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Traumatic brain injury (TBI) is described as a structural damage or physiological
disturbance of brain function that occurs after trauma and causes disability or
death in people of all ages. New treatment targets for TBI are being explored
because current medicines are frequently ineffectual and poorly tolerated. There
is increasing evidence that following TBI, there are widespread changes in
autophagy-related proteins in both experimental and clinical settings. The
current study investigated if Boswellia Sacra Gum Resin (BSR) treatment
(500 mg/kg) could modulate post-TBI neuronal autophagy and protein
expression, as well as whether BSR could markedly improve functional
recovery in a mouse model of TBI. Taken together our results shows for the
first time that BSR limits histological alteration, lipid peroxidation, antioxidant,
cytokines release and autophagic flux alteration induced by TBI.
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1 Introduction

With more than 1.7 million new cases each year and 60% of all trauma-related deaths in
the U.S., TBI is a significant public health issue. TBI causes secondary brain injury, which sets
off a chain reaction of pathophysiological events that cause neuronal cell death, brain edema,
and neurological impairments. These events include oxidative stress, autophagy,
inflammation, and apoptosis. However, there are currently no viable treatments for TBI
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patients undergoing clinical intervention. Understanding the
pathophysiological mechanisms following TBI and locating new
therapeutic methods are thus crucial and urgent (Zeng et al., 2020).
The latter indicates delayed and perhaps reversible molecular and
cellular pathophysiological pathways that start shortly after the first
injury and may last for months or years (Bramlett and Dietrich,
2007; Wu and Lipinski, 2019). Despite the fact that most current
research has focused on the earliest cellular and molecular events,
experimental and clinical data indicate that central nervous system
(CNS) trauma-mediated pathophysiological changes may persist for
years, causing chronic post-mitotic cell loss and activation of
microglia and astrocytes as well as chronic functional deficits
(Ramlackhansingh et al., 2011). A growing database of research
shows that substantial changes in autophagy-related proteins occur
after TBI in both experimental and clinical settings (Zeng et al.,
2020). Neurological impairments and mortality are mostly caused
by cell death following neurotrauma. Even though CNS damage
affects many different cell types, including neurons and
oligodendrocytes, the mechanisms of neuronal cell death have
received most of the attention. Multiple cell death mechanisms
exist in the damaged CNS after trauma such as apoptosis and
autophagy (Stoica and Faden, 2010; Schoch et al., 2012). Long-
lived cytosolic proteins and damaged organelles increase a defective
autophagic machinery that could lead to apoptosis. The transfer of
the desired components to the lysosome includes a series of
sequential steps, including the creation of a double membrane,
elongation, and ultimately vesicle maturation. The morphology of
apoptotic cell is the best way to explain it. Cell rounding, membrane
blebbing, cytoskeletal collapse, cytoplasmic condensation and
fragmentation, nuclear pyknosis, chromatin condensation and
fragmentation, and the development of membrane-encased
apoptotic bodies—bodies that are quickly phagocytosed by
macrophages or nearby cells—are its distinguishing features
(Ghavami et al., 2014). It is interesting that the Bcl-2 family of
proteins and other regulatory elements such as AMP-activated
protein kinase (AMPK) that are shared by both apoptosis and
autophagy (Pattingre et al., 2005). The variety of cell death
routes, which have overlapping and different molecular causes, as
well as the limited therapeutic window for some types of neuronal
cell death, are barriers to effective therapy against neurotrauma-
induced neuronal cell death (Faden, 2002).

At present time, there are no effective therapies available for TBI
patients receiving clinical intervention. Oral supplementation with
vegetal bioactive compounds shows promise in delaying the
irreversible course in this discouraging situation (Stacchiotti and
Corsetti, 2020). However, given that the “one-drug, one-target”
approach to treating the complex pathophysiology of traumatic
brain injury (TBI) has not proven to be effective in clinical
settings, traditional medicinal herbs or plants could have a
pleiotropic effects and may offer a viable therapeutic
supplementation (Di Paolo et al., 2019). Various substances have
been employed thus far to control autophagic activity after traumatic
brain injury. For instance, apocynin, quercetin, luteolin, polyphenols
baicalin andmore are found in a wide variety of fruits and vegetables
as a modulator of TBI-related neuronal injury (Zeng et al., 2020).
The botanical name for frankincense is Boswellia sacra Fluck, and it
is a member of the Burseraceae family. The majority of these
Boswellia species’ chemical components are comparable. The

most widely used type of Boswellia in Arab nations is Boswellia
sacra, often known as “Omani Luban” which has long been used to
cure a variety of illnesses (Al-Yahya et al., 2020; Alyahya and Asad,
2020). Acetyl-11-keto-beta-boswellic acid (AKBA) and 11-keto-
beta-boswellic acid (KBA), which have been investigated for their
possible pharmacological and therapeutic qualities, are the two most
powerful anti-inflammatory boswellic acids found in Boswellia
(Asad and Alhomoud, 2016). The bioactive phytoconstituents of
boswellia, boswellic acids and pentacyclic triterpenoids have
demonstrated encouraging outcomes in both experimental and
clinical research. It is thought to be a potentially useful natural
pharmacophoric molecule that could be important for finding anti-
inflammatory and therapeutic drugs (Iram et al., 2017). It is
traditionally used to cure stomach, skin, ear, and throat
infections, to relieve menstruation pain, cardiovascular and
neurological issues, etc. It is also chewed as a mouth freshener in
many nations. Additionally, goods derived from Boswellia oleo gum
resin are sold all over the world for a variety of purposes
(Hamidpour et al., 2013; Liu et al., 2018; Mojaverrostami et al.,
2018). In this study, we examined the neuroprotective effects of
Boswellia Sacra Resin (BSR) against apoptosis TBI-induced with a
particularly attention to autophagic flux modulation.

2 Materials and methods

2.1 Reagents and gases

Acetone, acetonitrile, and formic acid (purity > 99.9%) were
purchased from Sigma Aldrich (Amsterdam, Holland); hydrochloric
acid was purchased from Carlo Erba (Milan, Italy). The standard
solutions (purity > 99.9%) at 1,000 mg L−1 of gallic acid, catechin,
caffeic acid, syringic acid, rutin, ellagic, hesperidin, ferulic acid,
myricetin, quercetin, apigenin, naringenin and kaempferol were
purchased from Sigma-Aldrich S. r.l. (Milan, Italy); chlorogenic
acid was purchased from VWR (Milan, Italy). Apigenin and
kaempferol were dissolved in aqueous solution at pH > 8.

2.2 Sample extraction

The sample extraction was carried out according to protocols
previously reported (Puigventos et al., 2015). In brief, 0.1 g of sample
was weighted and added to 10 mL of acetone/water/hydrochloridric
acid solution (70:29:0.1 v/v/v). The mixture was sonicated for
30 min. Subsequently, the mixture was centrifugated for 15 min
at 3,500 rpm, and the supernatant filtered with 0.45 μm nylon filters
and stored at −4°C until the analysis.

2.3 Materials

Oleo gum resins were collected from verified Boswellia sacra
Fluck trees of Wadi Doka (Najdi type resin) on the plateau region
north of Salalah during 2023. The sample was collected by
traditional method. This region experiences a desert climate, with
low rainfall (<100 mm annually) and sharp temperature variations
throughout the day. The oleo gum resin was authenticated by
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comparison with preserved voucher samples stored at the
Herbarium of Nizwa University, Oman. Unless otherwise stated,
all compounds were purchased from Sigma-Aldrich.

2.4 LC-HRMS conditions and validation of
the method

The chromatographic separations were carried out as reported
before with a Raptor C18 column (2.1 mm × 100 mm, 1.7 μm)
(Cammilleri et al., 2023). The mobile phase consisted of eluent A:
H2O + formic acid 1%, eluent B: acetonitrile + formic acid 1% for a
total run time of 14 min with a flow rate of 0.3 mL min-1.

As a mass spectrometer, a Q ExactiveTM Plus Hybrid
Quadrupole-Orbitrap™ (Thermo Fisher Scientific, California,
United States) was employed The Full MS scan/dd-MS2–SIM
mode was used to collect all data. The resolution of the Orbitrap
was adjusted to 70,000 FWHM (scan range 100–1,000 m/z). For a
maximum injection period of 200 ms, the automatic gain control
(AGC) was set to 3 × 106 ions. The product ions were discovered by
raising the normalized collision energy until the precursor ions were
completely fragmented. Each analyte was assigned a normalized
collision energy (NCE) value. The retention time (tR), accurate
mass, and distinctive fragmentation were used to identify the
analytes. Each day before the study, an external calibration for
mass accuracy was done. The Thermo Xcalibur ™ version
4.0 software was used to record and expound on acquisition data.
The method’s performance was evaluated for linearity, specificity,
and trueness in compliance with Commission Decision 2002/657.
The limits of detection and quantification (LODs and LOQs) were
determined by the 3σ and 10σ approach. The linearity test yielded
good results for all analytes tested (r2 > 0.993). Trueness by recovery
yielded values ranging between 80% and 105%. The polyphenols
concentrations were expressed as µg/Kg.

2.5 Extraction of the Boswellia sacra gum
resin (BSR) acid fraction

The particle size of the harvested oleo gum of Boswellia sacra
resin (BSR) was reduced to a coarse powder with a mortar and a
pestle for 2 hours. A fine powder was produced with an electrical
grinder. 200 g were placed into a 5,000 mL bottom flask, 2 L of
distilled water were added. A hydro distillation with a Clevenger
type apparatus was performed under atmospheric pressure. The
resulting essential oil was collected (14.2 mL). After 6–8 h no further
increase of essential oil was observed. The remaining mixture was
filtered (Whatman filter paper, grades 1,2 and 3), the residue was
washed out with hot water 3–4 times. The filtrate was cold down to
0°C to obtain a precipitate. After 60 min the precipitate was collected
and washed out several times with cold distilled water, dried under
vacuo and powdered with the electrical grinder. To reduce the water
content below the powder was transferred into a desiccator and this
is followed by sieving the powder into a very fine mesh at 40°C for
5 days. The final particle size (3–5 mm) the resulting BSR acid
fraction (80 g) was produced by grinding the material at a
temperature below 0°C.

2.6 HPLC analysis of BSR for pentacyclic
triterpenic acids

For chemical characterization of the BSR acid fraction, eight
pentacyclic triterpenic acids (PTA), alpha-boswellic acid (alpha-
BA), acetyl-alpha-boswellic acid (alpha-ABA), beta-boswellic acid
(beta-BA),acetyl-Beta-boswellic acid (B-ABA), 11-keto-beta-
boswellic acid (KBA), acetyl-11-keto-beta-boswellic acid (AKBA),
lupeolic acid (LA), and acetyl-lupeolic acid (ALA), were quantified
by HPLC analysis. For detailed information please see our previous
work (Schmiech et al., 2019).

2.7 Animals

CD1 male mice (8-week-old, 18–24 g) were acquired from
Envigo (Milan, Italy) and located in a controlled environment
and provided with standard rodent chow (Teklad standard diet
acquire from Envigo) and water available ad libitum. They were
housed 5 mice/cage and maintained in a 12:12 h light–dark cycle at
21°C ± 1°C and 50% ± 5% humidity. The University of Messina
Review Board for animal care (OPBA) approved the study
(P.R. 89126.8).

2.8 Experimental design and groups

The controlled impactor device Impact OneTM Stereotaxic
impactor for controlled cortical impact (CCI) (Leica, Milan, Italy)
was used to create a cortical contusion on the exposed cortex after a
craniotomy (tip diameter: 4 mm; cortical contusion depth: 3 mm;
impact velocity: 1.5 m/s). The clinical symptoms and weight of the
animals were monitored daily and recorded. Sham mice underwent
the identical surgical procedure but were not injured (Impellizzeri
et al., 2017; Fusco et al., 2020; Campolo et al., 2021).

Mice were divided as following:

• Sham + vehicle group: mice were subjected to the surgical
procedures as above except that the impact was not applied,
and animals were treated o. s. with vehicle (data not shown).

• Sham + BSR: mice were subjected to the surgical procedures as
above except that the impact was not applied, and animals
were treated o. s. with 500 mg/kg on BSR in saline 1 h after TBI
medical procedures.

• TBI: mice were subjected to CCI plus administration of
vehicle (saline).

• TBI + BSR: As for the TBI + vehicle group but BSR was
administered o. s. at 500 mg/kg in saline 1 h after TBI.

Taking into account that there is no discernible difference
between the Sham and Sham + BSR groups we choose to shown
in the figures Sham + BSR group. The animals of the first set of
experiment were sacrificed 24 h after TBI induction. The animal of
the second group pf experiment were sacrificed 30 days after TBI
induction, and they received every days for 30 days starting 1 h after
the damage orally administration of BSR at the dose of 500 mg/kg
(see Supplementary Material for experimental design graph).
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2.9 Behavioural analysis

30 days after the trauma induction, a designed group of animals
underwent behavioural testing. Mice were moved to the behaviour
testing room 30 min before the first trial started so they could
become accustomed to the environment. Based on behavioural
tests that were used to keep the environment as uniform as
feasible, animals were trained to use the equipment before every
recording. The behavioural tests were conducted by three distinct
trustworthy experts who were blinded to the animals’ damage state.
Below a brief description of tests.

2.9.1 Force swimming test (FST)
The method is based on that which Porsolt et al. described

(Porsolt et al., 1979). Briefly, FST is used to assess depressive-like
conditions. Mice are placed in an impenetrable, transparent tank
filled with water, and their movement behaviour related to escape is
recorded. In this experiment, for 6 minutes, each mouse was gently
placed in the cylinder, and the duration of floating was recorded.
During the final 4-min of the test, immobility was examined
(Genovese et al., 2021).

2.9.2 Open field test (OFT)
The OFT, created by Calvin S. Hall, is an experiment that

measures a rodent’s general locomotor activity levels, anxiety,
and exploratory willingness. Each mouse in this experiment was
trained before being put in the centre of the box, where activity
was then recorded for 5 minutes of exploration (Prut and
Belzung, 2003).

2.9.3 Elevated plus maze (EPM)
Utilizing the Elevated Plus Maze (EPM) test, rodents’

anxiety-related behaviour is evaluated. The EPM device is
made up of a core region, two oppositely positioned open
arms, two oppositely positioned closed arms, with an elevated
"+"-shaped maze. A video camera set above the maze records the
subjects’ actions while they freely navigate it, and their actions are
then analysed. After training, it was counted how many times the
mice entered each arm and how long they spent in open arms
(Pellow et al., 1985).

2.9.4 Morris Water Maze (MWM)
Hippocampal-dependent spatial learning and memory were

assessed using the MWM test (Zhao et al., 2017; Siebold et al.,
2020). Following a training session, a mouse was placed in the water
in each of the three separate quadrants and given 1 minute to swim
there. The platform was taken away for the test 1 day following the
navigation experiment. It was noted howmuch time was spent in the
target quadrant.

2.9.5 Novel object recognition (NOR)
The NOR test was used to determine whether mice had a

natural tendency to spend time studying unfamiliar or familiar
objects. Mice were placed in the box for 5 min after a training
session, during which the examiner replaced one of the familiar
objects with a novel one at random. Each object’s total amount of
mouse exploration time was recorded (Siracusa et al., 2017; Pan
et al., 2018).

2.10 Histological brain analysis

After the experiment, brain tissue was removed, fixed at room
temperature in buffered formaldehyde solution (10% in phosphate
buffered saline), dehydrated by graduated ethanol, and then embedded
in paraffin. Light microscopy was used to examine tissue sections that
were 7 um thick after being deparaffinized with xylene and stained with
haematoxylin/eosin (Bio-Optica,Milan, Italy). The number of damaged
neurons was counted, and the grey matter’s histopathologic alterations
were graded on a 6-point scale: No lesion was found, 1; 1–5 eosinophilic
neurons were present in the Gray matter, 2; 5–10 eosinophilic neurons
were present, 3; more than 10 eosinophilic neurons were present, 4; a
small infarction (less than one third of the grey matter area), 5; a
moderate infarction (one third to one half of the Gray matter area); and
6, a large infarction (more than half of the grey matter area). To
determine a final score for each mouse, the results from every part of
each brain were averaged. The slices were then analysed by a blinded
histopathologist using an optical microscope using a Leica
DM6 microscope (Leica Microsystems Spa, Milan, Italy) (Petrosino
et al., 2017).

2.11 Cytokines measurement

Using commercially available enzyme-linked immunosorbent
assay (ELISA) kits (R&D Systems, Minneapolis, MN, United States)
in accordance with the manufacturer’s instructions, TNF-α, IL-1β,
and IL-6 levels from brain were measured as previously described
(Cordaro et al., 2020a).

2.12 Antioxidants and malondialdehyde
measurement

The supernatant of the brain tissue homogenate was centrifuged
(14,000 rpm at 4°C for 30 min) as previously described (Marklund
and Marklund, 1974; Rajasankar et al., 2009). ELISA kits (R&D
Systems, Minneapolis, MN, United States) were used to measure
superoxide dismutase (SOD) and glutathione (GSH-Px) levels. The
test procedure was described in detail in the manufacturer’s
manuals. Levels of malondialdehyde in brain tissue were
determined as an indicator of lipid peroxidation (Ohkawa et al.,
1979). Briefly, brain tissues were weighed and homogenized in a
1.15% (wt/vol) KCl solution. 100 μL aliquots of homogenate were
then removed and added to a reaction mixture containing 200 μL
8.1% (wt/vol) lauryl sulfate, 1.5 mL 20% (vol/vol) acetic acid
(pH 3.5), 1.5 mL 0.8% (wt/vol) thiobarbituric acid, and 700 μL
distilled water. Samples were then boiled for 1 hour at 95°C and
centrifuged at 3000g for 10 min. The absorbance of the supernatant
was measured spectrophotometrically at 532 nm. MDA levels were
expressed as nmol/mg of tissue (Di Paola et al., 2009; Genovese
et al., 2022).

2.13 Apoptosis and autophagy detection

The level of mRNA expression of apoptosis-related cytokines
caspase-3, caspase-8, caspase-9, Bax, Bcl-2, and cytochrome c and
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autophagy markers such as Beclin-1, LC3 AMPK and p62 were
determined using real-time quantitative RT polymerase chain
reaction (RT-PCR) as previously described (Liu and Saint, 2002;
Hu et al., 2011; Wang et al., 2013; Ze et al., 2014; Wang et al., 2022):
Caspase-8 Forward primer ATCTGCTGTATCCCAGC Reverse
primer AGGCACTCCTTTCTGGAAGTTAC; Caspase-9 Forward
primer GCGGTGGTGAGCAGAAAGA Reverse primer CCTGGG
AAGGTGGAGTAGGA; Caspase-3 Forward primer CTGACTGGA
AAGCCGAAACTC Reverse primer GACTGGATGAACCACGAC
CC; Bax Forward primer GGATGCGTCCACCAAGAAG Reverse
primer CAAAGTAGAAGAGGGCAACCAC; Bcl-2 Forward
primer TGTGGTCCATCTGACCCTCC Reverse primer ACA
TCTCCCTGTTGACGCTCT; Cytochrome c Forward primer
CATCCCTTGACATCGTGCTT Reverse primer GGGTAGTCT
GAGTAGCGTCGTG; LC3 Forward primer AACGTAGGCACC
CACATAGG Reverse primer GAAGAGACTGCCCCTGACAC;
Beclin1 Forward primer GAACTCTGGAGGTCTCGCT Reverse
primer CACCCAGGCTCGTTCTACC; p62 Forward primer AGT
CCAGAATTCCTGCCTGA Reverse primer TTCATTCGGCTT
CACATGAA; adenosine monophosphate (AMP) activated
protein kinase (AMPK) Forward primer GTGATCAGCACTCCG
ACAGA Reverse primer TCTCTGGCTTCAGGTCCCTA; β-actin
Forward primer AATGTGTCCGTCGTGGATCTGA Reverse
primer AGTGTAGCCCAAGATGCCCTTC.

2.14 Western Blots

Cytosolic extracts were prepared as previously described
(Cordaro et al., 2017; Di Paola et al., 2021a; Di Paola et al.,
2021b). The following primary antibodies were used: anti-Bax (1:
500; SCB, B-9 sc-7480), anti-Bcl-2 (1:500; SCB, C-2 sc-7382), Beclin-
1 (1:500; SCB, sc-48381) and LC3 (1:500; SCB, sc-271625) in 1× PBS,
5% w/v non-fat dried milk, 0.1% Tween-20 at 4°C overnight
(Impellizzeri et al., 2016a; Paterniti et al., 2017; Cordaro et al.,
2018; Cordaro et al., 2020b; Crupi et al., 2020). Blots were further
probed with an anti-β-actin protein antibody (1:500; SCB) for the
cytosolic fraction to make sure that they were loaded with an
equivalent number of proteins (Di Paola et al., 2016a; Cordaro
et al., 2020c). As directed by the manufacturer, signals were
evaluated using an enhanced chemiluminescence (ECL) detection
system reagent (Thermo, Monza, Italy) (Akki et al., 2018; Remigante
et al., 2022). Using BIORAD ChemiDoc TM XRS + software and
densitometry, the relative expression of the protein bands was
measured and standardized to the levels of b-actin and lamin
A/C (Paterniti et al., 2015; Di Paola et al., 2016b; Esposito et al.,
2016; Siracusa et al., 2018; Peritore et al., 2020).

2.15 Statistical evaluation

The data in this study are presented as the average ± SEM and
represent at least three experiments conducted on various days. N
denotes the number of animals utilized in in vivo experiments. The
G*Power 3.1 software (Die Heinrich-Heine-Universitat Dusseldorf,
Dusseldorf, Germany) was employed to calculate the number of
animals used in in vivo research. A competent histopathologist
examined the data, without knowledge of the treatments. In all the

statistical studies, GraphPad Software Prism 9 (La Jolla, CA,
United States) was used. One-way ANOVA was used to examine
the data, and then a Bonferroni post-hoc test for multiple
comparisons was used. A p-value of 0.05 or less was regarded as
significant. In figure: ns p > 0.05; *p ≤ 0.05; **p ≤ 0.01; ***p ≤ 0.001;
****p ≤ 0.0001.

3 Results

3.1 Polyphenols contents and HPLC-MS/MS
analysis in BSR

The polyphenols contents found in the B. Sacra samples
followed the order Petunidin > Pelargonidin > Cyanidin >
Myricetin > Quercetin. Among the anthocyanins, a high presence
of Petunidin (925.85 μg/Kg) (Figure 1A) was found, followed by
Pelargonidin (2.36 μg/Kg) (Figure 1D) and Cyanidin (0.56 μg/Kg)
(Figure 1E). Myricetin (47.10 μg/Kg) (Figure 1B) and Quercetin
(1.78 μg/Kg) (Figure 1C) were the only flavonols detected. No
cinnamate esters, hydroxycinnamic acids and other sub-classes of
polyphenols were found. For chemical characterization of the BSR
acid fraction were quantified by HPLC analysis eight pentacyclic
triterpenic acids: alpha-boswellic acid (alpha-BA), acetyl-alpha-
boswellic acid (alpha-ABA), beta-boswellic acid (beta-BA),acetyl-
Beta-boswellic acid (B-ABA), 11-keto-beta-boswellic acid (KBA),
acetyl-11-keto-beta-boswellic acid (AKBA), lupeolic acid (LA), and
acetyl-lupeolic acid (ALA) (Figure 1F).

3.2 Effects of BSR on memory performance,
locomotor activity changes brought on by
TBI, and spatial learning

The MWM test was used to determine whether BSR could help
with memory problems brought on by TBI. When compared to the
controls, TBI-subjected animals took longer to find the platform
during training (Figure 2A). In addition, the injured animal spent
less time throughout the probe experiment in the target quadrant of
the platform (Figure 2B). The escape latency was dramatically
decreased (Figure 2A) and the duration spent in the target
quadrant was increased (Figure 2B) after oral administration of
BSR at a dose of 500 mg/kg, demonstrating an improvement in
the cognitive deficiencies brought on by the trauma. We evaluated
any shortcomings in their social interaction and exploratory
behaviour using the NOR (Figure 2C) test. In this test, we
discovered that after TBI, the amount of number of contacts were
statistically reduced (Figure 2C). The administration of BSR, on the
other hand, considerably improves the memory function harmed by
trauma. The EPM test was also applied to mice to evaluate risk-taking
behaviours and post-injury anxiety. According to the bibliography,
fictitious animals spend more time in open arms whereas injured
animals spend more time in closed arms, which also lowers the
number of entries. However, compared to the TBI group, the animals
that got oral BSR treatment spent longer time in the open arms and
made more entrances (Figure 2D). The OFT was utilized to assess
locomotor activity further.We found that following TBI injuries, mice
spent less time in the centre and made fewer crossings, in contrast to
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sham animals. In this case, BSR was successful in resuming locomotor
activity and the frequency of crossings (Figure 2E).

3.3 BSR limits histological alteration induced
by TBI

Histological analysis of a brain sample taken from the TBI group
24 h after the TBI injury revealed significant tissue damage,
inflammation, and architectural alterations when compared to brain
from the sham group (Figures 3A, A’ for sham; Figures 3B, B’ for TBI,
see histological score 3D). When administered at a dose of 500 mg/kg,
BSR significantly lessened the severity of brain injury when compared to
the TBI group (Figures 3C, C’ see histological score Figure 3D).

3.4 BSR administration modulates lipid
peroxidation, antioxidant, and
cytokines release

Given the high concentration of polyunsaturated fatty acids in the
brain, lipid peroxidation is the main manifestation of oxidative stress
following TBI. Comparing the TBI group to the sham mice, we
discovered that there was a considerably higher level of lipid
peroxidation that was significantly attenuated following oral
administration of BSR (Figure 4A). The cell is shielded from
oxidative stress by enzymes that neutralize superoxide and H2O2.

The primary defensive enzymes against superoxide radicals are
GSH-Px and SOD (Cordaro et al., 2021a; Cordaro et al., 2021b).
Oxidative stress impairs mitochondria’s ability to function and move
to synaptic areas, which causes synaptic dysfunction and
neurodegeneration. After controlled cortical impact, we observed
lower levels of SOD (Figure 4B) and GSH-Px (Figure 4C) compared
to shammice, according to the literature. Following oral administration
of BSR at a dose of 500 mg/kg, physiological levels were practically
repristinate. Cytokines storm promotes the inflammatory response by
activating microglia and increasing the synthesis of chemokines, and
preclinical models show that TBI causes neuronal injury with these
raised levels (Ahmad et al., 2013; Gugliandolo et al., 2018). We used
ELISA kits tomeasure the levels of TNF-α (Figure 4D), IL-6 (Figure 4E),
and IL-1β (Figure 4F). While the sham group had only trace quantities
of this cytokine, brain samples from TBImice had a substantial increase
in all cytokines that was significantly reduced after oral administration
od BSR at the dose of 500 mg/kg.

3.5 BSR limits neuronal death TBI

The discovery that caspase-mediated programmed cell death
plays a significant role in secondary brain injury raises the possibility
of a connection between pathogenic molecular pathways and
healing (Jarrahi et al., 2020). For this reason, we made RT-PCR
for Caspase-3 (Figure 5A), Caspase-8 (Figure 5B), Caspase-9
(Figure 5C), Bax (Figure 5D), Bcl-2 (Figure 5E), and Cytochrome

FIGURE 1
Polyphenols contents found in the BSR. Chromatogram of a B. Sacra sample analyzed by the LC-HRMS method. (A) = Petunidin;
(B) = Myricetin; (C) = Quercitin; (D) = Pelargodin; (E) = Cyanidin. HPLC (F) analysis for pentacyclic triterpenic acids: alpha-boswellic acid
(alpha-BA), acetyl-alpha-boswellic acid (alpha-ABA), beta-boswellic acid (beta-BA), acetyl-Beta-boswellic acid (B-ABA), 11-keto-beta-boswellic
acid (KBA), acetyl-11-keto-beta-boswellic acid (AKBA), lupeolic acid (LA), and acetyl-lupeolic acid (ALA).
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C (Figure 5F). We found a significantly increase in apoptosis in
animal subjected to the injury compared with the sham group except
for BCL-2 in which we found a decrease of this expression. The same
trend was also observed by western blot analysis of Bax and Bcl-2
(Figure 5G). On the other hand after BSR administration at the dose
of 500 mg/kg all the expression of apoptotic marker were brought
back to physiological levels.

3.6 BSR stimulate autophagic flux

Previous study demonstrates that the administration of
Boswellia was able to stimulates autophagic flux in an
experimental model of rotenone-induced neurotoxicity (Shadfar
et al., 2022). In our work we found after RT-PCR analysis that
after TBI there were an increase in autophagic flux as demonstrate
by AMPK (Figure 6A), Beclin-1 (Figure 6B), LC3 (Figure 6C) and
p62 (Figure 6D) compared to the control animals. The same trend
was also observed by western blot analysis of Beclin-1 and LC3
(Figure 6E). Additionally, The single oral administration of BSR at
the dose of 500 mg/kg significantly increased autophagic flux.

4 Discussion

TBI is regarded as a serious health issue that frequently results in
mortality and disability and places a significant burden on medical

resources. The development of therapeutic methods to treat brain injury
was not very rapid. Neuroprotection and neurorecovery are still the
primary therapeutic approaches in development, aside from conservative
care (Zhang et al., 2014). Studies have shown that secondary cell death,
which may eventually make up as much as 40% of the total tissue loss,
affects the prognosis after a TBI and so presents a significant
pharmacological target for neuroprotective treatment (Smith et al.,
2000). Since the dawn of medicine, natural compounds made from
plants have been employed in healing. The phytochemicals have
undergone substantial evaluation for drug development in recent
decades. However, only a small number of these plant species have
undergone thorough scientific scrutiny. Therefore, research into the
bioactivities of these plants and phytochemicals is necessary. Even
now, several of these historically utilized herbs and compounds
produced from plants are still useful pharmacologically. One such
healing plant is the Burseraceae genus Boswellia Sacra. Typically,
triterpenoidal principles, essential oils, and carbohydrates make up
the normal oleo-gum resin. Boswellic acids include β-boswellic acid,
11-keto-β-boswellic acid, and acetyl-11-keto-β-boswellic acid make up
most of the oleo-gum resin. It is safe to use up to oral doses of
1,000 mg/kg in rats, as revealed by Al-Yahya and colleagues, who also
showed that the methanolic extract of Boswellia sacra oleo gum resin did
not create any significant effect on the kidney and liver with repeated
dose administration for 28 days (Al-Yahya et al., 2020). Another study
assessed the oral and intraperitoneal toxicity of boswellic acids in mice,
rats, andmonkeys for acute, subacute, and chronic effects. Boswellic acids
were discovered to be safe up to the 2.0 g/kg investigated dosing levels

FIGURE 2
Effects of BSR on spatial learning, memory function, anxiety, and locomotor activity. Morris Water Maze training (A) and probe (B); novel object
recognition (C); elevated plus maze test (D); Open field (E). As showed in panel 2, BSR administration significantly improve behaviorural recovery in terms
of spatial learning, memory function, anxiety, and locomotor activity after TBI. The graphs are representative of at least three experiments performed on
different experimental days. Each data is expressed as mean ± S.E.M. from n = 6 male mice for each group. TBI + BS7 vs Sham.
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(Khan et al., 2016). With this background in our mind we want to
elucidate the molecular pathways by which BSR could have a
neuroprotective effects in an experimental model of TBI. It is
common practice to examine the prevalent clinical problem in people
using animal models of trauma. After a controlled cortical impact,
animals that lead to neurological diseases such seizures and
deteriorated memory and learning. In our investigation, a single oral
dose of BSR at the dose of 500mg/kg given 1 hour after trauma induction
was able to reduce post-traumatic stress disorder symptoms such anxiety
and altered locomotor activity while also improving spatial learning and
memory. CCI is a consolidated models of brain trauma that induce a
significantly alteration in histological architecture (Campolo et al., 2014;
Impellizzeri et al., 2016b; Cordaro et al., 2016; Impellizzeri et al., 2017;
Gugliandolo et al., 2018; Fusco et al., 2020; Cordaro et al., 2021a; Cordaro
et al., 2021b). In our study we found that in the mice subjected to the
trauma the perilesional area revealed considerable tissue damage,
inflammation, and architecture alterations 24 h after TBI injury that
was significantly reduced after the administration of BSR at the dose of
500mg/kg. A common underlying cause of many neuropathologies is
the overproduction of reactive oxygen species (ROS), reactive nitrogen
species (RNS), and cytokines which have been demonstrated to harm a

variety of cellular components, including proteins, lipids, and DNA.
Superoxide dismutase (SOD) and reduced glutathione (GSH), two
endogenous defensive enzyme systems, can be overwhelmed by free
radicals, especially superoxide (O2-), and non-radicals such hydrogen
peroxide (H2O2) (Slemmer et al., 2008). In our study we found a
significantly increase in lipid peroxidation as well as in pro
inflammatory cytokines in animals subjected to the injury compared
to the control group and a significantly reduction in physiological
antioxidant system as demonstrated by the analysis of SOD and
GSH-Px. On the other hands, a single oral administration of BSR,
have been significantly limited these alterations. The three main types of
cell death are necrosis, apoptosis, and autophagy. Apoptosis, in contrast
to necrosis, is a tightly controlled and energy-intensive process that can
be started by the original necrosis. We concentrated on apoptosis and
autophagy because there were no specific ways to identify necrosis. The
pathophysiology of brain injury in the TBI model heavily depends on
apoptosis. The relative amounts of these genes, Bcl-2 and Caspases,
which are commonly regarded as the most significant apoptotic
regulators, influence the fate of cells (Zhang et al., 2014). In our
study we found a significantly increase in apoptotic pathway as
demonstrated by the increase in Caspase-3, Caspase-8, Caspase-9,

FIGURE 3
BSR limits histological alteration induced by TBI. Representative images of histological structure of: Sham (A) and higher magnification (A9) TBI (B)
and higher magnification (B9) and TBI + BSR (C) and higher magnification (C9); histological score (D). The figures are representative of at least three
experiments performed on different experimental days. Each data is expressed as mean ± S.E.M. from n = 6 male mice for each group.
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FIGURE 4
Effects of BSR administration on lipid peroxidation, antioxidant enzymes and cytokines release. MDA (A), SOD (B) and GSH-Px activity (C) TNF-α (D),
IL-6 (E), and IL-1β (F). The graph is representative of at least three experiments performed on different experimental days. Each data is expressed as
mean ± S.E.M. from n = 6 male mice for each group.

FIGURE 5
BSR reduced apoptosis TBI-induced. RT-PCR for Caspase-3 (A), Caspase-8 (B), Caspase-9 (C), Bax (D), Bcl-2 (E), and Cytochrome C (F); Western
Blots and relative densitometric analysis of Bax and BCL-2(G). The graphs are representative of at least three experiments performed on different
experimental days. Each data is expressed as mean ± S.E.M. from n = 6 male mice for each group.
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Bcl-2 and Cytochrome C (and obviously in a decrease of Bcl-2)
founded in mice subjected to the trauma compared to the control
group. After the single administration of BSR we found an
important return to the physiological levels of the apoptotic
pathway. Numerous and various experimental models of brain
injury, including trauma, show increased autophagy (Wang et al.,
2013). It is unknown, though, whether autophagy plays a
beneficial or harmful function in the recovery of brain-
damaged neuronal tissue (Raghupathi, 2004). It is likely that
the function of autophagy following brain damage depends on
the cell’s ability to react to the accumulation of broken or
dysfunctional macromolecules and organelles. Enhancing
autophagy would probably be advantageous if the increase in
autophagic capacity is minimal (Zhang et al., 2005). Although
maintaining ATP homeostasis and controlling metabolism are
two of AMPK’s most well-known jobs, it has recently been
suggested that AMPK also controls cell apoptosis or survival
under stressful circumstances. Independently of the stimuli,
AMPK activation can induce the autophagic process
(Villanueva-Paz et al., 2016). Moreover, its well know that the
increasing of microtubule-associated protein light chain 3 (LC3)-
III and beclin-1, while a decreasing in p62 are autophagy markers
demonstrating that autophagic activity is persistently activated
after TBI in a controlled cortical impact (CCI) system model of
TBI in vivo and in vitro (Liu et al., 2008; Au et al., 2017; Sebastiani
et al., 2017). In our study we found a physiological activation of
autophagic flux that were significantly improved after BSR
administration as demonstrated by the analysis of AMPK,
Beclin-1 and LC3. Additionally, cytoplasmic organoids are
ubiquitinated by the adaptor protein p62 before being

transported to the autophagosome and destroyed by the
autolysosome. As a result, the downregulation of p62 points to
an autophagic flux (Klionsky et al., 2016). According to
bibliography, in our work we found a decrease in p62 in the
animals subjected to the trauma compared to the control group
that were significantly restored after BSR administration at the
dose of 500 mg/kg.

5 Conclusion

Acute neuroprotective treatments try to stop the molecular chain
reaction that results in damage after TBI. Although neuroprotection is a
key strategy for treating this injury, no efficient neuroprotective
medications have been discovered from TBI clinical trials to date.
However, additional research is required to fully understand the
cascade of events that starts with the impact and continues
throughout the patient’s life. Using natural substances is the only
way to completely avoid all the negative effects of pharmacological
therapy. Future directions of our research could include testing BSR on
many components of trauma that have not yet been considered to see if
it can function on several fronts due to the special combination of
this molecule.
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FIGURE 6
BSRmodulates apoptotic and autophagic pathways. RT-PCR for AMPK (A), Beclin-1(B), LC3 (C) and p62 (D). Western Blots and relative densitometric
analysis of Beclin-1and LC3 (E). The graph is representative of at least three experiments performed on different experimental days. Each data is expressed
as mean ± S.E.M. from n = 6 male mice for each group.
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