately, not all MB compartments might
be involved in SOC (Jiang and Litwin-Kumar 2021; Yamada et al.,
2023), but fulfill other roles in learning.

Computational models are a highly beneficial tool for
investigating the circuitry underlying SOC. Experimental
validations of theoretically proposed circuit motifs would close the
loop between theoretical predictions and their experimental test.
However, with the available genetic tools, it is currently impossible
to solely manipulate KC>DAN or MBON>DAN synapses either on
the pre or post-synaptic side without affecting output onto other or
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input fromother neurons in the network.Therefore, an experimental
test of our theoretical predictions is currently difficult to achieve,
underlining the importance of computational modeling.
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