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The structural morphology of mesenteric artery vessels is of significant
importance for the diagnosis and treatment of colorectal cancer. However,
developing automated vessel segmentation methods for this purpose remains
challenging. Existing convolution-based segmentation methods have limitations
in capturing long-range dependencies, while transformer-based models require
large datasets, making them less suitable for tasks with limited training samples.
Moreover, over-segmentation, mis-segmentation, and vessel discontinuity are
common challenges in vessel segmentation tasks. To address these issues,
we propose a parallel encoding architecture that combines transformers
and convolutions to retain the advantages of both approaches. The model
effectively learns position deviations and enhances robustness for small-scale
datasets. Additionally, we introduce a vessel edge capture module to improve
vessel continuity and topology. Extensive experimental results demonstrate
the improved performance of our model, with Dice Similarity Coefficient and
Average Hausdorff Distance scores of 81.64% and 7.7428, respectively.
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1 Introduction

According to the global cancer burden data released by the International Agency for
Research on Cancer of theWorldHealth Organization in 2020, colorectal cancer has become
the thirdmost common cancer and the secondmost deadly cancerworldwide, following only
lung cancer and liver cancer, with an increasing incidence among young and middle-aged
populations (Xi and Xu, 2021). Surgery is the primary approach for curative treatment of
colorectal cancer, involving tumor resection, ligation of local blood vessels, and lymph node
dissection. The inferior mesenteric artery (IMA) is a key site for lymph node metastasis
and the target vessel for ligation (Yada et al., 1997). Preoperative knowing the arterial

Abbreviations: IMA, inferior mesenteric artery; DSC, dice similarity coefficient; SEN, sensitivity; AHD,
Average Hausdorff distance; CNNs, convolutional neural networks; TAGT, triple-axial gated transformer;
EFC, edge feature capture; FFB, feature fusion block.
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branching helps surgeons create surgical plans for the safe and
effective ligation of arteries and lymph node clearing.

Over the years, convolutional neural networks (CNNs) have
greatly contributed to the field of computer vision, owing to their
excellent feature extraction and expression capabilities. They have
been widely used for tasks such as classification, segmentation,
object detection, and registration. In 2015, the success of the
Unet (Ronneberger et al., 2015) established the important position
of CNNs in medical image analysis, and many variants based
on Unet have been subsequently proposed, which have achieved
impressive results in 2D medical image analysis. In 2017, 3D
Unet (Çiçek et al., 2016) was introduced for the processing of
3D medical images, which further propelled the development of
CNNs in 3D medical imaging tasks. Many automatic segmentation
algorithms have been proposed based on these models, involving
organs (Garcia-Uceda Juarez et al., 2019; Chen et al., 2020), tissues
(Chen et al., 2017), tumors (Feng et al., 2020; Liu et al., 2015), and
many other targets. Given the remarkable performance of CNNs
in pixel (voxel) segmentation tasks, it has also been widely used
for vessel segmentation (Zhao et al., 2022; Pan et al., 2022; Li et al.,
2022). However, for some small vessels, the segmented results are
often not accurate enough.

Many attempts have been made to expand the receptive field
of convolutional networks to capture more global information.
Wu et al. (2019) proposed a dilated convolution which can expand
the receptive field, and achieved excellent performance in multiple
segmentation tasks. Zhao et al. (2017) designed a multi-scale
feature pyramid to aggregate more global information. Peng et al.
(2017) applied a large kernel to capture global relationships.
Although these methods have improved the modeling of contextual
relationships to some extent, these models are still limited by the
restricted receptive field of convolutional architectures.Compared
with convolutional networks, the transformer relaxes the local
inductive bias, enhances the interaction between non-local regions,
and allows for effective learning of long-range information. Given
the outstanding performance of the transformer, many methods
have attempted to introduce it into the field of medical image
processing. Dosovitskiy et al. (2020) proposed Vision Transformer
(ViT), which was the first attempt to use the transformer for vision
tasks. Liu et al. (2021) proposed a hierarchical architecture that uses
movable windows to allow attention to be local and across-window
connections to improve computational efficiency, making it highly
compatible with various visual tasks. Some recent methods have
attempted to combine CNN and transformer to improve model
performance (Chen et al., 2021; Xie et al., 2021; Wang et al., 2021).
However, these networks still rely heavily on convolutional layers,
and the transformer is only embedded as a separate module to
compensate for the lack of long-range relationships in the features
extracted by the convolution. Specifically, they are often arranged
after the convolutional feature extraction module in each layer or
part of the feature compact layer. When the feature is feeded into
the transformer, it is usually a limited feature that has undergone
convolutional operations. We believe that it is usually limited to
compensate for global dependencies based on this foundation, and
the performance potential of the transformer is not fully exploited.

Due to the lack of inductive bias of transformers for images,
transformer-based models require training on large-scale datasets
or extensive pre-training to perform effectively (Dosovitskiy et al.,

2020).This poses a problemwhen using Transformers for small scale
dataset, which is a common problem inmedical imaging. To address
this, we propose a Triple-Axial Gated Transformer (TAGT) that runs
the transformer from three directions: height, width, and depth,
greatly enhancing the sensitivity of positional information, making
the model more versatile and not restricted by massive amounts of
data.

In addition, vascular images often exhibit sparse, elongated
tubular structures. Due to uneven noise, low contrast, and the
complex topology of blood vessels, existing methods for vessel
segmentation typically suffer from the following problems: over-
segmentation or mis-segmentation, poor vascular continuity, and
poor capturing of microvessels. Therefore, 3D elongated tubular
vessel segmentation remains a topic worthy of joint research. We
attribute the above problems to the insensitivity to vessel edge
structures. In Figure 1, we show an example of the IMA vessel
prediction results, and even an error of a few pixels can have a huge
impact on the continuity of vessels. Inspired by self-attention, we
designed a vessel edge-sensitive module that enhances the capturing
ability of vessel edges by increasing the weight of edge voxels in the
vessel volume image.

CNNs possess translational invariance but lack global feature
comprehension. On the other hand, transformers excel at capturing
global context, but their lack of translational invariance demands
ample training data. Thus, their advantages complement each other.
In existing architectural paradigms, some fusion architectures,
predominantly relying on convolutional layers, tend to replace
convolutions with transformers in a few compact layers. However,
we posit that in limited convolutional features, leveraging
transformers to capture global features may not fully exploit the
advantages of transformers. In contrast to existing architectures,
our approach involves constructing parallel branches for CNNs and
transformers, aiming to maximize the utilization of their respective
strengths.

In this paper, we explore a parallel encoding architecture
that tightly integrates transformers with convolutional networks to
address automatic segmentation of the inferior mesenteric artery in
the abdomen. Our contributions can be summarized as follows:

1. We propose a parallel connection approach for integrating CNN
and transformer, retaining the inductive bias of convolutions and
the ability of transformers to model long-range dependencies.
The architecture follows the classic encoder-decoder structure.

2. We extend the axial attention mechanism to the 3D domain,
computing attention along the width, height, and depth
directions. This efficient learning of positional information
enhances the model’s ability to focus on fine details in small
regions, addressing the issue of transformers struggling to learn
image position encoding on small datasets and improving the
model’s robustness for tasks with limited data.

3. We introduce a vessel edge feature capture (EFC) module which
enhances the weight of vessel edge voxels to improve vessel
boundary extraction and enhance vessel continuity, especially for
capturing fine vessel boundaries.

4. We design a deep feature fusion block (FFB) to allocate weights
between high-level features generated by the decoder and low-
level features from skip connections.This selective feature fusion
retains prominent features relevant to vessel structures.
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FIGURE 1
Challenges in segmenting tubular vessels. The first column highlights two instances of vascular rupture identified in the 3D predictive model. The
second column displays cross-sectional slices corresponding to the aforementioned ruptures. The third column presents magnified images of two
adjacent microvessels extracted from the vicinity of the corresponding slices.

1.1 Prior work and challenges

We built our Parallel Encoding Net (PE-Net) based on the
latest successful foundations of convolutional neural networks and
transformers. In this section, we briefly review the relevant methods
and expand on two subfields: convolutional segmentation networks
and semantic segmentation using transformers.

1.1.1 Semantic segmentation using ConvsNet
CNNs have achieved tremendous success in various visual

tasks such as segmentation, classification, registration, and object
detection. Among them, the fully convolutional network (FCN)
has become the mainstream network for semantic segmentation
and has inspired many deeper and larger networks. In particular,
the U-Net (Ronneberger et al., 2015) architecture, which uses a
decoding-encoding structure with skip connections, has become
the mainstream architecture for medical image segmentation.
Many U-Net variants, such as U-Net++ (Zhou et al., 2018)
and Res-UNet (Zhang et al., 2018), have further improved the
performance of image segmentation. The W-UNET (Hong et al.,
2019) improves segmentation performance by stacking multiple
decoding-encoding modules, while the 3D Unet and V-Net
(Milletari et al., 2016) further extend these high-quality features
to the segmentation of 3D images. nnUnet (Isensee et al., 2021)
is a significant breakthrough in the field of medical image
segmentation using the U-Net architecture, which adapts training
parameters to perform well in both 2D and 3D tasks and
ranks first in the top ten tasks without changing the network
structure.

Despite the success of these convolutional networks, the
locality of the convolutional layers in CNNs limits their ability
to learn distant spatial correlations. The convolution operation
used in these models captures texture features by collecting

local information from neighboring pixels. To aggregate feature
filter responses at the global scale, many solutions have been
proposed, which can be broadly classified into using dilated
convolutions (Wu et al., 2019), increasing kernel size (Chen et al.,
2017), adopting feature pyramid pooling (Chen et al., 2017;
Zhao et al., 2017), and non-local operations (Wang et al., 2018).
Although these methods have been shown to improve performance,
such improvements are limited and cannot completely solve this
problem.

1.1.2 Semantic segmentation using transformer
In recent years, a large number of excellent transformer-

based methods have emerged in the field of image processing.
Transformer-based visual models can be further divided into two
types: one is the method constructed mainly with convolutional
layers, and the other is the method using transformer as the main
architecture. TransUnet (Chen et al., 2021) is proposed as the first
attempt to introduce the transformer into the field of medical
image segmentation. The core idea is to embed transformer blocks
between the CNN encoder and decoder to capture long-range
dependencies. The idea of embedding several layers of transformers
in a convolutional network has attracted a lot of followers. TransBTS
(20) extends the transformer to 3D medical image processing tasks,
modeling the remote dependencies in depth and spatial dimensions.
Its structure is similar to TransUnet, placing transformers at the
bottom of the U-shaped network. Wang et al. (2022) proposed a
hybrid framework, using convolution as a shallow feature extractor
in the first three layers and performing transformers in the last
two layers. UTNET (Hatamizadeh et al., 2020) replaces a group
of convolutions in the encoding and decoding layers of the U-
shaped network with transformer blocks. Cotr (Xie et al., 2021)
proposes a mixed architecture to efficiently bridge CNN and
transformer and introduces a deformable attention mechanism
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to reduce the computational complexity for incorporating more
transformer layers. However, these methods typically treat the
transformer as a module embedded or replaced within a few
layers of convolutional networks, without fully overcoming the
inherent limitations of feature extractionwith convolutions.This has
prompted researchers to explore solutions based on the transformer
architecture.

Some researchers lead the way in using transformer as a
feature extractor. Zheng et al. (2021) deploy a pure transformer
network to encode images as a series of patches, without using
any convolutions or downsampling operations, and utilize each
layer of the transformer for context modeling. Swin Transformer
(Liu et al., 2021) is proposed to apply the inductive bias of CNN
to the transformer architecture, allowing window movement and
computing local attention in each small block window for global
interaction. Zhou et al. (2021) integrated the advantages of the
nnUnet architecture and employed Swin Transformer in both
the encoder and decoder, achieving impressive performance.
Nonetheless, as the transformer architecture relies on attention
mechanisms to capture holistic information, its inherent lack of
translational invariance often demands an extensive volume of
training data or pre-trained models. This predicament renders
it arduous to cater to the demands of small training datasets.
Tragakis et al. (2023) introduced a novel fully convolutional
transformer that integrates the characteristics of convolution with
the ability of transformers to capture long-range dependencies,

eliminating the need for any pretrained models. Building upon the
Swin Transformer, Liu et al. (2023) devised a convolutional multi-
head self-attention block. This design incorporates convolutional
projection and window shift mechanisms, simultaneously offering
local context and inductive bias.The deep fusion of convolution and
transformer, leveraging the strengths of each, serves as inspiration
for the design of our model.

2 Methods

2.1 Network architecture

Inspired by the great success of 3D Unet (Çiçek et al., 2016)
and Swin Transformer (Liu et al., 2021), we propose a novel
parallel network that combines transformer with CNN. The overall
framework of our proposed network is illustrated in Figure 2. Our
network consists of a contracting path (encoder), an expanding path
(decoder), and skip connections.

Encoder: During the encoding process, we design two parallel
branches. One branch follows the classic double-convolution
encoder, while the other branch employs a transformer encoder
based on axial attention. The features extracted from these
two branches are fused in the channel dimension using the
Feature Fusion Module (FFM), as introduced in our previous
work.

FIGURE 2
Overview of the structure of the proposed PE-Net: Two encoding layers consisting of CNN and TAGT, a skip connection layer consisting of EFC and
FFB, and one decoding layer. The parallelly encoded features are fused using the Channel Attention-based method, as introduced in our previous work
(Zhang et al., 2023)—a block named Feature Fusion Module (FFM). Before the operation, the features generated by TAGT are broadcasted to align their
channel dimensions with the convolutional features.
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TABLE 1 Details of the PE-Net architecture.

Layer 1 Input dimensions Onput dimensions Supplement

Double Conv1 1, 1, 128, 128, 128 1, 8, 128, 128, 128 K = 3, S = 1

TAGT1 head = 8 head_dim = 16

1, 128, 128, 1, 128

1, 1, 128, 128, 128

q, k, v = (131072, 1, 1, 16)

1, 128, 128, 128, 128 q, k, v = (1024, 128, 128)

1, 128, 128, 128, 128 q, k, v = (1024, 128, 128)

Conv 1, 1, 128, 128, 128 1, 8, 128, 128, 128 K = 3, S = 1

EFC 1, 1, 64, 64, 64 1, 8, 128, 128, 128 K = 2, S = 2

K denotes Kernel size, and S denotes stride size.

Decoder: The decoder is responsible for progressively
upsampling the extracted features from the encoder to the input
image resolution. It consists of four layers, each composed of
double convolutions, and upsampling is achieved through transpose
convolutions.

Skip connections: The skip connection path comprises EFC
and FFB. These modules respectively guide feature extraction from
vessel boundaries and vessel regions to obtain more detailed vessel
structure information.

At the network’s final layer, a 1× 1× 1 convolution followed by
the softmax function is applied to generate segmentation probability
maps. As an example, Table 1 shows the variations of parameters for
each module in the first layer of the network, while further details
for each module are described in the following Section.

2.2 TAGT

TAGT decomposes the transformer into three self-attention
modules, breaking down the feature extraction process into three
1D operations along the depth, width, and height axes. It computes
attentionmaps from these three operations and then combines them
through summation and sigmoid to generate position weight maps.
Building upon the conventional attention mechanism’s ability to
consider query position deviations, Wang et al. (2020) advocates
enhancing the model’s sensitivity to positional information by
introducing relative positional bias terms for keys and values.
Additionally, they attempt to perform attention calculations along
the height and width axes, reducing parameter computation
while ensuring the ability to capture long-range dependencies.
Valanarasu et al. (2021) further introduces a gating mechanism
for affinity calculations to further enhance the axial attention’s
performance on small datasets. However, these efforts have been
limited to 2D images. In this paper, we extend the axial attention
to a 3D perspective by introducing computations along the depth
direction. The overall structure of TAGT is illustrated in Figure 3.
Below, we will provide a explanation of the derivation process of
TAGT.

For a given input feature X ∈ ℝC×D×W×H with channel C, depth
D, height H, and width W. We first conducted data normalization
to reduce the memory consumption of the model, accelerate

model convergence, and improve training speed. Secondly, we used
embedding layers to map features into vectors, including query
vector q, key vector k, value vectorv. We use matrices for batch
computation, the definitions of the three matrices are described in
Eqs 1–3:

v (X) =WvX (1)

q (X) =WqX (2)

k (X) =WkX (3)

where v(X),q(X),k(X) ∈ ℝZ×N and N = D×W×H, Z is the
embedding demention, Wv,Wq, Wk are learnable parameters. In
the conventional process of three-dimensional attention calculation,
the output y of the self-attention layer can be described as
yi,j,t = ∑

D
d=1∑

H
h=1∑

W
w=1σ(q

T
i,j,tkd,h,w)vd,h,w. Here, qi,j,t,ki,j,t,vi,j,t denote

query, key and value at any location, i ∈ {1,…,D}, j ∈ {1,…,H},
t ∈ {1,…,W}.

In TAGT, we transform the mapped vectors into four-
dimensional features ℝZ×D×W×H. Afterward, the transformed 4-
dimensional features were added with corresponding positional
encodings to form the ultimate input vector. This input vector
underwent attention computations across the width, height, and
depth dimensions. The attention update of a transformer with a
triple-axis feature extraction module on the depth axis is shown in
Eq. 4:

yi,j,t =
D

∑
d=1

σ(qTi,j,tkd,j,t + q
T
i,j,tr

q
d,j,t + k

T
d,j,tr

k
d,j,t)

× (vd,j,t + r
ν
d,j,t) (4)

where σ is function softmax qi,j, ki,j, vi,j, represents vector q, vector
k, and vectorv at any position, rq, rk, rv ∈ ℝD×D are relative position
coding which are learnable.

We achieve the final extractor by adding attention gates to every
item in Eq. 4 except the first item, the update on the depth axis can
be described in Eq. 5.

yi,j,t =
D

∑
d=1

σ(qTi,j,tkd,j,t +Gqq
T
i,j,tr

q
d,j,t +Gkk

T
d,j,tr

k
d,j,t)

× (Gv1vd,j,t +Gv2r
ν
d,j,t) (5)
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FIGURE 3
The diagram of the TAGT. (A) TAGT layer. Firstly, feature embedding and positional encoding are applied to the normalized features. Subsequently,
corresponding features and position encoding are selectively chosen from the height, width, and depth axes for gated axial attention calculations. The
results of the triple axial calculations are element-wise added, and the fused features undergo matrix multiplication with the original image to form the
output. Convolution and normalization are applied, and a skip connection is added to stabilize training. (B) Three-dimensional gated axial attention
layer, providing a detailed computational process for the shaded portion in (A).

where the new added Gq, Gk, Gv1, Gv2 are all learnable parameters
in network.

2.3 Vessel edge feature catcher

Continuous downsampling often leads to the loss of some
details in the model, leading to the prediction of vascular edges

often not being accurate enough. Xia et al. (2022) regards the
intersection of the foreground and background of different layers
as the target edge feature, and the edge weights of foreground
vessels in layer (i− 1)th can be obtained by subtracting the
background probability map of layer ith from layer (i− 1)th.
Hatamizadeh et al. (2020) employed a 1× 1× 1 convolution to
design the edge gate module and verified its effectiveness in 3D
medical image segmentation tasks. Inspired by the aforementioned
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FIGURE 4
The architecture of EFC. The adjusted features in the encoding layer are denoted as Fi−1 and Fi, utilizing a double-layer path to ensure the extraction of
edge features, distinguished by red and blue lines.

two approaches, we designed our EFC which utilizes both the
current layer itself and neighboring layers to ensure robust edge
feature extraction. The detailed architecture of EFC is illustrated in
Figure 4.

EFC discovers edge features through convolution and enhances
them by increasing the voxel weights of the edge parts. Path 1 (red)
first operates on features Fi generated in each encoding layer, Fi ∈
ℝC×D×H×W, i ∈ 2,3,4. We first increased the resolution of Fi to match
that of Fi−1. Then, we combined the features into a single channel
using a 1× 1× 1 convolutional operation, passing them into ReLU to
gain attention map σ1. Let σ be the function softmax, then processes
can be represented using Eq. 6:

σ1 = σ(Re(C1 (Up(Fi)))) (6)

The weights captured in path1 can be described by Eq. 7:

Ai−1 = 1− σ1 (Fi) = 1−
1

1+ e−Fi
(7)

The corresponding edge feature can be captured by matrix
multiplication, that is Eq. 8:

Ei−1 = Fi−1 ∗Ai−1 (8)

In the i− 1st layer, the final combined feature with the inclusion of
edge features can be described using Eq. 9:

Fsum1
i−1
= Fi−1 +Ei−1 (9)

In Path 2 (blue), the same operations as in Path 1 are
performed on Fi−1, except for the upsampling step, resulting in
σ2 = σ(Re(C1(Fi−1))). The final output containing edge features can
be represented by Eq. 10:

Fsum2
i−1
= Fi−1 ∗ σ2 + Fi−1 (10)

The final blood vessel edge features generated by the dual pathways
can be represented by Eq. 11:

Fsumi−1
= Fsum1

i−1
+ Fsum2

i−1
(11)

2.4 Deep feature fusion block

Although EFC enhances blood vessel edge information, it
also enhances some similar interfering vessels. To address this,
we introduce FFB, which filters and retains prominent blood
vessel features of IMA. We utilize attention mechanisms to
generate refined attention features. Unlike the attention gate, the
essence of FFB is a feature fusion module. Building upon the
classic CAT operation in U-shaped networks, FFB introduces
additional convolutions for feature selection. Therefore, we initially
concatenate features along the channel dimension, followed by
feature extraction and filtering. Specifically, as shown in Figure 5,
we connect the final features Fsumi−1

generated from the skip paths
in each layer with the upsampled features F(i), F(i−1) = Fsumi−1

⊗
Upsample(F(i)).

Subsequently, F(i−1) will be fed into three convolutional blocks,
which selectively extractuseful vascular structure information
from the fused features. This process can be expressed by Eq. 
12:

Wx−1 = gconv (F
i−1;θ) (12)

where gconv represents a set of three convolution operation functions.
The variable Fi−1 refers to the integrated feature resulting from
the combination of high-level and low-level features. Finally, the
parameter θ is associated with the learning process involved in
convolution.

In the end, we normalized Wx−1 using the Sigmoid function
and generated corresponding attention weights Ax−1. This enables
our network to learn to select more discriminative features,
thereby achieving more accurate and reliable vascular region
segmentation. Such improvements enhance the academic level of
our algorithm.

Frontiers in Physiology 07 frontiersin.org

https://doi.org/10.3389/fphys.2023.1308987
https://www.frontiersin.org/journals/physiology
https://www.frontiersin.org


Zhang et al. 10.3389/fphys.2023.1308987

FIGURE 5
The illustration of the designed FFB. The two sets of features are initially summed along the channel dimension. Subsequently, three convolutional
blocks are employed for feature selection, each convolutional block consists of a convolutional layer, a group normalization layer, and a ReLU layer.
The corresponding convolutional layer sizes in the three blocks are 3×3×3, 3×3×3, and 1× 1× 1. Attention weights are computed and allocated using
the sigmoid function.

3 Material, experiments and results

3.1 Dataset

IMA dataset is a self-made dataset that contains 60 anonymous
patient upper abdominal vascular images from the Affiliated 2
Hospital of Nantong University in Nantong City, Jiangsu Province,
China. The average size of the images was 512× 512× 90, with
a classic voxel spacing of 1× 1× 1, each 3D IMA sample was
cropped to 128 ×128× 128. Three annotators and a professional
expert were invited to annotate the vessels in the abdominal
vascular images, including the background (label 0), IMA
(label 1). The CT scans used in the experiment were obtained
from a Siemens dual-source CT scanner (Somatom Force,
Siemens Healthcare, Forchheim, Germany). The specific CT
acquisition parameters were consistent with our previous work
(Zhang et al., 2023).

ASOCAdataset consists of 60 coronary artery images, including
20 samples from patients with coronary heart disease and 20 normal
samples, all of which are labeled. The remaining 20 unlabeled
samples are used as the test set. These data were obtained from the
Grand Challenge (https://asoca.grand-challenge.org/access/). The
average scanning resolution is 200× 512× 512, but we resampled the
dataset to a lower resolution, resulting in an average resolution of
200× 256× 256. The labeled dataset was split into training, testing,
and validation sets in a ratio of 6:2:2.

3.2 Experimental setting

The platform used in this experiment comes from a deep
learning computing platform with two NVIDIA RTX-3090 24 GB
graphics cards. The operating system and version were Ubuntu
20.04, while themachine learning environment was configured with
Torch 1.7.0 and CUDA 11.1.The program compilation environment
was Python 3.6.12. During the training process, a 3-fold cross-
validation was employed to partition the dataset. The Adam

optimizer (Reddi et al., 2019) was used for network optimization,
with an initial learning rate of 0.001 and a weight decay of 10–8. The
learning rate was adjusted using CosineAnnealingWarmRestarts
with eta_min set to 0.0001, and the total number of epochs was set
to 600. The loss function used in this paper is presented in Eq. 13:

LPE−Net = 0.6 ⋅ LCE + 0.4 ⋅ LWCE + LDICE (13)

3.3 Evaluation metrics

To comprehensively assess the segmentation performance of
blood vessels and their edges, we utilized voxel-based metrics,
including sensitivity (SEN), Dice Similarity Coefficient (DSC),
Average Hausdorff Distance (AHD). SEN quantifies the proportion
of true positive samples among all predicted results in the
sample. A higher SEN corresponds to a higher proportion of
true positive pixels, yet it neglects the ability to identify negative
instances, rendering it unsuitable as a primary indicator for scoring
segmentation performance. DSC utilizes the intersection of the
predicted set and the ground truth to comprehensively evaluate
sparse vessel segmentation in a large background context. A
larger DSC indicates superior segmentation performance. AHD,
calculated by measuring the closeness of corresponding points
between the predicted and ground truth sets, offers a better
assessment of edge accuracy in vessel segmentation. A smaller
AHD reflects a smaller distance between the two sets, thus
indicating better segmentation performance. DSC is sensitive to the
internal filling of masks, while AHD is sensitive to the segmented
boundaries. Considering vascular connectivity, we tend to favor
models with smaller AHD. In cases where the difference in AHD is
not substantial, higherDSC and SENvalues also fall within the scope
of consideration for the optimal model. The definition of evaluation
metrics are illustrated in Eqs 14–16:

SEN = TP
P
= TP
TP+ FN

(14)
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DSC =
2|L∩ P|
L∪ P
= 2TP
2TP+ FN+ FP

(15)

AHD = 1
2
( 1
P

max
p∈P,l∈L

mind (p, l) + 1
L

max
l∈L,p∈P

mind (p, l)) (16)

where sets P and L represent the predicted set and the label set,
respectively, and their corresponding elements are denoted as p and
l. TP, FN and FP represent the true positives, false negatives and false
positives, respectively.

3.4 Experiment and results

3.4.1 Backbone
Our network entails two parallel encoders. To validate

the efficacy of the parallel architecture, we first compare the
experimental data between 3DU-Net and the parallel structured 3D
Unet+TAGT (CNN-TAGT). Subsequently, in order to determine the
optimal convolutional structure within the convolutional branch,
we individually assess the impact of substituting the convolutional
branch with 3D ResUNet (Res-TAGT) and 3D DenseNet (Dense-
TAGT) on segmentation outcomes. The quantified results
of these experiments on the IMA dataset are presented in
Table 2.

We first conducted an analysis based on the average values,
and further examined the data stability for results with insignificant
differences in these averages. From Table 2, it is observed that the
top two performers are predominantly the 3D Unet model and the
CNN-TAGT model. In terms of AHD, CNN-TAGT achieved the
best overall performance, outperforming 3D U-Net by a margin of
7.78%. Although Dense-TAGT exhibited superior sensitivity scores,
its AHD was nearly double that of CNN-TAGT’s. This implies that
Dense-TAGT possesses strong predictive capabilities for positive
samples but also includes a substantial number of false positive
results in its segmentation. While maintaining AHD performance,
CNN-TAGToutperformed 3DUnet by 5.53% in SEN,with a value of
0.8059. Furthermore, the gap between the maximum andminimum
values of SEN is relatively narrow, and the standard deviations
are quite close, consistently staying within 0.9. This indicates
that the advantage of CNN-TAGT over 3D U-Net is relatively
stable. Due to the convolutional bias, the convolution-based 3D

Unet model was unable to effectively capture global information
and lacked efficient learning of positional information, leading to
inevitable instances of mis-segmentation and reduced segmentation
performance.

Regarding the DSC scores, the difference between the two
models remained insignificant at 0.23%. Although the Res-
TAGT model employed residual structures, its overall performance
across various metrics was relatively mediocre. This could be
attributed to the relatively shallow network architecture, which
might not fully exploit the advantages of residual structures.
In conclusion, CNN-TAGT exhibited superior and more stable
experimental results compared to the other three networks.
Through backbone comparative experiments, we determined that
a simple double convolution structure is the best match with the
transformer.

Considering the poor performance of Res-TAGT and Dense-
TAGT,we donot present their visualization results.The visualization
results of 3D Unet and CNN-TAGT will be shown together in the
subsequent ablation experiments. To further validate the stability of
ourmodel, we plotted the training curves of CNN-TAGT during the
3-fold cross-validation, as shown in Figure 6. We zoomed in on the
curves between 100 and 300 epochs, and it can be observed that all
three training runs achieved convergence around 250 epochs.

3.4.2 Ablation studies
The PE-Net proposed in this study incorporates TAGT, EFC,

and FFBmodules. To confirm the effectiveness of these components,
we conducted ablation experiments on each module. EFC and
FFB were utilized to optimize the segmentation of small blood
vessels, particularly enhancing the discriminative ability at vessel
boundaries. Qualitative and quantitative results are presented in
Figure 7 and Table 3, respectively. It is worth mentioning that the
TAGTmodel represents the CNN-TAGTmodel that performed the
best in the aforementioned backbone experiments.

As a supplement to the visualization results in the backbone
experiments, we added a comparison with 3D Unet in the
qualitative results. Observing the first column in Figure 7, we
found that due to the inability to capture global information,
3D Unet had more vascular leakage problems. After introducing
TAGT, the model detected more vascular details, as shown by
the green arrows in the second column. However, due to the
lack of precise capture ability for small vessels, the segmented

TABLE 2 Quantitative results of the backbone by 3 fold cross-validation for the IMA dataset (20 for trainning).

3D Unet CNN-TAGT Res-TAGT Dense-TAGT

SEN DSC AHD SEN DSC AHD SEN DSC AHD SEN DSC AHD

Mean 0.8059 0.8058 6.8338 0.8612 0.8035 6.1756 0.8093 0.7478 7.4295 0.9147 0.6493 12.8518

Std 0.0840 0.0920 5.2341 0.0849 0.1658 4.4352 0.1017 0.1812 5.2341 0.1417 0.1875 5.7528

Med 0.8112 0.8320 6.5389 0.8986 0.8291 4.7947 0.8604 0.7909 6.5389 0.9510 0.7172 15.4803

Min 0.6554 0.5626 1.7071 0.7174 0.3284 1.2071 0.6274 0.2885 1.7071 0.6319 0.1182 2.6180

Max 1.0000 0.8919 16.4370 1.0000 0.9843 13.3660 0.9113 0.8881 16.4370 1.0000 0.7911 21.0060

We evaluate models using SEN, DSC and AHD.The best result is shown in bold text and the runner-up result is underlined.
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FIGURE 6
The training loss of CNN-TAGT during the 3-fold cross-validation.

FIGURE 7
The visual results of the ablation experiments on the IMA dataset.

vessels by TAGT appeared in a fragmented and uneven state. This
situation was greatly alleviated after introducing the EFC module.
The performance of EFC often demonstrated three characteristics:
1) Repairing the fractured vessels in TAGT by enhancing edge

features, which can be observed through comparison with TAGT’s
results; 2) Capturing more details of small blood vessels relative
to TAGT, represented by the blue arrows; 3) Excessive learning
of edge features resulted in the missegmentation of adjacent
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TABLE 3 Quantitative results of PE-Net components on the IMA dataset, with
the best results highlighted in bold.

Method TAGT EFC FFB Sen DSC AHD

Model 1 ✓ 0.8612 0.8035 6.1756

Model 2 ✓ ✓ 0.8779 0.8109 6.3827

Model 3 ✓ ✓ ✓ 0.8774 0.8137 5.9668

vessels, as shown in case 4 by the orange arrows. In the early
models, these adjacent vessels were all classified as foreground
vessels.

To address the above issues, we further introduced the
FFB module, which accomplished feature selection through
channel attention. FFB assigned significant weights to features
related to target vascular structures, aiming to improve vascular
segmentation and remove interference caused by EFC. The
improved results are illustrated in the black boxes, where
the vascular structures appeared brighter and smoother,
indicating that the output features contained more representative
information.

To further validate the effectiveness of each module, in
Figure 8, we present the feature maps of various models in
the contracting paths at resolutions of 128, 64, and 32. A
random coronal slice from the volumetric data was selected, and
the feature maps of all channels were averaged and projected.
Comparing the first two rows, it was observed that the introduction
of EFC resulted in wider blood vessels and more distinct
features. The red regions spread both horizontally and vertically.
Comparing the second and third rows, the red pixels became
more compact, and the FFB module enhanced the connections
between vessels while removing interfering vessels to some
extent.

The quantitative results in Table 4 validated the above analyses.
The comparison between model 1 and model 2 indicated that
model2 with EFC achieved a 1.67% and 0.74% improvement
in SEN and DSC scores, respectively, while AHD increased
by 0.2, confirming the possibility of introducing neighboring
vessel interference while capturing more true positive vessels.
Comparing model 2 and model 3, the introduction of the
FFB module resulted in a significant decrease in AHD, while
maintaining almost unchanged SEN, and an increase of 0.28%
in DSC score, suggesting that FFB employed a more reasonable
fusion method for vascular features. FFB utilized channel
attention to assign different weights to low-level and high-
level features, selecting hidden features beneficial for vascular
segmentation.

3.4.3 Comparison with state-of-the-art methods
In this part, we conducted experiments to validate the

effectiveness of our proposed method using a self-made dataset. We
compared our method with five different approaches, including the
convolutional network 3D Unet, Attention Unet (AU) (Oktay et al.,
2018), CAS(40), transformer-based method Unetr, MedT and
nnFormer. The evaluation was performed on complete volume
images rather than using patches to obtain the evaluation results.

The qualitative and quantitative results are presented in Table 4 and
Figure 9, respectively.

Firstly, we compared our model with convolutional models
as shown in the first, second, and fifth rows of Figure 9. CAS
achieved significant success by utilizing vessel region filtering and
efficient feature fusion based on Dense blocks. However, we noticed
that its performance on the IMA dataset was not optimistic, as it
could not efficiently capture vascular features, even falling behind
3D Unet. CAS could only perform basic segmentation on the
main IMA vessels and struggled with smaller branch vessels. We
attribute this limitation to its Dense blocks, which contain only
three 3× 3× 3 convolutions to reduce computational complexity.
Consequently, this simple connection fails to fully exploit the
advantages of the Dense structure, leading to a lack of capability
in capturing complex vascular features. 3D Unet can roughly
segment blood vessels’ overall structures, we observed that it missed
some vessels in case 1–3, due to the limited receptive field of
convolutions, which hindered its ability to explore branch vessels.
Built upon the U-Net architecture, the AU introduces attention
gates to improve target localization, emphasizing salient foreground
features. Although AU demonstrates performance similar to U-Net
overall, it does not enhance the continuity of vessels or deep vascular
features. Attention gates are more effective in segmenting large
organs, like the liver, but their efficacy is constrained in scenarios
involving slender and discontinuous vessels, as seen in blood
segmentation.

Next, we compared our model with transformer-based models.
Unetr (the third row) performed poorly, as expected, as transformers
usually require more extensive training data. Additionally, we
noted that the original code’s epoch was set to 20,000, while we
used only 600 epochs. Transformers introduce a large number
of parameters, leading to higher time costs. Meanwhile, we
also validated the transformer’s ability to model long-range
features. Although Unetr struggled with vascular continuity, it
could capture more vascular branches and achieve a preliminary
representation of vascular morphology compared to convolutional
networks. Assisted by the axial transformer, MedT effectively
captures the complete branching of vessels. However, it is evident
that within more intricate vascular patterns, the smoothness of
blood vessels and the intensity of terminal vessels in MedT
are notably inferior. In general, there is a lack of refinement
capability for boundaries. nnFormer inherited the advantages of the
nnUnet architecture and achieved satisfactory segmentation results.
However, due to its limited capability in capturing edge features,
we observed varying degrees of vascular discontinuity in cases 3
and 4. In case 3, our segmentation results surpassed nnFormer,
while in case 5, nnFormer captured more extensive branch
vessels.

Table 4 displays the parameter quantities and quantitative results
of each model. It can be observed that our model achieves the best
results in terms of AHD while having only half the parameter count
of nnFormer. Additionally, our model demonstrates slightly higher
or comparable values for SEN and DSC.

Furthermore, we validated the performance of our model
on ASOCA. The quantitative experimental results are presented
in Table 5, showing that, compared to nnFormer, SEN achieves
a similar score. Although it has a slight disadvantage in terms
of DSC, our method obtained the best AHD. Visual results are
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FIGURE 8
Feature maps of the ablation models. From left to right, the output feature maps of different models are shown at three encoding layers (with
resolutions of 128, 64, and 32, respectively).

TABLE 4 Segmentation performance of different methods on IMA.

Dataset Methods SEN DSC AHD Model parameter

2–6 IMA

3D Unet (Çiçek et al., 2016) 0.8059 0.8057 6.8338 21.54

AU (Oktay et al., 2018) 0.8125 0.8082 8.2416 91.85

CAS (Song et al., 2022) 0.8451 0.6052 21.0146 22.25

MedT (Valanarasu et al., 2021) 0.8438 0.8136 12.2635 17.52

Unetr (Hatamizadeh et al., 2022) 0.5694 0.5135 48.8125 88.38

nnFormer (Zhou et al., 2021) 0.8441 0.8227 7.8673 143.26

Ours 0.8774 0.8137 5.9668 58.42
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FIGURE 9
Visualization of segmentation results for different baseline models. From left to right, each column represents a case, and from top to bottom, they are
CAS, AU, 3D Unet, MedT, Unetr, nnFormer, and our segmentation results, respectively.

displayed in Figure 10. The figure illustrates that the convolution-
based models 3D U-Net, AU and CAS exhibit varying degrees
of under-segmentation in tiny vessels, displaying extensive
vascular disconnections. The Unetr performs similarly to its
performance on the IMA dataset, failing to segment well-formed
branching vascular structures. MedT yields rough vascular edges
with a deficiency in refining boundaries, particularly showing
a lower continuity in small vessels. In contrast, our model and

nnFormer both manage to capture the overall vascular structure
and our model particularly excels in learning vascular edge
features, resulting in improved segmentation of small vessels
with abrupt changes in direction, as highlighted by the blue
circles.

The corresponding experimental results demonstrate that our
model possesses more advantages in terms of vascular continuity
and branch integrity.
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TABLE 5 Segmentation performance of different methods on ASOCA.

Dataset Methods SEN DSC AHD

ASOCA

3D Unet (Çiçek et al., 2016) 0.7486 0.7214 19.4927

AU (Oktay et al., 2018) 0.7501 0.7468 24.8731

CAS (Song et al., 2022) 0.8205 0.8287 16.7368

MedT (Valanarasu et al., 2021) 0.8146 0.8052 15.6824

Unetr (Hatamizadeh et al., 2022) 0.7432 0.7025 26.3857

nnFormer (Zhou et al., 2021) 0.8373 0.8704 7.7927

Ours 0.8352 0.8137 6.5873

FIGURE 10
Visualization results of different methods on the ASOCA dataset.

4 Summary and conclusion

4.1 Theoretical contributions

The prior knowledge of the three-dimensional structure
of blood vessels has provided significant convenience for
disease prevention, diagnosis, and treatment. In recent years,
researchers have made significant contributions to the field of
three-dimensional medical image processing, with a plethora of
segmentation algorithms available for three-dimensional tumors
and organs. However, the task of three-dimensional blood vessel
segmentation remains highly challenging. Due to the difficulty
in capturing features of small vessels and determining vessel
edges, issues such as vessel leakage, missegmentation, and
numerous vessel discontinuities often arise. The segmentation of
3D slender tubular blood vessels remains a topic worth researching
together.

In this paper, we propose a new segmentation approach for
three-dimensional segmentation of the inferior mesenteric artery
in the abdomen. We designed a parallel architecture combining
transformers and convolutions. We extended the gated axial
attention mechanism to three dimensions and efficiently learned
position deviations using the gating mechanism to enhance the
network’s ability to capture features of small vessels, alleviating

the transformer’s difficulty in learning image position encoding on
small datasets. We designed the EFC to enhance the weight of
edge voxels of blood vessels, thus boosting the learning of edge
features and improving the continuity of blood vessels. FFB is
used for selective feature fusion, retaining features significantly
related to vascular structures to further optimize the results after
EFC. On one hand, FFB performs deep connections on blood
vessel structures further captured by EFC, and on the other hand,
it assigns low weights to interfere vessels introduced by EFC,
effectively removing them. The experimental outcomes indicate
that, in contrast to state-of-the-art models, PE-Net achieves the
best experimental results by simultaneously ensuring relatively high
values for DSC and SEN, along with a better AHD.This underscores
its performance with enhanced vascular continuity. Although our
model has achieved good performance in the segmentation of
IMA, in some vascular segmentation tasks, we had to lower the
resolution to fit within the limited GPU memory. Due to the small
size of blood vessel branches at the vascular periphery, directly
reducing the resolution is not conducive to the overall segmentation
performance of the vessels. nnUnet is an adaptive parameter model
architecture capable of configuring parameters according to GPU
memory. We are currently attempting to integrate PE-Net into the
nnUnet architecture to ensure automatic configuration of taskswhile
preserving the full resolution.
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4.2 Limitations and future research

Although our model has achieved good performance in the
segmentation of IMA blood vessels, in some vascular segmentation
tasks, we had to lower the resolution to fit within the limited GPU
memory. Due to the small size of blood vessel branches at the
vascular periphery, directly reducing the resolution is not conducive
to the overall segmentation performance of the vessels. nnUnet is
an adaptive parameter model architecture capable of configuring
parameters according to GPUmemory.We are currently attempting
to integrate PE-Net into the nnUnet architecture to ensure automatic
configuration of tasks while preserving the full resolution.
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