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The kidney is the key organ responsible for maintaining the body’s water and
electrolyte homeostasis. About 99% of the primary urine filtered from the
Bowman’s capsule is reabsorbed along various renal tubules every day, with
only 1–2 L of urine excreted. Aquaporins (AQPs) play a vital role in water
reabsorption in the kidney. Currently, a variety of molecules are found to be
involved in the process of urine concentration by regulating the expression or
activity of AQPs, such as antidiuretic hormone, renin-angiotensin-aldosterone
system (RAAS), prostaglandin, and several nuclear receptors. As the main bile acid
receptors, farnesoid X receptor (FXR) and membrane G protein-coupled bile acid
receptor 1 (TGR5) play important roles in bile acid, glucose, lipid, and energy
metabolism. In the kidney, FXR and TGR5 exhibit broad expression across all
segments of renal tubules, and their activation holds significant therapeutic
potential for numerous acute and chronic kidney diseases through alleviating
renal lipid accumulation, inflammation, oxidative stress, and fibrosis. Emerging
evidence has demonstrated that the genetic deletion of FXR or TGR5 exhibits
increased basal urine output, suggesting that bile acid receptors play a critical role
in urine concentration. Here, we briefly summarize the function of bile acid
receptors in renal water reabsorption and urine concentration.
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Introduction

The kidney is a vital organ that receives 20%–25% of an adult human’s cardiac output
and controls the metabolism of salt and water. About 180 L of filtrate are produced daily by
an adult human kidney, but only 1–2 L of urine are expelled, with 99% of the primary urine
being reabsorbed along various renal tubules.

Many factors are involved in the progress of urine concentration. Firstly, the hypertonic
environment of the inner medullary is a necessary condition for urine concentration, which
promotes the reabsorption of water. The hypertonic environment is mainly due to the
accumulation of urea and sodium chloride in the inner medullary, where Na+/K+/
2Cl–cotransporter (NKCC2) and urea transporters play an important role in this
process. Secondly, aquaporins also play important roles in this process. Eight
aquaporins, including AQP1-7 and AQP11, have been identified in the kidney (Noda
et al., 2010). Among them, AQP1 is expressed on both the apical and basolateral membrane
of the proximal tubule, as well as the thin descending limb of the loop of Henle and the vasa
recta (Chou et al., 1999), responsible for the reabsorption of about 80% of the water in
primary urine. AQP2 is highly expressed in the apical membrane and subapical vesicles of
principal cells in the renal collecting duct, responsible for about 20% of water reabsorption
(Kwon et al., 2013). Mice that do not have AQP1, AQP2, AQP3, or AQP4 genes exhibit a
significant increase in urine production (Yang et al., 2001). Finally, The Epithelial sodium
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channel (ENaC) is important for sodium and water reabsorption,
which is located in the apical membrane of the collecting ducts.
ENaC facilitates Na⁺ reabsorption and then the movement of Na+

creates an osmotic gradient, allowing water to follow in the same
direction.

Currently, it has been reported that a variety of molecules are
involved in regulating the reabsorption of water in the kidney.
Antidiuretic hormone (ADH) or arginine vasopressin (AVP) is a
critical hormone synthesized in the hypothalamus that plays a key
role in water homeostasis. In the renal collecting duct, AVP binds to the
V2 receptor (V2R) and increases the phosphorylation of AQP2 by the
cAMP-PKA pathway. Recently, increasing evidence has demonstrated
that AVP played a critical role in facilitating urinary concentration via
activating ENaC (Mironova et al., 2012;Mironova et al., 2015; Stockand
et al., 2022; Wang et al., 2022). Moreover, AVP also rapidly increased
water and urea transport in the terminal inner medullary collecting
duct (IMCD) by increasing the expression and apical membrane
trafficking of the urea transporter A1 (UT-A1) (Sands et al., 2011).
The renin-angiotensin-aldosterone system (RAAS) additionally
contributes to the regulation of water and sodium reabsorption in
the kidney. Angiotensin II has different effects on different parts of the
kidneys. In the proximal tubules, it heightens the activity of sodium/
hydrogen exchanger and sodium-bicarbonate cotransporter through
binding to the Angiotensin II receptor type 1 (AT1) receptor. In the
distal tubule and collecting ducts, Angiotensin II further amplifies the
activity of sodium-chloride cotransporter (NCC) and ENaC, which
increases the reabsorption of water and sodium. Additionally,
Angiotensin II increases aldosterone levels, which promotes sodium
reabsorption by binding to the mineralocorticoid receptor (Harrison-
Bernard, 2009; Zaika et al., 2013). Prostaglandin E2 (PGE2) is the main
cyclooxygenase metabolite of arachidonic acid (AA). It is primarily
synthesized in the medullary collecting tubule of the kidney (Bonvalet
et al., 1987). EP1-4 are the 4 G protein-coupled receptors (GPCRs) of
PGE2. Among these, EP1 and EP3 have high expression in the
basolateral membrane of the collecting duct, respectively. When
these receptors are activated, less sodium chloride and water are
absorbed, which increases the excretion of sodium ions and urine
(Ando and Asano, 1995; Guan et al., 1998; Breyer and Breyer, 2001;
Nasrallah et al., 2018). In the kidney, EP2 expression is low, however,
the activation of EP2 increased AQP2 membrane targeting (Olesen
et al., 2016). The primary function of EP4, which is mostly expressed in
glomeruli, is to control the release of renin (Breyer and Breyer, 2001). In
the collecting ducts, disruption of EP4 impaired urinary concentration
via decreasing AQP2 through the cAMP/PKA pathway (Gao et al.,
2015). Several nuclear receptors have been implicated in regulating
water homeostasis. Activation of peroxisome proliferator-activated
receptor γ (PPARγ) increased the water and sodium reabsorption
through the ENaC andAQP2 (Guan et al., 2005; Zhou et al., 2015). The
activation of the glucocorticoid receptor (GR) enhanced the AQP2 gene
expression induced by AVP in the collecting duct cell (Su et al., 2020).
Liver X receptor β (LXRβ) knockoutmice also exhibited polyuria due to
decreased AVP and AQP1 (Gabbi et al., 2012), and increased
ubiquitination of AQP2 protein (Su et al., 2017). The administration
of estradiol decreased the expression of AQP2 by binding to estrogen
receptor α, consequently leading to an increase in urine output in
ovariectomized rats (Cheema et al., 2015).

Increasing evidence suggests that bile acid receptors play a
crucial role in regulating renal water and sodium reabsorption. In

this article, we will review the general functions of two bile acid
receptors, nuclear receptor FXR, andmembrane receptor TGR5, and
finally focus on their roles in renal water and sodium homeostasis,
offering novel strategies for addressing disorders related to water
and salt metabolism, such as diabetes insipidus.

Classification and general function of bile
acid receptors

The liver is responsible for the synthesis of primary bile acids,
specifically cholic acid (CA) and chenodeoxycholic acid (CDCA).
These primary bile acids are subsequently conjugated and excreted
into the intestine. Within the gut, they were metabolized by the gut
microbiota, leading to the formation of secondary bile acids, namely,
lithocholic acid (LCA) and deoxycholic acid (DCA) (Wang et al.,
1999). In the intestine, roughly 95% of bile acids are reabsorbed into
hepatocytes, with only a small fraction entering the bloodstream.
Initially, these circulating bile acids go through glomerular filtration
but are nearly completely reabsorbed in the proximal renal tubules,
facilitated by the apical sodium-dependent bile acid transporter
(ASBT) and the basolateral Organic Solute Transporter α/β (OSTα/
β). Consequently, only about 5% of the filtered bile acids end up in
the urine each day (Stiehl, 1974; Herman-Edelstein et al., 2018). Bile
acids play crucial roles in various physiological and
pathophysiological processes by binding and activating the
nuclear receptor FXR and the membrane G protein-coupled
receptor TGR5.

FXR is a member of the nuclear receptor (NR) superfamily that
controls the transcription of specific target genes. It exhibits
prominent expression in organs such as the liver, kidney, and
small intestine. As the endogenous ligand of FXR, bile acids
activate FXR in the following order: CDCA > DCA > LCA > CA
(Wang et al., 1999). Upon activation, FXR assumes critical roles in
the regulation of various metabolic pathways, including bile acid,
glucose, and lipid metabolism (Guo et al., 2023). Notably, it acts to
inhibit the production and accumulation of bile acids in the liver and
intestines (Liu et al., 2003; Boyer et al., 2006; Landrier et al., 2006).
Additionally, the activation of FXR increases glycogen synthesis and
reduces glycolysis (Zhang et al., 2006; Caron et al., 2013; Dong et al.,
2019). Furthermore, it reduced the accumulation of lipids in the
kidney in insulin-resistance animal models (Nakahara et al., 2002;
Zhang et al., 2006; Lai et al., 2022). Recently, several studies reported
that overexpression of FXR in the kidney substantially alleviated
hypertension and elevated renal nitric oxide (NO) levels, which was
achieved by stimulating the expression of endothelial nitric oxide
synthase (eNOS) in a mouse model of hypertension induced by an 8-
week regimen of 20% fructose in drinking water combined with a 4%
sodium chloride diet (referred to as HFS) (Ghebremariam et al.,
2013; Li et al., 2015). In the kidney, activation of FXR attenuated
acute kidney injury caused by cisplatin and renal
ischemia–reperfusion (I/R) through regulating apoptosis,
ferroptosis, and autophagy (Bae et al., 2014; Gai et al., 2017;
Luan et al., 2021; Zhang et al., 2022). Additionally, FXR agonists
also improved renal inflammation, fibrosis, lipid accumulation, and
glucose metabolism disorders, which prevented the progression of
chronic kidney disease (Evans et al., 2009; Wang et al., 2010; Zhou
et al., 2016; Marquardt et al., 2017).
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TGR5 is a membrane receptor of bile acids, which can be bound
and activated by various endogenous bile acids, especially LCA.
TGR5 is expressed in various tissues, such as the kidney, liver,
digestive tract, and central nervous system (Poole et al., 2010).
Many studies have demonstrated that it plays a significant role in
multiple physiological processes, as well as the pathogenesis of various
metabolic diseases (Reich et al., 2021; Tian et al., 2022; Chen et al.,
2023). Activation of TGR5 results in coupling with a stimulatory
G-alpha-protein (Gαs) which, in turn, activates the cAMP-PKA
signaling pathway. This cascade of events results in the
phosphorylation of the cAMP response element binding protein
(CREB) and its subsequent nuclear import, ultimately leading to
the activation of the target genes. When activated, TGR5 promotes
GLP-1 secretion from enteroendocrine L cells (Li et al., 2017),
mitochondrial thermogenesis in adipocytes (Velazquez-Villegas
et al., 2018), and protected against lipopolysaccharide (LPS)-
induced liver inflammation by decreasing inflammatory cytokine
secretion (Wang et al., 2011). In the kidney, TGR5 activation has
been found to alleviate renal I/R injury by reducing inflammation and
macrophage migration (Zhang et al., 2019). Furthermore, it has also
been observed that the activation of TGR5 can prevent renal
inflammation and fibrosis by inhibiting the NF-κB pathway in
diabetic mice induced by streptozotocin (STZ) (Xiao et al., 2020).
Moreover, a selective TGR5 agonist INT-777 has been shown to
ameliorate proteinuria and podocyte injury in diabetic db/db mice
(Wang et al., 2016). In addition, TGR5 activation also decreased the
high glucose-induced fibrosis in glomerular mesangial cells (GMCs)
(Yang et al., 2016). Recently studies have also revealed that the

deubiquitination of TGR5 at K306 residue also restored
TGR5 expression and protected db/db mice from diabetic
nephropathy (Lin et al., 2023).

Currently, there are some studies on dual FXR and TGR5 agonists
in the kidney. Diabetic mice treated with the dual FXR/TGR5 agonist
INT-767 showed an improvement in proteinuria and prevention of
podocyte injury, mesangial expansion, and tubulointerstitial fibrosis
(Wang et al., 2016). The same dual agonist reduced the proteinuria
and fibronectin accumulation in agingmice (Wang et al., 2017). These
findings indicate a potential role of dual FXR/TGR5 agonists in the
regulation of many kidney diseases.

Bile acid receptors and kidney water
homeostasis

As mentioned above, about 95% of the bile acids synthesized
from the liver are recycled through the enterohepatic circulation. In
the kidney, approximately 100 μmol bile acids are filtered in the
glomeruli per day, and almost all of them are reabsorbed in the
proximal tubule. Only 1–2 μmol/day is excreted in the urine
(Dawson et al., 2009). The renal tubules, especially the collecting
duct, express high levels of bile acid receptors FXR and TGR5, where
water is reabsorption through aquaporins to complete the final step
of urine concentration, suggesting that FXR and TGR5 may play an
important role in the regulation of water homeostasis. Whether the
activation of the bile acid receptor in collecting ducts plays a
significant role in water homeostasis is worth studying.

FIGURE 1
Bile acid receptors in the regulation of urine concentration.
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Farnesoid X receptor and renal water
reabsorption

In the kidney, FXR exhibits high expression levels in various
renal tubules, especially the collecting duct. However, the current
study of FXR in water reabsorption only reveals its role in collecting
ducts. FXR plays a pivotal role in the regulation of urine volume.
FXR knockout mice displayed diminished urine concentrating
ability in comparison to WT mice, and its activation by binding
with CDCA or a synthetic agonist GW4064 increased urinary
concentrating capacity, mainly by increasing renal
AQP2 expression (Zhang et al., 2014). Moreover, MCDs are
exposed to a massive hypertonic environment, which is critical in
regulating urine concentration. FXR can prevent hypertonic-
induced apoptosis of MCDs by activating tonicity response
enhancer-binding protein (TonEBP), a critical transcription
factor responsible for facilitating the cellular accumulation of
organic osmolytes to resist the hyperosmotic stress through
increasing the expression of the target genes, including aldose
reductase (AR) and heat shock protein 70 (HSP70) (Xu et al.,
2018). Recently, studies revealed that crystallin zeta (CRYZ), a
direct target gene of FXR, increased the NKCC2 expression to
help maintain medullary hyperosmotic gradient. Additionally,
overexpressing CRYZ reduced the cell death caused by
hypertonicity by elevating the expression of B-cell lymphoma 2
(BCL2). These data demonstrated that FXR plays a critical role in the
regulation of urine volume by increasing the expression of
AQP2 and promoting the survival of MCDs in a dehydrated
state. The above results proved the physiological function of FXR
in water reabsorption, but its role in the pathophysiological state
such as diabetes insipidus is still unclear. Moreover, recent evidence
also showed that enhanced urinary excretion of bile acids in some
conditions such as cholestasis may cause the injury of tubular
epithelial cells, and FXR agonist obeticholic acid (OCA)
ameliorated the renal tubular damage in bile duct ligation (BDL)
induced hepatorenal syndrome (HRS) (Tsai et al., 2020). Low urine
volume also existed in HRS mainly caused by a reduction in renal
blood flow, it is not known the effect of increased bile acids in renal
tubules on the expression of AQPs and water reabsorption.

TGR5 and renal water reabsorption

In normal kidney tissue, TGR5 exhibited high expression in
collecting ducts, distal convoluted tubules, and the thin loop of
Henle, with minimal or sporadic weak staining in the proximal
tubules (Zhao et al., 2018). Different from the study of FXR in water
reabsorption focusing on physiological levels, the study of TGR5 in
AQP2 regulation is mainly carried out in kidney diseases. Lithium is
a frequently prescribed medication for managing bipolar disorder,
which may cause multiple endocrinopathies including nephrogenic
diabetes insipidus (NDI). In a mouse model of lithium-induced
nephrogenic diabetes insipidus, the activation of TGR5 by INT-777
or INT-767 elevated the expression of AQP2 through the cAMP/
PKA signaling pathway (Li et al., 2018). Acute kidney injury is a
common clinical disease, accompanied by changes in urine output.
With the progression of the disease, oliguria, anuria, and polyuria
can occur. In the I/R-induced AKI rat model, urinary output was

significantly decreased, accompanied by the loss of renal AQP1,
AQP2, and AQP3 in the cortex and outer medulla (Hussein et al.,
2012; Asvapromtada et al., 2018; Liu et al., 2021). While the
activation of TGR5 by LCA or INT-777 effectively prevented the
downregulation of renal AQP2 in I/R-induced kidney injury
through activating HIF-1α signaling (Han et al., 2021). These
findings support the potential role of TGR5 in the regulation of
renal water reabsorption.

Perspectives

FXR and TGR5, as bile acid receptors, play an important role in
renal water homeostasis through regulating the expression and
trafficking of AQP2, which provides a novel therapeutic for the
treatment of water and salt metabolism disorders such as diabetes
insipidus (Figure 1). However, the mechanism of bile acids in the
regulation of water homeostasis is largely unknown. Firstly, there
are 8 types of aquaporins in the kidney, in addition to affecting
AQP2, whether the activation of bile acid receptors affects other
aquaporins is worth exploring. Secondly, AVP synthesized in the
hypothalamus regulates AQP2 expression. Recently studies
revealed that FXR and TGR5 were expressed in the
hypothalamus (Castellanos-Jankiewicz et al., 2021; Deckmyn
et al., 2021), and circulating bile acids can also reach the
hypothalamus (Xu, 2018). Whether bile acid receptors affect
AVP secretion remains to be investigated. Thirdly, in addition
to aquaporins, other ion channels such as ENac can also indirectly
affect water reabsorption. At present, research has not delved into
the direct regulation of ENaC by either FXR or TGR5 in the kidney,
but several studies have reported that ENaC is regulated by bile
acids in overexpressed human ENaC Xenopus laevis oocytes
(Ilyaskin et al., 2016; Wang et al., 2019).
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