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Background and purpose: Anatomical labeling of the cerebral vasculature is a
crucial topic in determining the morphological nature and characterizing the vital
variations of vessels, yet precise labeling of the intracranial arteries is time-
consuming and challenging, given anatomical structural variability and surging
imaging data. We present a U-Net-based deep learning (DL) model to
automatically label detailed anatomical segments in computed tomography
angiography (CTA) for the first time. The trained DL algorithm was further
tested on a clinically relevant set for the localization of intracranial aneurysms (IAs).

Methods: 457 examinations with varying degrees of arterial stenosis were used to
train, validate, and test themodel, aiming to automatically label 42 segments of the
intracranial arteries [e.g., 7 segments of the internal carotid artery (ICA)]. Evaluation
metrics included Dice similarity coefficient (DSC), mean surface distance (MSD),
and Hausdorff distance (HD). Additionally, 96 examinations containing at least one
IA were enrolled to assess the model’s potential in enhancing clinicians’ precision
in IA localization. A total of 5 clinicians with different experience levels participated
as readers in the clinical experiment and identified the precise location of IA
without and with algorithm assistance, where there was a washout period of
14 days between two interpretations. The diagnostic accuracy, time, and mean
interrater agreement (Fleiss’ Kappa) were calculated to assess the differences in
clinical performance of clinicians.

Results: The proposed model exhibited notable labeling performance on
42 segments that included 7 anatomical segments of ICA, with the mean
DSC of 0.88, MSD of 0.82 mm and HD of 6.59 mm. Furthermore, the model
demonstrated superior labeling performance in healthy subjects compared to
patients with stenosis (DSC: 0.91 vs. 0.89, p < 0.05; HD: 4.75 vs. 6.19, p < 0.05).
Concurrently, clinicians with model predictions achieved significant
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improvements when interpreting the precise location of IA. The clinicians’mean
accuracy increased by 0.04 (p = 0.003), mean time to diagnosis reduced by
9.76 s (p < 0.001), and mean interrater agreement (Fleiss’ Kappa) increased by
0.07 (p = 0.029).

Conclusion:Our model stands proficient for labeling intracranial arteries using the
largest CTA dataset. Crucially, it demonstrates clinical utility, helping prioritize the
patients with high risks and ease clinical workload.

KEYWORDS

computed tomography angiography, intracranial arteries, deep learning, anatomical
labeling, intracranial aneurysm, arterial stenosis

1 Introduction

Cerebrovascular diseases, such as aneurysms, stenosis, and
arteriovenous malformations, are leading causes of death and
disability (GBD, 2015 Mortality and Causes of Death
Collaborators, 2016). The intrinsic characteristics of intracranial
arteries enables to aid in understanding the disease pathogenesis that
causes the morphology change and dysfunction of specific arterial
segment and manifests as related clinical symptoms (Turan et al.,
2010; Mackey et al., 2012). Hence, precise anatomical labeling of the
intracranial arteries is crucial for physicians to understanding the
mechanism, diagnosis, and treatment of cerebrovascular conditions.
Although consensus on defining the fine segments of intracranial
arteries through imaging and anatomy has been established
(Bouthillier, van Loveren, and Keller, 1996; Yavagal and Haussen,
2011; Harrigan and Deveikis, 2018), manual labeling of fine
segments of intracranial arteries is time-consuming and prone to
inter-and intra-observer variability. Furthermore, this problem is
exacerbated due to the lack of experienced radiologists given the
increasing imaging data. Previous studies on anatomical labeling of
intracranial arteries have been constrained by limited datasets and
only performed on magnetic resonance angiography (MRA) images
(Dunas et al., 2016; Robben et al., 2016; Dunas et al., 2017).
Additionally, computed tomography angiography (CTA) seems
to be more encouraging in the assessment of aneurysms, vessel
stenosis and patency (Koelemay et al., 2004; Manniesing et al., 2008).
Consequently, automated anatomical labeling of cerebral
vasculature with detailed segments on CTA is urgent and
essential for the diagnosis and treatment schemes of arterial diseases.

Deep learning (DL) has shown significant potential in medical
image analysis tasks. Notably, the U-Net framework with symmetric
network architecture is widely adopted in the field of medical image
segmentation because of its flexibility and achieves remarkable
successes (Jin et al., 2020; Klimont et al., 2020; Mubashar et al.,
2022). Previous models have focused on the segmentation of the
specific artery (e.g., the carotid artery) or the whole 3D cerebral
vessels (Groves et al., 2020; Klimont et al., 2020; Bortsova et al., 2021;
Guo et al., 2021). Only few studies strive for the automatic
segmentation or labeling of intracranial arteries involved with
detailed segments (i.e., automatic labelling of fine segments).

So far, this is the first study to develop a powerful U-Net-based
DL model for labeling the most detailed segments of intracranial
arteries on CTA scans. Additionally, 7 segments of the internal
carotid artery (ICA) were successfully labeled for the first time where
stenosis and aneurysms frequently occur. Moreover, the trained DL

algorithm was applied in a clinical experiment to assess the impact
on the precise intracranial aneurysm (IA) localization. The
performance of 5 expert raters with different experience levels as
to localization accuracy, clinical decision time, and the interrater
agreement was analyzed without and with the support of artery
classification by the DL algorithm, for a washout period of 14 days
between two interpretations.

2 Materials and methods

2.1 Dataset

The local Institutional Review Board (IRB) approved this
retrospective study, waiving the requirement for informed consent,
in adherence to the principles of the Declaration of Helsinki. Data for
model development were selected from head CTA images, with or
without arterial stenosis, in the imaging database of our hospital
between January 2016 and November 2019. The exclusion criteria
included patients with intracranial aneurysms (IAs), arteriovenous
malformation, arteriovenous fistula, Moyamoya disease, and poor
image quality. Dataset for validation of the proposed model in real-
world clinical scenarios, the inclusion criteria included head CTA
images with at least one IA and without other arterial diseases, with
digital subtraction angiography (DSA) verification from July 2019 to
May 2020 in the same hospital. The flowchart of data acquisition,
selection, and assignment were depicted in Figure 1.

Collectively, we included a total of 457 CTA examinations
performed on GE Healthcare scanners for model development,
which were randomly divided into training (n = 298), tuning
(n = 65), and testing sets (n = 94). Furthermore, 96 CTA
examinations with 117 aneurysms were included for the
validation. The severity of artery stenosis was graded as follows
(Zhang et al., 2015; Fu et al., 2023): mild stenosis (<50%), moderate
stenosis (50%–70%), severe stenosis (>70%) and occlusive (100%).
In case of multiple stenosis, the most severe stenosis was adopted.

2.2 CTA image acquisition, reconstruction
and preprocessing

Standard head CT angiography examinations were acquired on
axial section with post-processing reconstruction on sagittal,
coronal, maximum intensity projection (MIP) and 3-dimensional
volume rendered (3D-VR) views as necessary. All included CTA
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examinations were acquired on axial section with Discovery
CT750 HD (GE Healthcare, Chicago, IL, United States) utilizing
a slice thickness of 0.63 mm, a tube voltage of 100 kVp, and the

effective tube current ranging between 2 and 3 mAs. It is worth
noting that DSA images are auxiliary data serving as a reference for
enrollment of IAs and are not fed into the proposed model.

FIGURE 1
Flowchart of data acquisition, selection, and assignment. CTA, computed tomography angiography; IAs, intracranial aneurysms.

FIGURE 2
Architecture of the 3D network model for cerebral artery labeling. The proposed labeling model has an encoder-decoder architecture as popular
U-Net, and the network takes in an input of preprocessed vesselmasks and outputs the predicted probability of class for each voxel. The SE-Res block and
deep supervisionmodule are used to achieve better labeling performance of the network. 3D network, 3-dimensional network; GN, group normalization;
ReLU, rectified linear units; SE-Res block, squeeze, and excitation-residual block.
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For image preprocessing, normalization, spatial resampling,
and extraction of binary vessel masks were performed. Z-score
normalization was applied to ensure the uniformity in pixel
values across all images, creating a standardized input for the
DL model. Additionally, spatial resampling was employed to
achieve a consistent resolution of 1 × 1 × 1 mm, promoting
uniformity in spatial dimensions throughout the dataset. These
preprocessing steps were pipelined to ensure the reproducibility
of this study. Finally, we generated 3D binary vessel masks by
using a simplified U-Net architecture and the entire 3D binary
vessel masks were fed into the DL model. The simplified network
took CTA images as input, and the sigmoid activation function
transformed the feature maps into probability maps.
Subsequently, a threshold of 0.5 was usually applied to
distinguish between vessel and non-vessel regions (Ma et al.,
2021). Notably, the imaging data of DL development and the
clinical experiment had equal scan and preprocessing protocols
in order to avoid the introduction of bias.

2.3 CTA image annotations

Manual labeling of 42 arterial segments was used as the reference
standard to develop the algorithm and evaluate the performance of
the proposedmodel. Trained annotators labeled 42 arterial segments
according to the anatomical segments of cerebral vessels
(Bouthillier, van Loveren, and Keller, 1996; Yavagal and Haussen,
2011; Harrigan and Deveikis, 2018): including 7 segments of the ICA
(C1-C7), 3 segments of the middle cerebral artery (MCA: M1, M2,
M3-4), 4 segments of the anterior cerebral artery (ACA: A1, A2, A3,
and A4-5), 3 segments of the posterior cerebral artery (PCA: P1, P2,
and P3-4), 2 segments of the intracranial vertebral artery (VA:
V3 and V4), as well as the posterior communicating artery (PCoA),
anterior communicating artery (ACoA), and the basilar artery (BA).

Furthermore, the IAs were also manually labeled. The labeled
results were confirmed by two specialized radiologists with 10,

11 years of experience. Disagreements of the two radiologists
were arbitrated by a third specialized neuroradiologist. All the
annotation was performed using software (3D Slicer Version
4.10.1; https://www.slicer.org).

2.4 Model training for automated labeling of
the intracranial arteries

A 3-dimensional convolutional neural network (CNN) was
devised based on the U-Net architecture in this study (Figure 2).
Specifically, the network comprised the encoding and decoding
paths. Traditional convolution block was replaced by Squeeze-
and-Excitation Residual (SE-Res) block, which consists of k
cascading 3 × 3×3 convolutional layers of n channels involved
with the group normalization (GN) and rectified linear units
(ReLU) and k cascading 3 × 3×3 convolutional layers of n
channels involved with the GN and SE. For better
convergence, each block incorporated a skip connection with
a 1 × 1×1 convolutional layer to reduce the number of channels.
The encoder and decoder paths were augmented with the SE-Res
blocks by means of channel-wise attention mechanisms, stable
training as the depth of the network increased and adaptive
information extraction of the feature map (Wang et al., 2021). In
addition, the number of channels (n) was doubled after max
pooling and was halved after transpose convolution.
Furthermore, the deep supervision module was utilized in the
decoder for faster convergence and better performance of the
network via more direct learning process of the hidden layers
(Lee et al., 2015). It included extra auxiliary branches at different
stages of the decoder, allowing for the extraction of feature maps
at various resolutions. The combination of SE-Res blocks and
the deep supervision branch contributed to the model’s
performance to capture both local and global contextual
information. Ultimately, feature channels of the encoder were
concatenated with the corresponding tensors of the decoder to

TABLE 1 The baseline characteristics of data set for labeling model development.

Characteristics Training set Tuning set Testing set Total

No. of CTA 298 65 94 457

No. of Male 161 37 50 248

No. of Female 137 28 44 209

Age (mean ± SD) 51 ± 14 52 ± 13 51 ± 15 51 ± 14

Male 50 ± 13 54 ± 11 50 ± 17 51 ± 14

female 52 ± 15 50 ± 15 53 ± 12 52 ± 14

Vascular stenosis

No 158 35 49 242

Mild (<50%) 76 14 19 109

Moderate (50%–70%) 13 4 7 24

Severe (>70%) 13 0 8 21

Occlusion (100%) 38 12 11 61

CTA, computed tomography angiography; SD, standard deviation.
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merge advanced semantic information with low-level positional
information.

During the training phase, CTA images with healthy vessels or
stenosis after preprocessing were randomly cropped to 128 ×
256×256 pixels and then fed into the vascular labeling model.
The sliding window technique was applied to handle the volume
during inference time. The network was trained using compound
loss function with Dice loss and cross entropy, which is robust on
highly imbalanced segmentation tasks. The Adam optimizer with a
learning rate of 0.001 and decay rate of 0.98 was utilized to optimize
the objective function. The batch size was set to 1 due to the
limitation of memory and the number of training epochs was
300. Data augmentations such as random cropping, scaling,
rotation, and elastic transformation were applied to CTA scans
for learning inherent features and avoiding the overfitting problem.
The training was implemented by using the Keras library of the

Tensorflow backend on the workstation with a single
V100 NVIDIA GPU.

2.5 Evaluation metrics of arterial labeling

Labeling performance is evaluated by determining three metrics:
(1) Dice similarity coefficient (DSC), (2) Mean surface distance
(MSD; [mm]) and (3) Hausdorff distance (HD; [mm]). The DSC
ranges from 0 to 1, where value of 1 indicates high similarity. For
MSD and HD, low values indicate high similarity. These three
metrics are defined as follows (Hameeteman et al., 2011;
Benkarim et al., 2021):

DSC G, P( ) � 2 G ∩ P| |
G| | + P| | �

2∑GP∑G+∑P

TABLE 2 The baseline characteristics of internal validation set for IAs localization.

Characteristics Internal validation set

No. of CTA 96

Sex

No. of Male 42

No. of Female 54

Age (mean ± SD) 57 ± 11

Male 58 ± 11

female 57 ± 10

Multiplicity of IAs 117

No. of single IA 77

No. of multiple IAs 40

Size of IAs (mean ± SD, mm) 5.1 ± 3.6

No. of different IAs size

<3 mm 26

3–5 mm 51

5–10 mm 31

>10 mm 9

No. of different IAs location

ICA 69

MCA 24

ACA 4

ACoA 12

PCA 0

PCoA 1

BA 5

VA 2

ACA, anterior cerebral artery; ACoA, anterior communicating artery; BA, basilar artery; CTA, computed tomography angiography; IAs, intracranial aneurysms; ICA, internal carotid artery;

MCA, middle cerebral artery; PCA, posterior cerebral artery; PCoA, posterior communicating artery; SD, standard deviation; VA, vertebral artery.
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Where G is the cerebral artery region in the ground truth and P
is the predicted result.

MSD G, P( ) � 1
S G( )| | + S P( )| | ∑

p∈S P( )
min
g∈S G( )

‖ p − g‖ + ∑
g∈S G( )

min
p∈S P( )

‖ g − p ‖⎛⎝ ⎞⎠

Where S (.) denotes the set of surface voxels.

HD G,P( ) � max max
g∈S G( )

min
p∈S P( )

‖ g − p‖, max
p∈S P( )

min
g∈S G( )

‖ p − g ‖( )

2.6 Clinical experiment

Besides the performance of model on voxel-wise
segmentation, clinical utility of the model was validated in a
real-world clinical scenario for IA localization. A total of
5 clinicians (W.Y., J.L., S.M.G., D.C.W., and J.J.) with
different experience levels (5,3,3,1, and 1 year, respectively)
participated as readers in the diagnostic accuracy study and
identified the precise location of IA without and with algorithm
assistance. The clinicians were blinded to clinical histories and
read independently in a diagnostic reading room by software
(3D Slicer). Following a washout period of 14 days, the
examinations were interpreted again by the same
corresponding clinician (if the first read was with aid of the
algorithm, the second read was without algorithm assistance,
and vice versa). Additionally, clinicians were provided with the
model’s predictions in the form of 42 segments of vessels only
when reading with algorithm assistance. Given the model
prediction, readers took it into consideration or disregard it
based on clinical judgment.

2.7 Statistical analysis

For comparison of labeling performance between the left and
right vessels as well as the normal and stenotic vessels, the
Wilcoxon signed rank test and Kruskal Wallis test were
implemented, respectively. The proposed algorithm was
assessed on CTA images with IAs by computing accuracy,
interpretation time, and the interrater agreement of clinicians.
The Wilcoxon signed rank test was used to assess differences in
accuracy and average time of the clinicians with and without
algorithm assistance. Furthermore, to investigate whether
differences in their years of experience might impact the
model’s usability and performance, five doctors with varying
levels of experience were divided into two groups, i.e., high-
level group of three doctors (5,3, and 3 years) and primary-level
group of two doctors (both 1 year). The Kruskal Wallis test was
implemented for comparison of the improved performance on
identifying the precise location of IA between the high-level group
and primary-level group. Considering over two readers and labels
with no ranking or ordering, the interrater agreement of clinicians
was determined using Fleiss’ Kappa (Fleiss and Cohen, 1973). To
confirm whether model augmentation improved interrater
agreement, the permutation test was performed on the
difference between Fleiss’ Kappa of clinicians with and without

model augmentation. The permutation procedure was repeated
10000 times to yield the null distribution of the Fleiss’ Kappa
difference and the p-value was calculated as the proportion of the
Fleiss’ Kappa differences that were higher than the observed Fleiss’
Kappa difference. A two-sided p-value less than 0.05 was
considered statistically significant. Statistical analysis was
conducted with IBM SPSS Statistics 23 (Armonk, New York)
and Python 3.8 (Wilmington, Delaware).

3 Results

3.1 Patient and intracranial aneurysm
characteristics

A total of 457 examinations (mean age, 51 years ±14 [standard
deviation]; 209 female, 45.7%) and 96 examinations (mean age,
57 years ±10; 56 female, 58.3%) with 117 IAs (mean size, 5.1 mm ±
3.6) were used for the model development and the validation of its
clinical utility. Table 1 shows the baseline characteristics of data set
for labeling model development and Table 2 shows that of internal
validation set for IAs localization.

3.2 Labeling performance of the model

The 3D network model for labeling of 42 arterial segments
achieves promising performance in the testing set (94 cases)
(Table 3). The 3D visualization of manual and CNN-automated
labeling for 42 segments of vessels for two cases was shown in
Figure 3. Overall, the model performs remarkably in labeling of
42 segments with the mean DSC of 0.88, MSD of 0.82 mm and HD
of 6.59 mm. ICA consisting of 7 detailed segments obtained
excellent results with DSCs ranging from 0.78 to 0.96, MSDs
ranging from 0.24 mm to 0.60 mm, and HDs ranging from
1.67 mm to 4.70 mm Evaluation metrics show a decrease in
labeling performance of MCA (M3-4), ACoA and PCoA. The
evaluation metrics of large arteries were also calculated and
described in Supplementary Table S1.

Besides, the statistical differences between the left and right
labeling metrics of vessels were analyzed and the results are
presented visually in Supplementary Figure S1 as a violin plot.
Clearly, right ICA has a higher DSC value of 0.91 compared to
that of 0.90 of the left (p < 0.001). It is noticeable that model
performance of left PCoA outperforms that of the right in terms of
MSD and HD corresponding to 0.09 mm vs. 0.10 mm (p = 0.005)
and 1.15 mm vs.1.40 mm (p = 0.017). Regarding the differences of
labeling performance on normal and stenotic vessels, healthy vessels
have better labeling results as depicted in Figure 4, particularly for
DSC (0.91 vs. 0.89; p = 0.047) and HD (4.75 mm vs. 6.19 mm; p =
0.028).

3.3 Clinical performance on precise IAs
localization

Performance improvements in terms of accuracy,
interpretation time per case and interrater agreement across
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clinicians when determining the precise location of IA are
reported in Table 4, and individual clinician improvement is
detailed in Figure 5. More precisely, clinicians achieved a mean
accuracy of 0.82 (95% confidence interval (CI), 0.79–0.86) with
model augmentation and there was a statistically significant
increase in the mean accuracy (0.04; 95% CI, 0.01 to 0.08; p =
0.003). Additionally, the mean time per case across clinicians was
14.14 s (95% CI, 10.03–18.25 s) with assistance and the time to
diagnosis was significantly lower (difference, −9.76 s; 95%
CI, −17.06 to −2.45 s; p < 0.001) compared to that of
clinicians without assistance. For the clinicians, there was a
significant increase of 0.07 (p = 0.029) in their interrater

agreement, with a Fleiss’ Kappa of 0.59 without assistance and
0.66 with assistance. Individual performances with and without
algorithm assistance were shown in Supplementary Table S2.
Comparison of clinical performance of clinicians with primary-
level and high-level experience when interpreting the precise
location of IA was provided in Supplementary Table S3, which
indicates that the accuracy is not affected by the doctor‘s
experience but interpretation time of primary-level clinicians
is enhanced better (difference, −14.39 s; 95%
CI, −17.18 to −11.60; p < 0.001) compared to that of high-
level clinicians. Figure 6 depicts two examples of aneurysms
located on R-C5 and R-C6 in the validation dataset.

TABLE 3 Performance of the labeling model for 42 segments in test cohort.

Arterial segments DSC ± std MSD ± std (mm) HD ± std (mm)

ICA

C1 0.91 ± 0.12 0.24 ± 0.45 1.88 ± 3.33

C2 0.95 ± 0.04 0.57 ± 2.34 4.70 ± 16.83

C3 0.94 ± 0.05 0.47 ± 1.18 2.87 ± 5.37

C4 0.96 ± 0.05 0.19 ± 0.33 1.67 ± 1.66

C5 0.78 ± 0.17 0.60 ± 0.57 2.04 ± 1.22

C6 0.93 ± 0.07 0.51 ± 1.82 3.21 ± 7.98

C7 0.91 ± 0.08 0.35 ± 0.69 4.38 ± 13.24

MCA

M1 0.94 ± 0.06 0.99 ± 2.60 6.01 ± 15.67

M2 0.88 ± 0.12 0.44 ± 0.80 3.74 ± 6.47

M3-4 0.56 ± 0.32 0.76 ± 2.46 11.37 ± 27.24

ACA

A1 0.94 ± 0.12 0.15 ± 0.43 3.85 ± 13.00

A2 0.89 ± 0.14 1.81 ± 4.27 12.09 ± 18.77

A3 0.80 ± 0.23 2.31 ± 3.89 17.86 ± 16.92

A4-5 0.82 ± 0.20 1.60 ± 4.37 26.99 ± 18.7

PCA

P1 0.89 ± 0.19 0.94 ± 5.15 4.02 ± 17.28

P2 0.95 ± 0.10 0.70 ± 4.84 4.42 ± 12.50

P3 0.86 ± 0.18 1.88 ± 6.57 8.82 ± 22.55

VA

V3 0.96 ± 0.11 0.48 ± 1.75 4.57 ± 15.86

V4 0.93 ± 0.10 1.13 ± 3.54 6.02 ± 14.19

ACoA 0.66 ± 0.31 0.57 ± 0.63 2.28 ± 2.04

PCoA 0.76 ± 0.36 0.16 ± 0.34 1.72 ± 2.79

BA 0.97 ± 0.03 0.65 ± 2.08 3.49 ± 9.68

42 segments 0.88 ± 0.19 0.82 ± 3.10 6.59 ± 15.64

ACA, anterior cerebral artery; ACoA, anterior communicating artery; BA, basilar artery; DSC, dice similarity coefficient; HD, hausdorff distance; ICA, internal carotid artery; L, left; MCA,

middle cerebral artery; MSD, mean surface distance; PCA, posterior cerebral artery; PCoA, posterior communicating artery; R, right; VA, vertebral artery.
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4 Discussion

In this study, we developed a DL model firstly based on the CTA
scans to automatically label intracranial arteries with 42 anatomical
segments with the largest dataset. The proposed model exhibited
notable labeling performance with the mean DSC of 0.88, MSD of
0.82 mm and HD of 6.59 mm. Furthermore, the model
demonstrated superior labeling performance in healthy subjects
compared to patients with stenosis (DSC: 0.91 vs. 0.89, p < 0.05;
HD: 4.75 vs. 6.19, p < 0.05). Additionally, a clinically relevant set for
the localization of IA was used to assess the model’s clinical utility
and results showed that clinicians with model predictions achieved
significant improvements when interpreting the precise location
of IA.

Previous studies involve mainly atlas construction-based
matching of arterial branches (e.g., UBA167) and sophisticated
graph-based function processing for labeling of major intracranial
arteries on MRA images (e.g., ICA, MCA, and ACA) with overall
accuracies ranging from 93% to 96% or F1 score around 0.85

(Dunas et al., 2016; Robben et al., 2016; Dunas et al., 2017).
However, these researches neglect the detailed anatomical
segments of arteries and suffer from the common limitations
due to the relatively small datasets and the subjects without
pathological variability, which may have ramifications on the
robustness and the clinical utility of algorithm performance. A
network has been recently adopted to obtain the exhaustive
anatomical classification of the 62 cerebral branches with
accuracies ranging from 73% to 100% and F1 scores ranging
from 0.67 to 0.99, whereas quantified geometric vessel features
are required in advance and only the healthy subjects are utilized
for this model development (Hong et al., 2023). Besides, 24 classes
of arterial segments have been distinguished via a multi-scale
U-Net architecture with macro F1score of 0.89 and balanced
class accuracy of 0.83 in labeling detailed segments. However, it
considers only the large artery rather than detailed segments of
ICA whereas stenosis and aneurysms frequently occur (Hilbert
et al., 2022). In this paper, we leveraged voxel-wise segmentation
indices instead of classification indices, i.e., DSC, MSD and HD, to

FIGURE 3
Visualization of manual and automated labeling for typical large vessels of two cases. For case 1 with a DSC of 0.85, MSD of 1.25, and HD of 10.71, the
first raw provides the ground truth of detailed segments for the whole cerebral vessels (A), ICA (A1), ACA (A2), MCA (A3) and VA with BA (A4), which are
displayed from left to right column. The second row represents the corresponding labeling results of the model, i.e., the whole cerebral vessels (B), ICA
(B1), ACA (B2), MCA (B3) and VA with BA (B4). Similarly, for case 2 with a DSC of 0.88, MSD of 0.82, and HD of 5.91, the third raw provides the ground
truth of detailed segments for the whole cerebral vessels (C), ICA (C1), ACA (C2), MCA (C3) and VA with BA (C4). The fourth row represents the
corresponding labeling results of the model, i.e., the whole cerebral vessels (D), ICA (D1), ACA (D2), MCA (D3) and VA with BA (D4). ACA, anterior cerebral
artery; BA, basilar artery; DSC, dice similarity coefficient; HD, Hausdorff distance; ICA, internal carotid artery; MCA, middle cerebral artery; MSD, mean
surface distance; VA, vertebral artery.
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evaluate the performance of labeling model, given the anatomical
morphology and 3D properties of vessels. The proposed model
achieved the overall DSC of 0.88, MSD of 0.82 mm and HD of
6.59 mm, demonstrating superior results compared with the
conventional segmentation of carotid lumens and the whole
cerebral vessels (Hemmati et al., 2017; Chen et al., 2021; Guo

et al., 2021; Huang, Wang, and Li, 2023). Besides, we found that
labeling performance of MCA, ACoA and PCoA seemed to decline
in line with prior researches (Dunas et al., 2017; Hilbert et al., 2022;
Hong et al., 2023). This may attribute to the small diameter of
distal MCA (i.e., M3-4, See Table 3) and the potential inter-
individual variation of vessels.

FIGURE 4
Comparison of the labeling performance on the normal and stenotic vessels. Violin plots are used to show the distribution of three metrics and
visualize the statistic results. *p < 0.05; **p < 0.01. DSC, dice similarity coefficient; MSD, mean surface distance; HD, Hausdorff distance.

TABLE 4 Clinical performance with and without algorithm assistance to predict precise location of IAs in internal validation cohort.

Metric Without assistance (95%CI) With assistance (95%CI) Mean difference (95%CI) p-Value

Accuracy 0.79 (0.75–0.83) 0.83 (0.80–0.86) 0.04 (0.01–0.08) 0.003

Time (s/case) 23.90 (17.79–30.00) 14.14 (10.03–18.25) −9.76 (−17.06 to −2.45) <0.001

CI, confidence interval.

FIGURE 5
Change in individual clinicians’ performance metric. Horizontal lines depict the change in performance metric for each clinician with and without
model assistance. The orange dot represents performance without model, and the blue dot represents performance with model assistance.
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As reported in many experiments, the DSC metric cannot fully
express the performance of vascular segmentation (Li et al., 2020).
Because minimal changes may lead to low DSC in case of small
volumes and the DSC would remain high regardless of critical errors
in relatively large volumes. Consequently, we also took the spatial
distance-based metrics (i.e., MSD and HD) to evaluate the surface
coincidence and the segmentation quality of outliers, respectively. In
Supplementary Figure S1, our result suggested that there were
significant differences between left and right ICA (DSC: 0.90 vs.
0.91, p < 0.01) and PCoA (MSD: 0.09 vs. 0.10, p < 0.01; HD: 1.15 vs.
1.40, p < 0.05). In terms of DSC metric vulnerable to the variation of
vascular shape, the significant difference of left and right ICAmay be
attributed to the asymmetrical nature per se (about 6%) and
relatively high incidence of arterial stenosis compared to other
arteries (Mujagic et al., 2016). For PCoA, the meta-analysis
indicates the prevalence of PCoA hypoplasia or aplasia is almost
up to 43%, which is likely to be the primary factor that leads to the
difference of labeling performance in terms of distance-based
metrics (Jones et al., 2021). Furthermore, we achieved a higher
level of labeling performance in healthy controls compared with that
of patients with stenosis (See Figure 4), providing the evidence that
pathological variations of cerebral vasculature results in the lower
prediction performance (DSC: 0.91 vs. 0.89, p < 0.05; HD: 4.75 vs.
6.19, p < 0.05). Patients with different level of stenosis often showed
a lack of vascular volume, changes in vascular surface texture, and
even partial cerebrovascular loss by means of observing CTA scans,
which seems to account for our finding.

We designed a validation process to simulate the clinical
scenario of precise IA localization since the location of aneurysm
is critical for the growth and rupture risk, clinical decision, and
outcome evaluation (Investigators et al., 2012; Thompson et al.,

2015). In our study, with model augmentation, the mean accuracy,
time to diagnosis and interrater agreement of aneurysm localization
across clinicians significantly improved, suggesting that the
proposed algorithm seems to assist clinicians with varying level
of experience in higher efficiency of diagnosis, more accurate and
more consistent clinical interpretations. Additionally, the proposed
model has great potential in multiple clinical application aspects. It
enables stenosis localization and the automatic quantification of
specific segments of blood vessels such as arterial diameter, volume,
cross-sectional area (narrowing grade), curvature index, even
hemodynamic parameters, thus providing additional guidance for
future research and treatment of cerebrovascular diseases.

There exist several limitations. First, this study was conducted
on data from a single institution. Hence, the generalizability of the
algorithm entails further assessment on multicentric external data
and there are challenges in identifying precise location of other
vascular lesion such as arteriovenous malformation. Second, the
model’s labeling performance on vascular segments for small
diameter (e.g., distal MCA) and high incidence variation (e.g.,
PCoA) was slightly weakened. The model may be matured if self-
attention mechanism is incorporated by learning rich hierarchical
representations of curvilinear structures (Mou et al., 2021). Also,
since we focused on the cerebral vasculature in CTA images, the
model’s performance on other imaging modalities remains
unknown.

5 Conclusion

The precise anatomical labeling of intracranial arteries is a
fundamental step in automated diagnosis and decision-making

FIGURE 6
Examples of aneurysms in the validation dataset. The first raw presents CTA scan (A), binary mask (B), and the labelled arteries (C)with IA located on
R-C5 of ICA, which are displayed from left to right column. Similarly, the second raw depicts CTA scan (D), binarymask (E), and the labelled arteries (F)with
IA located on R-C6. CTA, computed tomography angiography; IA, intracranial aneurysm; ICA, internal carotid artery; R, right.
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processes for various arterial diseases, and it remains challenging
despite considerable research efforts. We developed a powerful DL
model to automatically label 42 intracranial arteries segments on
CTA images, demonstrating superiority over existing models.
Additionally, a significant improvement in clinicians’
performance to precisely locate IAs was observed when assisted
by proposed model. This research represents an initial stride
towards a more comprehensive evaluation of labeling algorithms
and underscores the immense potential of such advancements in the
field of computer-aided medicine.
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