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T cells regulate adaptive immune responses through complex signaling pathways
mediated by T cell receptor (TCR). The functional domains of the TCR are
combined with specific antibodies for the development of chimeric antigen
receptor (CAR) T cell therapy. In this review, we first overview current
understanding on the T cell signaling pathways as well as traditional methods
that have been widely used for the T cell study. These methods, however, are still
limited to investigating dynamic molecular events with spatiotemporal
resolutions. Therefore, genetically encoded biosensors and optogenetic tools
have been developed to study dynamic T cell signaling pathways in live cells. We
review these cutting-edge technologies that revealed dynamic and complex
molecularmechanisms at each stage of T cell signaling pathways. They have been
primarily applied to the study of dynamic molecular events in TCR signaling, and
they will further aid in understanding the mechanisms of CAR activation and
function. Therefore, genetically encoded biosensors and optogenetic tools offer
powerful tools for enhancing our understanding of signaling mechanisms in
T cells and CAR-T cells.
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1 Introduction

T cells play a pivotal role in adaptive immune response by recognizing a wide variety of
antigens via T cell receptor (TCR) signaling pathways (Gaud et al., 2018; Xu et al., 2020; Shah
et al., 2021). In addition, chimeric antigen receptor (CAR) T cell therapy has been developed
by combining the functional domains of T cell receptor (TCR) with the antibodies that
specifically recognize cancer antigens (Irving and Weiss, 1991; Porter et al., 2011; Pan et al.,
2022). TCR complex is primarily responsible for these functions, thus it is crucial to
understand how the activation of TCR and the downstream signaling pathways are
regulated with spatiotemporal resolutions (Choudhuri and van der Merwe, 2007).

To study themolecular mechanisms of TCR activation and the related signaling pathways,
traditional methods have been employed such as Western blot, flow cytometry and
immunostaining. They have provided valuable insight into the TCR signaling pathways,
however these methods require the fixation of the cells, making it difficult to investigate the
dynamic molecular mechanisms of the TCR signaling pathways in live cells (Im et al., 2019).
In contrast, recent advances in live-cell imaging techniques and genetically encoded
fluorescent biosensors have allowed the real-time monitoring of molecular events of TCR
signaling pathways with spatiotemporal resolutions (Kim et al., 2021). In addition,
optogenetic tools based on photosensitive proteins can control dynamic molecular events
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by light, providing the further understanding of the molecular
mechanisms of complex signaling pathways (Seong and Lin, 2021).

This review aims to introduce fluorescent biosensors (Section 4) and
optogenetic tools (Section 5) for investigating dynamic T cell signaling
pathways in live cells. Section 3 outlines previous experimental methods
employed in studying these pathways, with considerations on their
limitations, potentially addressed by employing fluorescent biosensors
and optogenetic tools. In addition, Sections 1 and 2 have been
incorporated to provide readers with essential background on T cell
signaling pathways initiated by TCR and CAR, enabling them to track
which segments of the pathways are explored using fluorescent
biosensors and optogenetic tools. Finally, the review concludes by
proposing future directions to advance these technologies for
achieving a deeper comprehension of T cell signaling pathways.

2 The signaling pathways of T-cell
receptor (TCR) complex

T cell receptors recognize a variety of antigens and initiate signaling
pathways for adaptive immune responses (Huse, 2009). The TCR
complex is a sophisticated assembly of integral membrane proteins

incorporating highly variable α and β chains, which noncovalently
associated with CD3 signaling subunits γ, δ, ε, and ζ (Choudhuri and
van der Merwe, 2007; Xu et al., 2020; Gangopadhyay et al., 2022). TCR
signaling pathways are initiated by the interaction between the α/β
chains of the TCR complex and the antigen peptides presented on
major histocompatibility complex (MHC) in antigen-presenting cells
(APCs). This interaction triggers the activation of TCR, subsequently
resulting in the phosphorylation of CD3 signaling domains called
immunoreceptor tyrosine-based activation motifs (ITAMs).
Consequently, the downstream signaling cascades including Lck
(lymphocyte-specific protein tyrosine kinase), ZAP70 (zeta chain-
associated protein kinase 70), LAT (linker for the activation of
T cells), lead to the propagation of TCR signaling pathways
(Courtney et al., 2018). In this section, we describe the sequences of
TCR activation and downstream signaling pathways (Figure 1).

2.1 Recognition of antigen peptide-
MHC complex

The first step of the TCR activation is the recognition of antigen
peptide-MHC complexes presented by APCs. From antigen

FIGURE 1
Overview of TCR signaling pathways. The TCR signaling is initiated by the binding of an antigen peptide-MHC complex. The process of signal
transduction from the extracellular to intracellular domain is a topic of ongoing debate, with multiple proposed models. Following TCR triggering, the
kinase Lck phosphorylates the ITAM motif within the TCR complex. ZAP70 is subsequently recruited to the phosphorylated ITAMs, where it undergoes
partial activation, then ZAP70 is further enhanced by Lck. The activated ZAP70 phosphorylates LAT, which recruits various signaling molecules. The
LAT signalosomes initiate cascades of downstream pathways, ultimately activating crucial transcription factors like NFAT, NF-κB, and AP-1. These
pathways collectively regulate various T-cell functions.
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processing process, APCs cleave long antigens into short antigen
peptides and these short peptides bound to MHC (pMHC) are
displayed on the APC surface (Vyas et al., 2008; Pishesha et al.,
2022). TCRs recognize the pMHC via the complementarity
determining regions (CDRs) in the variable domains of the TCR
αβ chains (Rossjohn et al., 2015). The variable domains are highly
diversified through random genetic recombination of variable (V)
and joining (J) gene segments, and with the exclusive presence of
diversity (D) gene in the β chains, making the TCRs to distinguish
and recognize a wide repertoire of antigen peptides (Huang et al.,
2012; Szeto et al., 2020; Shevyrev et al., 2022). The binding structure
of TCR-pMHC is further stabilized by co-receptors CD4 and CD8 of
T cells, forming the ternary complex of TCR-pMHC-co-receptors
(Morch et al., 2020; Rushdi et al., 2022).

2.2 TCR triggering process

Upon the recognition of antigen peptide, the TCR initiates the
transduction of signals across the plasma membrane, a process
called TCR triggering (Dushek, 2011; van der Merwe and
Dushek, 2011). While the precise mechanisms remain
incompletely understood, several models of the TCR triggering
process have been proposed, for example, serial engagement,
kinetic proofreading, segregation, and conformation change
(Courtney et al., 2018). It is important to note that these models
are not mutually exclusive; rather, they coexist and complement
each other contributing to a comprehensive understanding of the
intricate orchestration of TCR signaling events.

The serial engagement model proposes that rapid re-binding of a
single peptide-MHC to multiple TCRs can initiate TCR signaling.
(Valitutti et al., 1995; Valitutti, 2012). In this model, a pMHC binds
to a TCR causing a degree of signaling, then the dissociated pMHC
repeatedly binds to other TCRs, thereby triggering the TCR signaling.
Thismodel provides insight into howT cells respond sensitively to even a
single agonist pMHC. The kinetic proofreading model postulates that the
persistent binding of pMHC to TCRs for adequate duration is required
for the initiation of TCR signaling (Aleksic et al., 2010; Courtney et al.,
2018; Pettmann et al., 2021; Britain et al., 2022). For example, a pMHC-
TCR complex with high affinity can persist for adequate time to be
scanned by the co-receptor, thus resulting in the initiation of TCR
signaling. Conversely, a complex with low affinity may dissociate before
being scanned by the co-receptor. The kinetic segregationmodel proposes
that the spatial rearrangement of signaling molecules on the plasma
membrane triggers the TCR signaling. In this model, the exclusion of
CD45 from the APC contact zone containing TCR-pMHC complexes
leads to an increase activity in Lck. This facilitates the phosphorylation of
the TCR complex, thereby initiating the process of TCR signaling (Anton
van derMerwe et al., 2000;Davis and van derMerwe, 2006;Malissen and
Bongrand, 2015).

The conformational change model proposes that TCRs bound to
pMHC change their conformation triggering intracellular signaling
cascades. Different hypotheses have been suggested regarding the
mechanisms of the conformational changes of TCR. First, the
mechanical force generated from the pMHC pulling on the αβ
chains of TCRs may be propagated through the intracellular
CD3 subunits, as structural evidences have demonstrated the rigid
and cohesive interaction with TCRαβ and CD3 subunits (Kim et al.,

2012). Optical tweezers further revealed that lateral force of 50 pN
induces a conformational change of the TCR complex and potentiates
the signaling pathways (Feng et al., 2017; Stephens et al., 2022).
Another mechanism for the conformational change of TCR is the
release of ionic interaction between the basic residue-rich sequence
(BRS) in the CD3 subunits of the TCR complex and the negatively
charged phospholipids in the inner leaflet of the plasma membrane.
The engagement of TCRs to pMHC triggers the influx of Ca2+, which
can neutralize the negative charge of the anionic phospholipids.
Subsequently, the ionic interaction between the phospholipids and
the CD3 domains of the TCR complex is released thus the cytosolic
functional domains of CD3 are dissociated from plasmamembrane to
initiate the TCR signaling pathways (Shi et al., 2013).

In these TCR triggering models, it has been suggested that the
TCRs are further clustered for their signaling pathways (Varma et al.,
2006; Huang et al., 2013; Taylor et al., 2017). For example, Huang et al.
found that a single pMHC induces the slow formation of TCR clusters,
and the TCR clustering makes more favorable environment for the
pMHC to serially engage with other TCRs (Huang et al., 2013). It was
also shown that the ligands with longer bound-time can promote the
TCR clustering, and the receptor clustering is crucial for signaling
outputs in the kinetic proofreading model (Taylor et al., 2017).
Furthermore, Minguet et al. have suggested that conformational
change of TCR alone is not sufficient to fully activate TCR
signaling pathways unless combined with the TCR clustering
(Minguet et al., 2007). These findings demonstrate that TCR
clustering is an important step for the TCR signaling pathways.

2.3 Immunological synapse formation

The engagement of TCR with the pMHC complex and the
subsequent TCR clustering initiate the reorganization of membrane
receptors and signaling molecules, leading to the dynamic formation of
immunological synapse (Monks et al., 1998; Grakoui et al., 1999; Huppa
and Davis, 2003; Dustin, 2014). This process is finely orchestrated by
regulatory proteins and membrane microdomains such as lipid rafts
(Jury et al., 2007;Wu et al., 2016). The immunological synapse exhibits a
distinct structure with specific molecular compositions (Monks et al.,
1998; Huppa and Davis, 2003). The central supramolecular activation
cluster (cSMAC) positioned at the core of the immunological synapse
contains the clustered TCRs, associated signaling molecules (e.g.,
CD3 and ZAP-70), and co-receptors (e.g., CD4 or CD8).
Surrounding the cSMAC, the peripheral SMAC (pSMAC) comprises
adhesion molecules such as LFA-1 and ICAM-1, facilitating stable cell-
cell interactions. The distal SMAC (dSMAC), situated at the periphery,
includes inhibitory phosphatase CD45. This spatial organization of
signaling molecules within immunological synapse is crucial for
initiating downstream pathways (Dustin and Cooper, 2000; Thauland
and Parker, 2010; Garcia and Ismail, 2020), and thus immunological
synapse can serve as a platform for T cell signaling pathways.

2.4 The phosphorylation of ITAM motifs
by Lck

The next step of TCR signaling pathways is the phosphorylation
of ITAMs in the CD3 cytoplasmic domains by Lck kinase (Irving
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et al., 1993; Clements et al., 1999; Love and Hayes, 2010). It has been
suggested that Lck exists in two distinct states: a bound state Lck
which is associated with the coreceptors CD4 and CD8 (Kim et al.,
2003), and an unbound state Lck anchored to the cell membrane via
myristoylation and palmitoylation (Ehrlich et al., 2002;
Zimmermann et al., 2010). Because co-receptors engage both
pMHC and Lck, the bound state Lck can be targeted to TCR to
phosphorylate the ITAMs in the CD3 cytoplasmic domains (Li et al.,
2004; Bommhardt et al., 2019; Morch et al., 2020). Recently, it has
been suggested that the initial phosphorylation of ITAM motifs can
be facilitated by the unbound state Lck (Casas et al., 2014). In fact,
Lck may be directly recruited to the TCR complex as shown by
multiple interactions between Lck and the CD3 domains of the TCR
complex. For example, the BRS region in the CD3εζ can directly
interact with acidic residues in the unique domain (UD) of Lck (Li
et al., 2017). In addition, multiple anchorage points have been
identified between the receptor kinase (RK) motif of CD3ε and
the SH3 domain of Lck (Hartl et al., 2020). Therefore, Lck is able to
phosphorylate the ITAMs in CD3, initiating downstream signaling
pathways of TCR.

2.5 Activation of ZAP70

The phosphorylated ITAM motifs in the CD3 domains of the
TCR complex provides the binding site for the tandem SH2 (tSH2)
domains of ZAP70, a 70 kDa tyrosine kinase. It comprises
tSH2 domain, a C-terminal catalytic domain, and two
interdomains; interdomain A, which connects the tSH2 domain,
and interdomain B, bridging the tSH2 domain and the catalytic
domain (Hatada et al., 1995). In the resting state, ZAP70 resides
predominantly in the cytoplasm as an autoinhibited form. In
contrast, the recruitment of ZAP70 to the phosphorylated ITAMs
at the plasma membrane triggers the partial alleviation of its
autoinhibitory conformation (Yan et al., 2013). Lck further
phosphorylates the interdomain B linker (Y315 and
Y319 residues) and kinase domain (Y493) of ZAP70, stabilizing
the active conformation of ZAP70 (Wang et al., 2010; Yan et al.,
2013; Courtney et al., 2018). The fully activated ZAP70 directs its
kinase activity towards two essential scaffold proteins; the
transmembrane linker for the activation of T cells (LAT) and the
cytoplasmic SH2 domain–containing leukocyte protein of 76 kDa
(SLP76) (Bubeck Wardenburg et al., 1996; Zhang et al., 1998).

2.6 Assembly of LAT signalosome and
distal signaling

LAT is a major adaptor protein phosphorylated by
ZAP70 kinase. It comprises a short extracellular domain,
followed by a transmembrane segment and an elongated
cytoplasmic domain. The cytoplasmic domain of LAT harbors
nine tyrosine residues. The phosphorylated tyrosine residues can
serve as the docking sites for a variety of signaling molecules, for
example, Grb2 (growth factor receptor-bound protein 2)/Sos (son of
sevenless) and PLCγ1 (phosphor-lipase C gamma1), therefore
resulting in the assembly of LAT signalosomes (Paz et al., 2001;
Samelson, 2002).

SLP76 is another crucial adaptor protein phosphorylated by ZAP70.
SLP76 is characterized by three domains, a N-terminus region featuring
three tyrosine motifs, a proline-rich region, and a C-terminal
SH2 domain (Balagopalan et al., 2010). The phosphorylated tyrosine
residues in the N-terminus recruit Vav, a guanine-nucleotide-exchange
factor (GEF), an adaptor protein Nck, and a member of the Tec family
kinase Itk. Additionally, the proline-rich domain of SLP76 interact with
Gads and PLCγ1, culminating in the formation of LAT-Gads-SLP76-
PLCγ1 complex (Koretzky et al., 2006).

An array of proteins recruited to LAT initiates a cascading sequence
of downstream pathways, thus enhancing signal diversification and
amplification of the TCR signaling pathways (Balagopalan et al., 2015).
For example, activated PLCγ1 hydrolyzes phosphatidylinositol
4,5 biphosphate (PIP2) into diacylglycerol (DAG) and inositol 1,4,5-
triphosphate (IP3) (Katan, 1998; Chuck et al., 2010). DAG can activate
PKC andRasGRP1 (RasGuanyl Releasing Protein 1), ultimately leading
to the activation of transcription factors, NF-kB (nuclear factor kappa-
light-chain-enhancer of activated B cells) and AP-1 (activator protein
1), respectively (Shah et al., 2021). On the other hand, IP3 binds to Ca

2+-
permeable ion channel receptors (IP3R) on the endoplasmic reticulum
(ER), inducing the release of Ca2+ from the ER to the cytoplasm
(Jayaraman et al., 1996). The elevated intracellular Ca2+ activates
calcineurin, a protein phosphatase that dephosphorylates the nuclear
factor of activated T cells (NFAT), leading to its translocation into the
nucleus (Trebak and Kinet, 2019). Thus, Ca2+ is an essential component
for the T cell effector functions (Joseph et al., 2014; Trebak and Kinet,
2019). Collectively, the TCR signaling pathways regulate proliferation,
migration, cytokine production, and effector functions through
activation of diverse transcription factors (Figure 1) (Ashouri
et al., 2022).

3 Chimeric antigen receptor (CAR)-
mediated signaling pathways

Chimeric antigen receptor (CAR) T cell therapy is an innovative
cancer treatment which reprograms the patient’s T cells with CAR to
specifically identify and destroy cancer cells on their own
(Frederickson, 2015). The architecture of CAR comprises a
single-chain variable fragment (scFv), a hinge region, a
transmembrane domain, and the intracellular signaling domains
including the ITAMs derived from CD3ζ and costimulatory
domains (Sterner and Sterner, 2021). CAR-T cell therapy has
revolutionized the field of cancer immunotherapy with promising
outcomes in clinical trials for hematological cancers (Pan et al.,
2022), however, the activation mechanisms of CAR-T signaling
pathways remain incompletely understood.

In the intracellular part, CAR contains the signaling domains
derived from TCR. Thus, it is anticipated that the CAR signaling
pathways are generally similar to the ones of TCR, such as the ITAM
phosphorylation and the recruitment of ZAP kinase (Gudipati et al.,
2020; Wu et al., 2020; Wang et al., 2022). However, Dong et al.
reported a potentially novel mechanism of CAR signaling
independent of LAT, which is distinct from the LAT-dependent
TCR signaling pathways. They found that CARs directly engage the
LAT binding partners for example, Grb2, Gads, and PLCγ1, thereby
leading to downstream signaling events such as Ras activation, actin
remodeling, and Ca2+ influx (Dong et al., 2020).
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In the extracellular part, CAR contains the scFv instead of the
TCR αβ chains, thus the initial activation mechanism of CAR would
be distinct from the TCR activationmechanism. For example, the scFv
in the CAR exhibit high affinity for antigen, characterized by the
nanomolar range of dissociation constant (KD) (Kammertoens and
Blankenstein, 2013; Harris et al., 2018; Mao et al., 2022), while TCR
exhibits much lower affinity for antigen peptide (1–100 μMof KD). In
contrast, the sensitivity of CAR is lower than the one of TCR. It has
been suggested that the activation of TCR can be initiated by as few as
one pMHC whereas CAR typically requires at least hundreds of
antigens to elicit an effective response (Watanabe et al., 2015; Wu
et al., 2020; Yun et al., 2023). These distinct features may result in
different activation mechanism of CAR from TCR.

CAR incorporates one or two costimulatory domains derived
from costimulatory proteins of T cells such as CD28 and 4-1BB
(Honikel and Olejniczak, 2022). Proteomic analysis has revealed
that the activation of CAR containing CD28/CD3ζ or 4-1BB/CD3ζ
led to nearly identical changes in phosphorylation patterns (Salter
et al., 2018). The distinction lies in the markedly enhanced kinetics
of signaling, as shown in the pre-clinical results that the CD28-
containing CARs demonstrate faster in antitumor activity while also
exhibiting exhaustion when compared to the 4-1BB-containing
CARs (Zhao et al., 2015; Salter et al., 2018; Cappell and
Kochenderfer, 2021). Recent study has elucidated that the
relatively slow kinetics of the 4-1BB-containing CAR may be due
to the specific association of the THEMIS (thymocyte selection
associated)-SHP1 (Src homology region 2 domain-containing
phosphatase-1) complex with the 4-1BB domain, which leads to
the dephosphorylation of CAR-CD3ζ ultimately resulting in the
attenuation of the CAR signaling (Sun et al., 2020).

4 Traditional methods for studying TCR
or CAR-T signaling pathway

TCR was discovered in the early 1980s and the first-generation
CAR was developed in the early 1990s (Eshhar et al., 1993). Extensive
efforts have been dedicated to unravel the intricate T cell signaling
pathways. Investigating the T cell signaling pathways has relied on
conventional methodologies, primarily encompassing Western
blotting, flow cytometry, and immunofluorescence staining. This
section provides an overview of conventional methodologies used
to investigate TCR/CAR signaling. Furthermore, this section address
the limitations of these methods which could potentially be addressed
by introduction of fluorescent biosensors and optogenetic tools, the
topics that will be elaborated in the upcoming Section 5.

4.1 Western blotting

Western blotting allows for the analysis of protein expression and
post-translational modifications (Mahmood and Yang, 2012; Pillai-
Kastoori et al., 2020; Begum et al., 2022). To investigate the role of CD3ζ
in TCR signaling, Irving and Weiss conducted an experiment where
they designed a chimeric protein by combining the extracellular and
transmembrane domains of CD8 with the cytoplasmic domain of
CD3ζ. Through Western blot analysis, they observed that the
phosphorylation of CD3ζ could initiate signal transduction,

emphasizing the pivotal role of CD3ζ as a signal transducer (Irving
and Weiss, 1991). Importantly, the research suggests that even when
substituting the αβ chains of the TCR with alternative antigen
recognition motifs, such as the single-chain variable fragment (scFv)
of a CAR, the T cell signaling pathways can persist. Extending these
observations, Chan et al. verified that the phosphorylated CD3ζ of both
the TCR and the CD8/ζ chimera associates with ZAP70 (Chan et al.,
1991). Paz et al. demonstrated that ZAP70 directly phosphorylates LAT,
with the phosphorylated sites in LAT serving as docking sites for various
proteins (Paz et al., 2001). These findings, exemplified throughWestern
blotting techniques, have significantly advanced the comprehension of
TCR and CAR signaling pathways.

Western blotting, however, requires lysis of the cells to obtain
protein samples, therefore it does not provide spatiotemporal
information about target proteins in live cells. In addition,
Western blot results should be interpreted carefully since samples
may also contain unwanted cells.

4.2 Flow cytometry

Flow cytometry stands as a crucial single-cell technique, offering
high-throughput assessments of light scattering and fluorescent
signals from individual cells (McKinnon, 2018). Unlike Western
blotting, which provides average measurements for the entire cell
population (He and Fox, 1996), flow cytometry excels in revealing
heterogeneity in protein amounts. Gating techniques are employed
in flow cytometry to isolate and analyze specific cell populations of
interest (Adan et al., 2017; McKinnon, 2018; Staats et al., 2019). The
activation of TCR/CAR, measurable through increased activation
markers such as CD69 (McKinnon, 2018), is extensively explored
using flow cytometry (Bray et al., 2018; Sun et al., 2020; Cassioli
et al., 2021; Lo et al., 2023).

Despite its versatility in immunophenotyping and protein
quantification, flow cytometry has limitations. It heavily relies on
fluorescence analysis, often requiring compensation for signal
interference (Roederer, 2002; Szaloki and Goda, 2015; Adan
et al., 2017; Staats et al., 2019). Furthermore, flow cytometry is
constrained in its ability to analyze protein dynamics in a single cell
level with a high spatiotemporal resolution.

4.3 Immunofluorescence staining

Immunofluorescence staining enables the precise detection of
the localization of target proteins or post-translational modifications
through specific antibodies (Im et al., 2019). This method offers
insights into the distribution of proteins within fixed cells or tissues.
Subsequent examination of the stained samples is typically
conducted through fluorescence microscopy, providing the spatial
information of target proteins or post-translational modifications
with high precision. Using this method, Monk et al. identified
distinctive protein localization within the immunological synapse,
defining it by two concentric rings of molecules known as cSMAC
and pSMAC (Monks et al., 1998). Furthermore, Lee et al. revealed
that early phosphorylation events of Lck and ZAP-70 precede the
establishment of a mature immunological synapse, utilizing anti-
pLck or anti-pZAP-70 antibodies (Lee et al., 2002). This emphasizes
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that T cell engagement and activation initiate before the complete
formation of immunological synapses (Lee et al., 2002; Saito and
Yokosuka, 2006). In a recent investigation, the comparative analysis
of immunological synapse structures between TCR and CAR within
the same T cell has yielded valuable insights. The immunological
synapse induced by CAR exhibited a distinctive and disorganized
multifocal pattern of Lck arrangement, along with a small actin ring
and lacked distinct LFA-1 distribution. This unique immune
synapse configuration correlated with accelerated tumor target
cell killing and efficient detachment from dying tumor cells by
CAR-T cells (Davenport et al., 2018).

However, the utilization of this method necessitates the fixation
of cells to prevent decay and autolysis while preserving antigenicity.
Consequently, this fixation step poses a limitation, impeding the
study of dynamic protein interactions in living cells. (Im et al., 2019).

5 Genetically-encoded biosensors for
monitoring the activity of TCR and CAR

Genetically encoded biosensors with fluorescent proteins (FPs) have
emerged as powerful tools for monitoring dynamic biological events
within living cells. These biosensors utilize physicochemical properties
of FPs, such as fluorescence spectra, maturation time, pH sensitivity,
photoconversion, and fluorescence resonance energy transfer (FRET)
(Kim et al., 2021). For example, FRET is a photophysical phenomenon
driven by energy transfer between closely positioned (<10 nm) donor
and acceptor FPs of overlapping spectral profiles. Thus, proteins of
interests can be fused to donor and acceptor, and their interaction can be
measured by FRET signal in live cells.

Innovative fluorescent biosensors have been developed and
employed to visualize intricate molecular mechanisms of T cell
functions with high spatiotemporal resolutions. For example, they
enabled the real-time monitoring of the conformational changes of
TCR during its activation (Sasmal et al., 2020), spatiotemporal
enzymatic activities of downstream molecules (Randriamampita
et al., 2008; Paster et al., 2009; Stirnweiss et al., 2013; Cadra et al.,
2015; Philipsen et al., 2017), and the trans-localization of transcription
factors in live cells (Regot et al., 2014). On the other hand, the field of
CAR-T cell therapy has primarily focused on enhancing their
therapeutic effects, but the molecular mechanisms underlying their
activation and regulation remain poorly understood. It is crucial to
unveil these mechanisms for the development of safe and more
effective CAR-T cell therapy, thus fluorescent biosensors will be
valuable tools to investigate the mechanisms of CAR signaling
pathways. In this section, we review the genetically encoded
biosensors for the monitoring of each step of the TCR signaling
pathways. Additionally, we explore the potential applications of these
biosensors for the CAR research field.

5.1 Antigen recognition

As discussed in Section 2, the first step in TCR activation is the
recognition of the antigen peptide by MHCmolecules on APCs. For
the identification of novel epitope from peptide library, Sharma et al.
developed a FRET-based epitope screening system (Figure 2A)
(Sharma et al., 2019). In this system, epitope-encoding minigene

libraries were introduced in APCs which also expressing a FRET-
based granzyme biosensor. The granzyme biosensor is composed of
a FRET pair, CFP (cyan fluorescent protein) and YFP (yellow
fluorescent protein), linked by a specific substrate sequence for
granzyme B. CFP and YFP are proximal displaying strong FRET
in the default state, in contrast, the FRET decreases when active
granzyme B cleaves the substrate in the FRET biosensor. When the
presented epitope is recognized by TCR, the activated T cells release
granzyme B which then cleaves the substrate sequence of the FRET
biosensor resulting in the decrease of FRET signal. These changes in
FRET can be detected by flow cytometry, thus this FRET-based
high-throughput screening of T cell antigen peptides from the
libraries on a scale of 106 enabled the identification of novel
epitope sequences for TCR.

To investigate the interaction between TCR and pMHC at the
T cell membrane in situ, researchers utilized a method based on
single-molecule FRET (smFRET) between an acceptor fluorophore
attached to the TCR (scFv-Cy5) and a donor fluorophore labeled on
the pMHC (pMHC-Cy3) (Figure 2B) (Huppa et al., 2010; Sasmal
et al., 2020). By plotting the histogram of FRET efficiencies for
individual smFRET trajectories and fitting it with a Gaussian
function, they derived the intermolecular distances between TCR
and pMHC: 44 ± 9 Å for a strong agonist (K5), 54 ± 11 Å for a
agonist (MCC), and 66 ± 18 Å for a weak agonist (102S). Thus, the
binding strength between TCR and pMHC can be evaluated by
smFRET measurement. In addition to the TCR-pMHC binding
property (FRET 1), the release of CD3ζ from the plasma membrane
during TCR triggering process can be also measured by in situ FRET
system (FRET 2) (Figure 2B) (Sasmal et al., 2020). The FRET 2 is
further explained in Section 5.2.

CAR directly recognizes target antigen through its scFv
domain (Guedan et al., 2019; Rafiq et al., 2020), and the
binding affinity between the CAR-scFv and target antigen are
measured by in vitro methods such as ELISA and surface plasmon
resonance (SPR). For the screening of CAR-scFv which strongly
binds to target antigens expressed on the surface of cancer cells, a
luciferase-based method called Malibu-Glo assay has been
developed (Natarajan et al., 2020). In this assay, target antigen-
expressing cells are incubated with various scFv-luciferase fusion
proteins, unbound proteins are removed, then the bound scFv-
luciferase can be measured by luminescence. Therefore, Malibu-
Glo assay allows efficient cell-based screening of scFv candidates
for desired binding capacity. This method is still limited to
accurately mimic the cell-to-cell interactions between CAR-T
and cancer cells, thus advanced techniques to evaluate their
binding property will facilitate the development of effective
CAR-T therapy.

5.2 TCR triggering process

After TCR engagement, the TCR triggering process occurs
which is believed to initiate intracellular signaling cascades.
Several working models include serial engagement, kinetic
proofreading, segregation, and conformation changes (Li et al.,
2017; Courtney et al., 2018; Xu et al., 2020). Previous studies
provided in vitro evidence of the TCR triggering process using
X-ray crystallography, nuclear magnetic resonance (NMR), and
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cryogenic electron microscopy (CryoEM) (Mariuzza et al., 2020) or
indirect measurements with synthetic lipids (Aivazian and
Stern, 2000).

To visualize the conformational change of TCR during the
triggering process in live cells, the FRET technique was applied
by labeling of the cell membrane with octadecyl rhodamine B

FIGURE 2
Genetically encoded biosensors for detecting antigen recognition and TCR triggering process. (A) Schematic representation of FRET-based
screening system for the epitope of TCR. In the absence of granzyme B, the FRET biosensor emits a FRET signal between CFP and YFP. When the epitope
is recognized by the TCR, granzyme B released from the T cell enters the APC and cleaves the substrate site of the FRET biosensor. The loss of the FRET
signal, combined with the rescue of the CFP signal, is detected by FACS and enables the isolation of cells undergoing T-cell targeting (Sharma et al.,
2019). (B) Measurement of TCR conformational dynamics by FRET. The conformational dynamics of the TCR-pMHC bond are measured using FRET 1,
and the conformational change of TCR-CD3ζ can be measured using FRET 2. For FRET 1, TCR is labeled with Cy5 via scFv J1, and the C-terminus of the
peptide is labeled with Cy3. For FRET 2, TCR is labeled with Alexa Fluor 568 via scFv J3, and the C-terminus of CD3ζ is tagged with GFP. The pMHC
molecules are anchored to a lipid bilayer or a PEG-Ni2+ glass surface (Sasmal et al., 2020). (C) FRET design to detect conformational changes in CD3ε/ζ
cytoplasmic domains. FRET occurs when CD3ε/ζ chains, tagged with mTFP, associate with the plasma membrane, labeled with the R18 dye (Xu et al.,
2008; Zhang et al., 2011; Li et al., 2017). The rainbow color bar indicates the FRET levels, where warm and cool colors indicate high and low FRET levels,
respectively.
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chloride (R18) dye and tagging of CD3ε/ζ cytoplasmic domains with
mTFP (monomeric teal fluorescent protein) (Figure 2C) (Xu et al.,
2008; Zhang et al., 2011; Li et al., 2017). The researchers successfully
measured the FRET between mTFP and R18, confirming the
association between the CD3 chains and the inner plasma
membrane at the resting state of T cells. They also demonstrated
that this association of CD3 chains to the plasma membrane occurs
through electrostatic interactions between the BRS domains in the
CD3 chains and negatively charged phospholipids at the inner
plasma membrane (Xu et al., 2008; Zhang et al., 2011; Li et al.,
2017). Furthermore, the FRET signal was significantly reduced in the
contact region with CD3-coated beads, suggesting the dissociation
of CD3 chains from the inner plasma membrane upon the TCR
engagement (Zhang et al., 2011).

In addition, in situ FRET system has further allowed the real-
time monitoring of the conformational change of TCR-CD3ζ
(Figure 2B, FRET 2) (Sasmal et al., 2020). In this system, TCRβ
was labeled with scFv-Alexa Fluor 568 and the C-terminus of the
CD3ζ chain was tagged with GFP. Thus, the intramolecular distance
between TCR and pMHC was measured by FRET2 and the one
between TCR and CD3ζ was detected by FRET1 (Figure 2B). The
data demonstrated that the tighter TCR–pMHC bond induced by a
strong agonist can lead to the significant dissociation of CD3ζ from
the inner plasma membrane. Consequently, this leads to the
exposure and phosphorylation of the ITAM regions in the CD3ζ
domain, and ultimately initiates the TCR signaling pathways.

5.3 TCR clustering and immunological
synapse formation

It is suggested that the engaged TCR-pMHC complex tends to
form clusters. To study the TCR clustering, we can utilize
homologous FRET (homo-FRET), a phenomenon occurring
between proteins with identical fluorophores (Bader et al., 2009;
Bader et al., 2011), because the protein clustering can be measured
by the changes in fluorescence anisotropy due to homo-FRET
(Weidtkamp-Peters et al., 2022). Using this technique, Rocheleau
et al. quantified the clustering levels of MHC-I on the endoplasmic
reticulum and the cell surface (Rocheleau et al., 2003). In another
investigation, researchers developed a sensor named CD3ζ-CliF
(clustering reported by intermolecular FRET), capable of
assessing the TCR clustering through intermolecular FRET
between neighboring FRET pairs (Ma et al., 2017). Using CD3ζ-
CliF, they tracked that TCR triggering can increase the number of
the TCR-CD3ζ clusters, and observed the movement of the clusters
within immunological synapses.

Emerging evidence suggests that the size and density of TCR
clusters are strongly correlated with the initiation of TCR signaling
(Yokosuka et al., 2005; Pageon et al., 2016; Goyette et al., 2019),
underscoring the importance of visualization of TCR clusters in the
study of TCR signaling. However, accurate detection or quantification
of the size/density of TCR clusters has been challenging due to the
limitation in resolution of conventional microscope. Recent advances
in super-resolution imaging techniques, such as such as stimulated
emission depletion (STED) microscopy and light-sheet microscopy
(LSM), allows the more profound understanding in the T cell biology
by visualizing TCR at the single-molecule level (Luo et al., 2020;

Rochussen et al., 2023). For example, these techniques have revealed
that the previously observed TCR nanoclusters in resting T cells
(Lillemeier et al., 2010; Pageon et al., 2016) may be artifacts arising
from the image reconstruction process or the coating material used to
adhere cells onto a glass surface (Ponjavic et al., 2018; Rossboth
et al., 2018).

In addition to TCR clustering, the subsequent spatial
rearrangement of other receptors, adhesion molecules and signaling
molecules at the plasma membrane triggers the formation of
immunological synapse (Dustin, 2014), a crucial platform for TCR
signaling pathways. Immaging the immunological synapse between
cells has been challenging due to the requirement of for en face
reconstruction at the contact site in the xy plane with limited spatial
resolution. To address this, artificial substrates such as antibody-coated
slides and supported lipid bilayers (SLB) are commonly used, however
these methods may not fully replicate the natural immunological
synapse between cells. To overcome these limitations, a combination
of optical tweezers and confocal microscopy has been employed to
visualize immunological synapse in living cell conjugates with high
speed and resolution (Oddos et al., 2008). This method achieves an en
face view of the synapse by optically trapping conjugated cells and
manipulating the orientation of the cell conjugates in the imaging plane
of a laser scanning confocal microscope.

5.4 The phosphorylation of ITAM motifs
by Lck

5.4.1 Lck activation
The ITAM regions in the CD3ζ are phosphorylated by active Lck

kinase (Rossy et al., 2012). Lck, a member of Src family kinases, is
composed of an N-terminal SH4 domain for myristoylation and
palmitoylation, unique domain (UD), SH3 and SH2 domains, a
proline-rich region, a catalytic kinase domain, and a C-terminal tail.
Lck can anchor to the plasma membrane through the SH4 domain,
facilitating its diffusion within the inner leaflet of the plasma
membrane (Yurchak and Sefton, 1995). The enzymatic activity of
Lck is tightly regulated by the phosphorylation and
dephosphorylation of two key tyrosines, Tyr394 in the kinase
domain and Tyr505 in the C-terminal tail (Yamaguchi and
Hendrickson, 1996). Lck exists as a closed conformation in the
inactive state by stable interaction between pTyr505 and the
SH2 domain (Xu et al., 1999; Boggon and Eck, 2004). During
TCR activation, this pTyr505 can be dephosphorylated by
CD45 and thus released from the SH2 domain, allowing the
primed open conformation of Lck (Saunders and Johnson, 2010).
Subsequently, the exposed Tyr394 in the activation loop of the
kinase domain can be autophosphorylated, resulting in the full
activation of Lck (Hui and Vale, 2014).

Based on these conformational changes in the Lck, genetically
encoded fluorescent biosensors have been developed for the
monitoring of real-time Lck activity during T cell signaling
pathways (Paster et al., 2009; Stirnweiss et al., 2013; Philipsen
et al., 2017). For example, CLck-Y1 and CLck-Y2 include an
acceptor EYFP in the C-terminus and a donor ECFP either in
the N-terminal or C-terminal SH3 domain, respectively (Figure 3A)
(Paster et al., 2009). In the closed conformation of Lck, strong FRET
signals are observed between two FPs, which markedly decreases
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FIGURE 3
Genetically encoded biosensors for detecting T cell signaling. (A) Two types of FRET-based kinase sensors. The first type, conformational biosensors,
monitors conformational changes within a kinase upon activation (left) (Paster et al., 2009). An example is cLck-2, a probe for Lck, which includes CFP inserted
between theSH3andSH2domains andYFP locatedbehind the kinasedomainof Lck. This designenables thedetectionof conformational alterations in Lck.When
Lck is in a closed/inactive state, the probe displays a high FRET signal; conversely, in the open/active conformation, it exhibits a low FRET signal. The second
type, substrate biosensor, employs a kinase-inducible molecular switch (right) (Wan et al., 2019). This mechanism links endogenous kinase activity to the FRET
efficiency of the biosensor. When the substrate within the sensor is phosphorylated by the target kinase, the SH2 domain binds to it, initiating a rearrangement of
the sensor and consequentlymodifying the FRET signal. The rainbow color bar indicates the FRET levels, wherewarm and cool colors indicate high and low FRET
levels, respectively. (B) Schematic design of the ZIP reporter. The ZIP reporter consists of eGFP, mCherry, and ZAP70-SH2 domains. When the ITAM domain is
phosphorylated by T cell activation, ZAP70-SH2binds to the tyrosine-phosphorylated ITAM, inducing FRETbetween eGFP andmCherry, resulting in a decrease in
eGFP fluorescence lifetime (Yudushkin and Vale, 2010). The rainbow color bar indicates the FRET levels, where warm and cool colors indicate high and low FRET
levels, respectively. (C) Schematic representation of the 3-FRET system for studying the dynamics of SLP-76, Nck, and Vav1multimolecular complex formation. In
this system, SLP-76,Nck, andVav1 are individually taggedwithmCherry,mCFP, andmYFP, respectively. Thedynamicsof theirmolecular interactions andcomplex

(Continued )
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when Lck adopts the active open conformation. Stirnweiss et al.
further performed fluorescence lifetime imaging microscopy (FLIM)
experiments using CLck-Y1 biosensor (Stirnweiss et al., 2013),
demonstrating that active Lck kinase is already present at rest
while the active population of Lck locally increases upon the
TCR engagement with pMHC.

Another Lck biosensor, named ZapLck biosensor, consists of an
ECFP as the donor, an Src SH2 domain, a tyrosine substrate for Lck
kinase (ZAP70 FY), and a YPet as the acceptor (Figure 3A) (Wan
et al., 2019). In the basal state, the ZapLck biosensor is expected to
exhibit a strong FRET signal between the donor and acceptor. Upon
the activation of endogenous Lck kinase, the substrate in the ZapLck
biosensor can be phosphorylated by Lck. Then the phosphorylated
substrates bind to the intramolecular SH2 domain, separating ECFP
and YPet thus decreasing FRET signals. The ZapLck biosensor was
used to confirm that a significant population of preactivated Lck
exists in Jurkat T cells.

5.4.2 The phosphorylation of ITAM
Active Lck in the contact region of the TCR engagement

phosphorylates the tyrosine residues in the ITAMs of CD3ζ
chain (Love and Hayes, 2010). As ZAP70 kinase is recruited to
the phosphorylated ITAMs, this molecular interaction can be
measured by FRET between CD3ζ and ZAP70 labeled with
donor and acceptor FPs (Hashimoto-Tane et al., 2010). In
addition, Yudushkin et al. developed FRET-based Zeta chain
ITAM Phosphorylation (ZIP) reporters (Figure 3B) (Yudushkin
and Vale, 2010). ZIP reporters consist of CD3ζ-GFP and ZAP70-
SH2 domain tagged with mCherry, either in an intramolecular or
intermolecular manner. Upon the TCR activation, the mCherry-
tagged ZAP70-SH2 specifically binds to the phosphorylated CD3ζ-
GFP, resulting in an increased FRET signal. They further observed
with the ZIP reporters the accumulation of phosphorylated CD3ζ in
the compartments of endosomal recycling networks (Yudushkin
and Vale, 2010), suggesting the sustained TCR signaling at the
internalized endosomes (Willinger et al., 2015; Onnis and Baldari,
2019). Using ZIP reporters, another group demonstrated that the
internalized TCRs within IRAP (insulin responsive
aminopeptidase)-positive endosomes continue to propagate TCR
signaling for efficient T-cell responses (Evnouchidou et al., 2020).

5.5 Activation of ZAP70

After recruited to the phosphorylated ITAMs, ZAP70 kinase is
phosphorylated by Lck to be fully activated (Neumeister et al., 1995;

Gangopadhyay et al., 2020), then phosphorylates downstream
signaling proteins such as LAT and SLP-76 (Yan et al., 2013). To
detect the ZAP70 kinase activity in live cells, Randriamampita et al.
developed a FRET biosensor called ROZA (Reporter Of
ZAP70 Activity) (Randriamampita et al., 2008). The ROZA
reporter contains an N-terminal palmitoylation sequence from
Lck, a substrate sequence from LAT, a SH2 domain of Grb2 that
can bind to the phosphorylated LAT, and a FRET pair CFP and YFP.
Activated ZAP70 kinases phosphorylate the ROZA substrate
sequence, which binds to the Grb2-SH2 domain in the biosensor,
resulting in a strong FRET between CFP and YFP. The ROZA
biosensor revealed that ZAP70 is not only activated at the TCR-APC
interface (synapse) but also at the opposite side (anti-synapse),
providing important information about spatiotemporal dynamics
of ZAP70 activity during TCR signaling pathways. This biosensor
was further improved by optimizing the substrate sequence or
replacing a FP for FRET (Cadra et al., 2015).

5.6 Assembly of LAT signalosome and
distal signaling

5.6.1 Assembly of LAT signalosome
ZAP70 phosphorylates LAT which recruits various signaling

molecules such as Grb2/Sos and PLCγ1. As discussed above, the
FRET-based ZAP biosensor ROZA can monitor the recruitment of
Grb2 to the phosphorylated LAT, as well as the activity of
ZAP kinase.

ZAP70 also phosphorylates the tyrosine residues of SLP-76. It
has been suggested that the phosphorylated SLP-76 recruits Nck and
Vav, resulting in a complex of these three molecules (Bubeck
Wardenburg et al., 1998; Koretzky et al., 2006). This trimolecular
complex is crucial for the cytoskeletal rearrangement during
migration, polarity, and proliferation of T cells (Barda-Saad et al.,
2010). To investigate the dynamics of this trimolecular complex,
Pauker et al. developed a triple-color FRET system in which SLP-76,
Nck, and Vav1 were each tagged with mCherry, mCFP, and mYFP,
respectively (Figure 3C) (Pauker et al., 2012). Using this 3-FRET
system, the dynamics of complex formation and their molecular
interactions were assessed by FRET between CFP-YFP, CFP-
mCherry, or mYFP-mCherry. Interestingly, the results revealed
the formation of Nck-Vav1 dimers without SLP-76
phosphorylation in unstimulated T cells. In addition, in the
presence of phosphorylated SLP-76, they observed that Nck
binds to SLP-76 and subsequently to Vav1, resulting in the
formation of a trimolecular complex.

FIGURE 3 (Continued)

formation are measured by detecting FRET signals between CFP-YFP, CFP-mCherry, and mYFP-mCherry (Pauker et al., 2012). (D) Genetically
encoded calcium indicators (GECIs). The FERT-based Ca2+ sensor is developed by inserting CaM-M13 between donor and acceptor fluorophores such as
CFP-YFP or BFP-GFP (Miyawaki et al., 1997). The cpFP based sensor is intensiometric. In this design, a cpFP is inserted between CaM and M13 (Akerboom
et al., 2009). The ratio-based sensor closely resembles cpFP-based sensors but includes an additional reference FP, thus measures the Ca2+ levels
through ratiometric analysis (Dong et al., 2017). (E) Representations of ERK kinase activity reporters. In FRET-based ERK kinase sensor, the substrate
peptide domain (PRTP) is phosphorylated by ERK, leading to WW domain binding and subsequent conformational change of the sensor. This in turn
exhibits a high FRET ratio (left, modified EKAR sensor is shown) (Komatsu et al., 2011). ERK kinase activity can also be quantified by translocation of
fluorescence proteins. When ERK is inactive state, the ERK-KTR biosensor is mainly localized in the nucleus. The activated ERK phosphorylates the ERK-
KTR biosensor, promoting the translocation of the biosensor outside the nucleus (Right) (Regot et al., 2014). The rainbow color bar indicates the FRET
levels, where warm and cool colors indicate high and low FRET levels, respectively.
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5.6.2 Distal signaling: Ca2+

The LAT signalosome initiates and amplifies the TCR
downstream pathways (Horejsi et al., 2004; Courtney et al., 2018).
For example, PLCγ1 is recruited to the phosphorylated LAT and
initiates the Ca2+-related signaling pathways. In addition, SLP-76
binds to and activates Itk, a Tec-family kinase, which then
phosphorylates PLCγ1. Upon activation, PLCγ1 generates IP3 and
DAG, and IP3 stimulates the release of Ca2+ from ER into the
cytoplasm. The increased level of intracellular Ca2+ leads to the
activation of various downstream signaling pathways, such as
calcineurin and a transcription factor NFAT.

Genetically encoded Ca2+ indicators (GECIs) have been developed
for the monitoring of Ca2+ dynamics (Perez Koldenkova and Nagai,
2013; Walia et al., 2018). Cameleon is the first GECI, which is
composed of a Ca2+ binding protein calmodulin (CaM), a CaM-
binding peptide from myosin light-chain kinase (M13), and a FRET
pair FPs (Figure 3D) (Miyawaki et al., 1997). The Ca2+-bound CaM of
the Cameleon interacts with the nearby M13, resulting in increased
FRET signals, thus the real-time Ca2+ dynamics can be monitored in
live cells.

In addition, circular permuted FP (cpFP)-based GECIs include
GCaMP series, GECOs, and Camgaroo (Baird et al., 1999; Nakai
et al., 2001; Zhao et al., 2011) (Figure 3D). GFP can be circularly
permuted as its N- and C-termini are located on the same side. In
GCaMP, new N- and C-termini near chromophore are linked to
M13 and CaM, thus the interaction between Ca2+-bound CaM and
M13 can induce the increase of fluorescence (Akerboom et al., 2009).
cpFP-based biosensors use single spectrum and their molecular sizes
are smaller than the ones based on FRET, and they display high
signal-to-noise ratios (Perez Koldenkova andNagai, 2013). Different
expression levels of cpFP-based GECIs can be normalized by adding
a reference FP. For example, Salsa6f is GCaMP6f fused with
TdTomato (Figure 3D) (Dong et al., 2017). By measuring the
ratios of GCaMP6f/TdTomato (G/R), the Ca2+ levels can be
calculated independent of different expression levels.

5.6.3 Distal signaling: ERK
The TCR signaling pathways activate transcription factors such

as NFAT, NF-κB, and AP-1. For example, AP-1 is activated through
RasGRP-Ras-ERK pathway (Shah et al., 2021). As discussed above,
PLCγ1 is recruited to the LAT signalosome during TCR signaling
pathways, producing DAG which further activates RasGRP and Ras
(Ebinu et al., 1998; Jun et al., 2013). Activated Ras initiates the
mitogen-activated protein kinase (MAPK) signaling cascades,
thereby activating the serine-threonine kinases ERK (Kolch,
2005), and ERK kinase activity contributes to activation of a
transcription factor AP-1 (Kida et al., 2005; Navarro and
Cantrell, 2014).

For detecting ERK activity, Harvey et al. developed a FRET
biosensor termed EKAR (Extracellular signal-regulated Kinase
Activity Reporter) (Harvey et al., 2008). The EKAR reporter is
composed of a FRET pair, EGFP and mRFP1, along with a
substrate peptide derived from Cdc25C (Proline-Arginine-
Threonine-Proline, PRTP) and the proline-directed WW domain
(Figure 3E). To enhance the specificity, an ERK-specific docking site
(Phenylalanine-Glutamine-Phenylalanine-Proline, FQFP) was
introduced adjacent to the substrate sequence. Activation of ERK
prompts the phosphorylation of the substrate sequence in the

biosensor, followed by subsequent intramolecular binding
between the phosphorylated substrate and the WW domain. This
leads to the conformational change of the biosensor, resulting in the
FRET signal. The biosensor was further improved by substituting
the FRET pair EGFP/mRFP1 with ECFP/YPet or Turquoise-GL/
YPet, as well as by optimizing the linker sequences with a longer and
more flexible version such as EV linker (Komatsu et al., 2011).

In addition to the FRET-based ERK biosensors, a single-color
reporter called ERK-KTR (kinase translocation reports) was
innovatively designed by Regot et al. (Figure 3E) (Regot et al.,
2014). They found that a suboptimal bipartite nuclear localization
signal (bNLS) is negatively regulated by phosphorylation, while the
phosphorylation on the nuclear export signal (NES) sequence
augments its nucleus export activity. Thus, the ERK-KTR
integrates a negatively phospho-regulated NLS with a positively
phospho-regulated NES, along with an ERK-specific docking site, a
substrate of ERK, and a FP for the visualization. In the default state,
the ERK-KTR predominantly localizes within the nuclear
compartment, while the phosphorylated ERK-KTR upon ERK
activation can translocate to the cytosol. Thus, the activity of ERK
can be quantified by measuring the ratio of cytoplasmic to nuclear
fluorescent intensity. These sensors are successfully applied to
measure ERK activity in T cells (Dong et al., 2021).

6 Optogenetic strategies for the fine
control of the TCR and CAR signaling
with spatiotemporal resolutions

Genetically encoded biosensors enabled the real-time monitoring
of dynamic signaling events in live cells with spatiotemporal
resolutions, advancing our understanding on the mechanisms of
the TCR functions. In addition, natural photosensitive proteins,
such as channelrhodopsin 2, light-oxygen-voltage-sensing (LOV)
and cryptochrome 2 (CRY2), have been applied for the fine
control of molecular events with spatiotemporal manners (Seong
and Lin, 2021). Thus, optogenetics with these photosensitive proteins
further offers deeper insights into the complex process of TCR and
CAR activation and functions. In this section, we introduce
optogenetic strategies which have been employed for the study of
TCR and CAR functions.

6.1 Light-induced multimerization for TCR
activation

After the recognition of the antigen peptide-MHC complex, it
has been suggested that the TCR clustering at the immunological
synapses is crucial for initiating TCR downstream signaling cascades
(Cochran et al., 2000; Minguet et al., 2007; Pageon et al., 2016; Taylor
et al., 2017). To test this hypothesis, Ma et al. used the light-induced
clustering property of a photosensitive protein CRY2 (Ma et al.,
2020). In this system, the photosensitive photolyase homology
region (PHR) domain of CRY2 was linked to the CD3ζ-chain of
the TCR, and they were localized at the plasma membrane via the
N-terminal myristoylation sequence (Figure 4A). Upon the
illumination of blue light, they observed that the clustering of
CD3ζ-chains due to the homo-oligomerization of CRY2-PHR
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domains, and the CD3ζ clustering induced the TCR downstream
cascades such as phosphorylation of ZAP70, PLCγ, ERK, and Ca2+

influx. Thus, optogenetic approach demonstrated that the TCR
clustering itself is sufficient to initiate TCR signaling.

In addition, a sophisticated optogenetic system was designed to
determine if the ZAP recruitment to LAT is sufficient for the
initiation of the TCR signaling pathways or if their additional
clustering is further required for the T cell activation (Figure 4B)
(Dine et al., 2021). Dine et al. used the improved light-induced
dimer (iLID)-SspB system to induce the recruitment of ZAP70 to
LAT by light. Because LAT-iLID and SspB-ZAP70 can be
dimerized by blue light, the authors can finely control the
formation of ZAP70-LAT complexes. In addition, they
integrated this iLID-SspB system with the CRY2-based
optoDroplet system by fusing the CRY2 to the C-terminus of
LAT. Therefore, the clustering of ZAP70-LAT complexes can be

further induced via CRY2 oligomerization. Importantly, the light-
insensitive mutant optoDroplet (D387A) could not induce the
clustering of ZAP70-LAT complexes. The results revealed that the
formation of ZAP70-LAT complexes is not sufficient, but their
further clustering is required for the TCR signaling. Moreover,
they uncovered that the light-induced clustering of LAT alone
sufficed to trigger a calcium response in T cells, highlighting the
importance of molecular clustering in the initiation of TCR
signaling pathways.

6.2 Light-induced Ca2+ modulation for TCR
or CAR activation

We previously discussed the importance of Ca2+ dynamics in the
TCR signaling pathways. Ca2+ dynamics is regulated by various ion

FIGURE 4
Optogenetic control of T cell activation by protein clustering and Ca2+ influx. (A) Light-induced clustering of ζ-chain (LIC-Z) consists of a membrane
anchor (Lck 1-10 amino acids), the cytosolic domain of CD3ζ, and the light-sensitive CRY2-PHR domain. When exposed to blue light, the LIC-Z clusters
and CD3ζ triggering is detected through the translocation of ZAP70-SH2-mCherry to the plasma membrane. This occurs because ZAP70-SH2
specifically binds to phosphorylated ITAMs on LIC-Z. The light-induced clustering was sufficient to initiate various downstream signaling processes
(Ma et al., 2020). (B) Light-induced dimerization and clustering of ZAP70 and LAT. The light-induced ZAP70-LAT dimerization is prompted by the
interaction of LAT-iLID-SsrA and SspB-ZAP70. The light-insensitiveOptoDroplet cannot induce their clustering, and no downstream signaling is activated
(left). In contrast, OptoDroplet can induce the clustering of LAT-ZAP70, initiating the downstream signaling pathways (right) (Dine et al., 2021). (C, D)
Optogenetic control of T cell activation through Ca2+ signaling with (C)Opto-CRAC (He et al., 2015) or (D)melanopsin (Zhao et al., 2019). (C) In the dark,
STIM1-CT remains unexposed by LOV2 domain. Upon blue light illumination, conformation of the C-terminal Jα helix in LOV2 changes to expose the
STIM1-CT fragments. This allows them to engage with ORAI1 Ca2+ channels, initiating Ca2+ influx through the plasma membrane. (D) In the absence of
light, melanopsin remains inactive. When exposed to blue-light, melanopsin undergoes conformational changes, initiating a cascade of events including
activation of Gαq, phospholipase C (PLC), and phosphokinase C (PKC). This sequential activation leads to the influx of Ca2+ through transient receptor
potential channels (TRPCs). Ultimately, Ca2+ influx activates the phosphatase calcineurin, dephosphorylating NFAT and initiating nuclear translocation
of NFAT.
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channels, including Ca2+ release-activated Ca2+ (CRAC) channels
(Shaw and Feske, 2012; Vaeth et al., 2017; Vaeth et al., 2020). It has
been suggested that a CRAC channel ORAI1 is activated upon the
depletion of Ca2+ within the ER. The loss of Ca2+ in the ER is detected
by stomal interaction molecule 1 (STIM1), which induces the
unfolding of its cytoplasmic domain allowing the subsequent
interaction with ORAI1. Thus, the STIM1-bound ORAI1 opens
the pore of the channel enabling the influx of Ca2+ (Lunz et al., 2019).

Optogenetic tools have been designed to finely control Ca2+

dynamics and investigate its role in the TCR signaling pathways. For
example, He et al. developed Opto-CRAC system to control the
ORAI1-STIM interaction, by a photosensitive LOV2 domain fused
to the cytoplasmic domain of STIM1 (STIM1-CT) (Figure 4C) (He
et al., 2015). In the dark state, the Jα-helix strongly binds to the PAS
core in the LOV2, preventing the binding of STIM1 to ORAI1. Upon
the blue light, the Jα-helix unfolds and the liberated STIM1 can bind
to ORAI1 channels. Thus, Opto-CRAC can control the Ca2+ influx
by light, which can further induce the Ca2+-dependent and NFAT-
mediated gene expression in T cells.

Human melanopsin (hOPN4), a member of opsins, is known to
mediate the light-inducible intracellular Ca2+ mobilization via the
PLC/PKC signaling cascade (Peirson and Foster, 2006). In addition,
hOPN4 may activate transient receptor potential channels (TRPCs),
thereby enhancing Ca2+ influx (Peirson and Foster, 2006; Hankins
et al., 2008). Zhao et al. demonstrated that optogenetic control of
T cell responses can be achieved by the introduction of hOPN4 and
the NFAT-mediated cytokine constructs (Figure 4D) (Zhao et al.,
2019). In this system, light stimulation can induce the expression of
desired cytokines through Ca2+ signaling, thus resulting in the
enhanced effector T-cell functions for the eradication of solid
tumors in a mouse model. Therefore, these optogenetic strategies
were successful in delivering Ca2+ signals with high spatiotemporal
resolutions, inducing the key physiological responses dependent on
Ca2+/NFAT signaling.

6.3 Optogenetic control of expression or
activation of CAR

CAR-T cells is designed to specifically target the T cells to the
antigen on cancer cells, however they can also bind to normal cells
expressing the low levels of target antigens leading to “on-target, off-
tumor” cytotoxicity (Sun et al., 2018; Flugel et al., 2023). In addition,
side effects such as cytokine release syndrome and neurotoxicity
may occur due to the hyperactivation of CAR-T cells (Freyer and
Porter, 2020; Siegler and Kenderian, 2020). Therefore, it would be
beneficial if the function of CAR-T cells can be precisely controlled
both spatially and temporally.

For example, an optogenetic strategy to control the gene
expression of CAR construct was successfully designed. Huang
et al. developed the system called light-inducible nuclear
translocation and dimerization (LINTAD) by integrating the
LOV2-based light-inducible nuclear localization signal
(biLINuS) and the CRY2-CIB1 (cryptochrome-interacting
basic-helix-loop-helix) dimerization system (Figure 5A)
(Huang et al., 2020). In the dark state, the LexA-CIB1-
biLINuS (LCB) complex is localized in the cytoplasm because
its nuclear localization signal (NLS) is masked by LOV2, while

the CRY2-VPR (CV) resides in the nucleus. Illumination with
blue light triggers a conformational change in the LCB complex
to expose the NLS motif, resulting in its nuclear translocation and
the subsequent interaction between LexA and Lex binding
sequence. Blue light can also induce the dimerization between
CRY2 and CIB1, allowing the recruitment of VPR (a
transcriptional activator of VP64-p65-RTA) to the
transcription site of CAR. Therefore, the LINTAD system
demonstrated that the CAR expression can be controlled by
light with spatiotemporal resolutions.

In addition, an optogenetic strategy was developed to directly
control the CAR functions by light. O’Donoghue et al. designed a
split CAR system in which the Ag-recognition part of CAR was
fused with iLID, while the other part containing signaling
components was fused with iLID binding partner, SspB
(O’Donoghue et al., 2021). This split CAR system can be
functional when these parts are combined upon the
illumination. Similarly, optoCAR was constructed from the split
CAR system by substituting LOV2 in the iLID with circularly
permuted LOV2 (cpLOV2) and incorporating a co-stimulatory
domain 4-1BB into both segments of the split CAR (Figure 5B) (He
et al., 2021). Another split design, light-switchable CAR (LiCAR),
was created based on the LOV2-based iLID dimerization system.
In this design, 4-1BB and CD3ζ are combined to be functional
upon light stimulation (Nguyen et al., 2021). While these
optogenetic strategies enabled precise spatiotemporal control of
CAR-T functions in vitro, the limited ability of blue light to
penetrate deep tissues may restrict their applications in vivo. To
address this challenge, upconversion nanoparticles (UCNPs) were
integrated into the LiCAR system to convert near-infrared (NIR)
excitation into visible light emission (He et al., 2021; Nguyen et al.,
2021). Nevertheless, these strategies have provided valuable
insights into the design of light-inducible CARs to overcome
the issues of on-target, off-tumor toxicity and have also
demonstrated the potential for the application of other
optogenetic tools.

7 Conclusion

Over the last few decades, a variety of genetically encoded
biosensors and optogenetic tools have been developed to
investigate complex molecular dynamics in T cell signaling
pathways. In this review, we briefly overviewed the TCR/CAR
signaling pathways (Section 2 and Section 3) and conventional
methods to study these signaling pathways (Section 4). We then
introduced general principles and examples of fluorescent
biosensors (Section 5) and optogenetic tools (Section 6) in the
research field of TCR/CAR signaling pathways.

Many biosensors designed for studying the TCR signaling
pathway rely on FRET, utilizing two distinct FPs. However, this
approach occupies a significant portion of the spectral space,
limiting its application for multiplexed imaging. To overcome
this, alternative single-color strategies, such as cpFP, dimerization
dependent-dependent fluorescent protein (ddFP) (Alford et al.,
2012) and homo-FRET can be employed for simultaneous
visualization of multiple signaling activities within individual
cells. Multiple fluorescent reporters has enabled multiplexed
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imaging involving up to six parameters within the same living cell
(Mehta et al., 2018). Therefore, the development of single-
fluorophore-based biosensors capable of simultaneous monitoring
multiple signaling events will enhance our understanding of the
relationships between diverse TCR/CAR signaling pathways with
spatiotemporal resolutions.

While fluorescent biosensors offer valuable insights into local
molecular dynamics, conventional light microscopy faces
limitations in precision due to the diffraction limit (200–250 nm).
Super-resolution imaging methods have significantly improved
spatial resolution (10–100 nm) (Galbraith and Galbraith, 2011),
providing valuable biological insights into TCR signaling
pathways (Ritter et al., 2015; Barr et al., 2017; Wen et al., 2020).
These imaging techniques, when combined with genetically encoded
biosensors, can not only capture precise spatial information but also
provide detail molecular dynamics such as protein-protein
interactions or post-translational modifications in living cells. For
example, Fluorescence Fluctuation Increase by Contact (FLINC)-
based biosensors utilize fluctuations in fluorescence as a readout,
enabling nanometer-sensitive measurement of the molecular
activity through super-resolution microscopy (Mo et al., 2017;
Lin et al., 2021).

In the field of CAR-T engineering, correct understanding of
complex CAR signaling pathways and the optimal selection of the
CAR domains is important to enhance the efficacy of CAR-T
therapy. The fluorescent biosensors discussed in this review,
originally designed for studying TCR signaling, can be further
extended to investigate CAR signaling pathways. For instance,
current CAR engineering methods have typically relied on
in vitro assays or the expression of reporter genes or proteins
such as IL-2, NFAT, or CD69. However, genetically encoded
biosensors capable of measuring CAR activation and signaling
upon antigen binding would enable the imaging-based selection

of the most effective CAR construct in live cells. This offers a distinct
advantage over traditional methods as it allows the simultaneous
acquisition of sensitive information such as localization and
activation kinetics.

Optogenetics provides a significant advantage by allowing
precise control of specific protein activity, independent of
other signaling pathways, with high spatiotemporal
resoluations. Thus, optogenetic tools would be useful to
examine the signaling pathways of TCR and CAR. In addition
to their application in studying signaling pathways, optogenetic
tools are widely used to mitigate side effects and enhance the
effectiveness of CAR-T cell therapy. Light-responsive CAR-T
cells, activated with blue light, allowed precise spatiotemporal
functions of CAR at tumor sites (Huang et al., 2020; He et al.,
2021; Nguyen et al., 2021; O’Donoghue et al., 2021). However, the
delivery of blue light remains challenging, due to its inability to
penetrate deep tissues. Therefore, it is also important to develop
safe and efficient methods for light stimulation, such as UCNP, in
order to achieve therapeutic effects. On the other hand,
alternative strategies are emerging for in vivo applications in
the immune system (Miller et al., 2021; Wu et al., 2021).
Among these, focused ultrasound has significant potential for
clinical applications, as it can penetrate any depth inside the
human body using ultrasound devices. A recent study
demonstrated the selective activation of CAR-T cells through
focused ultrasound within specific tumor sites, resulting in a
substantial decrease in on-target, off-tumor toxicity compared
to conventional CAR-T cells (Wu et al., 2021).

In summary, genetically encoded biosensors and optogenetic
tools are powerful tools that promise to deepen our understanding
of signaling mechanisms in T cell and CAR-T cells. We anticipate
that these tools will facilitate more sophisticated and
comprehensive research, encompassing receptor triggering

FIGURE 5
Optogenetic control of CAR expression and activation. (A) Light-induced gene transcription and CAR gene expression system. When exposed to
blue light, the Jα helix in the LOV2 domain unfolds, revealing the nuclear localization signal (NLS) peptide. This prompts the nuclear translocation of LexA-
CIB1. LexA then binds to the LexA-binding sequence on the reporter gene. Blue light also induces the binding of Cryptochrome 2 (CRY2) to CIB1, directing
VPR (a transcriptional activator of VP64-p65-RTA) to the minimal promoter of the reporter gene, thus initiating the expression of CAR (Huang et al.,
2020). (B) Light-induced assembly of optoCAR. The signaling domains 4-1BB and CD3ζ of CAR are expressed as two separate constructs fused to a pair of
optical dimerizers (ssrA-cpLOV2 or sspB). Upon exposure to blue light, the optical dimerizer brings the two fragments into close proximity, facilitating
their assembly into a functional CAR. This restoration of function enables the T cell to effectively target and eliminate tumor cells (He et al., 2021).
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models and downstream signaling cascades of both T cells and
CAR-T cells.
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Glossary

AP-1 activator protein 1

APC antigen-presenting cell

bNLS bipartite nuclear localization signal

BRS basic residue-rich sequence

CaM Ca2+ binding protein calmodulin

CAR chimeric antigen receptor

CD cluster of differentiation

CFP cyan fluorescent protein

CIB1 cryptochrome-interacting basic-helix-loop-helix

cpFP circular permuted fluorescent protein

cSMAC central supramolecular activation cluster

CRAC channel Ca2+ release-activated Ca2+ channel

CRY2 cryptochrome 2

CryoEM cryogenic electron microscopy

DAG diacylglycerol

ddFP dimerization dependent-dependent fluorescent protein

dSMAC distal supramolecular activation cluster

ER endoplasmic reticulum

ERK extracellular signal-regulated kinase

FLIM fluorescence lifetime imaging microscopy

FLINC fluorescence fluctuation increase by contact

FP fluorescent protein

FRET fluorescence resonance energy transfer

GEF guanine-nucleotide-exchange factor

Grb2 growth factor receptor-bound protein 2

hOPN4 human melanopsin

IP3 inositol 1,4,5-triphosphate

IP3R inositol 1,4,5-triphosphate receptor

IRAP insulin responsive aminopeptidase

ITAM immunoreceptor tyrosine-based activation motif

Itk IL2 Inducible T Cell Kinase

KD dissociation constant

LAT linker for the activation of T cells

Lck lymphocyte-specific protein tyrosine kinase

LOV light-oxygen-voltage-sensing

M13 myosin light-chain kinase

MAPK mitogen-activated protein kinase

MHC major histocompatibility complex

mTFP monomeric teal fluorescent protein

Nck non-catalytic region of tyrosine kinase

NES nuclear export signal

NF-kB nuclear factor kappa-light-chain-enhancer of activated B cells

NFAT nuclear factor of activated T cells

NK cell natural killer cell

NMR nuclear magnetic resonance

PHR photosensitive photolyase homology region

PIP2 phosphatidylinositol 4,5 biphosphate

PKC protein kinase C

PLCγ1 phospholipase C gamma1

pMHC peptide-MHC

pSMAC peripheral supramolecular activation cluster

R18 octadecyl rhodamine B chloride

RasGRP1 Ras Guanyl Releasing Protein 1

RK receptor kinase

scFv single-chain variable fragment

SH Src Homology

SHP1 Src homology region 2 domain-containing phosphatase-1

SLP76 cytoplasmic SH2 domain–containing leukocyte protein of 76 kDa

SMAC supramolecular activation cluster

smFRET single-molecule FRET

Sos son of sevenless

SPR surface plasmon resonance

STIM1 stromal interaction molecule 1

TCR T cell receptor

THEMIS thymocyte selection associated

TRPC transient receptor potential channels

UCNP upconversion nanoparticle

UD unique domain

YFP yellow fluorescent protein

ZAP70 zeta-chain-associated protein kinase 70
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