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Introduction: The transient receptor potential ankyrin 1 channel (TRPA1) is
expressed in urothelial cells and bladder nerve endings. Hyperglycemia in
diabetic individuals induces accumulation of the highly reactive dicarbonyl
compound methylglyoxal (MGO), which modulates TRPA1 activity. Long-term
oral intake of MGO causes mouse bladder dysfunction. We hypothesized that
TRPA1 takes part in the machinery that leads to MGO-induced bladder
dysfunction. Therefore, we evaluated TRPA1 expression in the bladder and the
effects of 1 h-intravesical infusion of the selective TRPA1 blocker HC-030031
(1 nmol/min) on MGO-induced cystometric alterations.

Methods: Five-week-old female C57BL/6 mice received 0.5% MGO in their
drinking water for 12 weeks, whereas control mice received tap water alone.

Results: Compared to the control group, the protein levels and immunostaining
for the MGO-derived hydroimidazolone isomer MG-H1 was increased in bladders
of theMGOgroup, as observed in urothelium and detrusor smoothmuscle. TRPA1
protein expression was significantly higher in bladder tissues of MGO compared to
control group with TRPA1 immunostaining both lamina propria and urothelium,
but not the detrusor smooth muscle. Void spot assays in conscious mice revealed
an overactive bladder phenotype in MGO-treated mice characterized by
increased number of voids and reduced volume per void. Filling cystometry in
anaesthetized animals revealed an increased voiding frequency, reduced bladder
capacity, and reduced voided volume in MGO compared to vehicle group, which
were all reversed by HC-030031 infusion.

Conclusion: TRPA1 activation is implicated in MGO-induced mouse overactive
bladder. TRPA1 blockers may be useful to treat diabetic bladder dysfunction in
individuals with high MGO levels.
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Introduction

Diabetes Mellitus (DM) is a metabolic disease associated with high blood glucose levels
and affects an increasing number of individuals worldwide (American Diabetes Association
ADA, 2018). Life-threatening multi-organ complications associated with DM include
cardiovascular diseases such as hypertension, stroke, and myocardial infarction, as well
as conditions like retinopathy, peripheral neuropathy, and nephropathy (Wittig et al., 2019).
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Besides, diabetic bladder dysfunction (DBD) or diabetic cystopathy
is a prevalent urological complication that refers to a group of
bladder symptoms mainly found in long-standing and poorly
controlled diabetic patients (Golbidi and Laher, 2010). Clinical
symptoms of DBD can range from bladder overactivity, which
includes urinary urgency, urge urinary incontinence, frequency,
and nocturia during the early stages of the disease, to impaired
bladder contractility during the late stages (Daneshgari et al.,
2017; Song et al., 2022).

Elevated glycemic levels in diabetic patients lead to the
accumulation of highly reactive dicarbonyl compounds in both
plasma and urine, such as methylglyoxal (MGO) (Harkin et al.,
2023). MGO is formed endogenously from 3-carbon glycolytic
intermediates of glycolysis, despite it can be also generated as a
byproduct of protein, lipid, and ketones (Kalapos, 1999; Thornalley
et al., 1999; Lai et al., 2022). Once generated, MGO initiates post-
translational modification of peptides and proteins, ultimately
resulting in the generation of advanced glycation end products
(AGEs), such as the arginine-derived hydroimidazolone (MG-H1).
These AGEs interact with the cell membrane-anchored ligand
receptor RAGE, triggering multiple signaling pathways that lead to
production of inflammatory and pro-oxidant mediators (Schalkwijk
and Stehouwer, 2020; Zhang et al., 2023). The enzymatic
detoxification systems glyoxalase 1 (Glo1) and glyoxalase 2 (Glo2)
play a pivotal role in converting MGO into its end-product, D-lactate
(Rabbani and Thronalley, 2019). Recent studies revealed that
supplementing the drinking water of both non-diabetic male and
non-diabetic female mice with MGO for 4–12 weeks results in an
overactive bladder phenotype, as assessed by voiding behavior and
cystometric assays in awake and anesthetized animals, as well as by
in vitro bladder contractility to electrical-field stimulation (EFS) and
muscarinic receptor activation with carbachol (de Oliveira et al., 2020;
Oliveira et al., 2021; Oliveira et al., 2022). Furthermore, diabetic obese
ob/ob mice displaying high levels of MG-H1 and RAGE in bladder
tissues also exhibit voiding dysfunction, suggesting that activation of
theMGO-AGEs-RAGE pathway in the bladder wall contributes to the
pathogenesis of diabetes-associated bladder dysfunction (Oliveira
et al., 2023).

TRPA1 is embedded in the cell membrane and presents itself as a
tetrameric form of a Ca2+ influx channel (Brauchi and Rothberg,
2020). Consequently, upon TRPA1 activation, the influx of Ca2+,
along with other extracellular cations such as Na+ and H+, plays a
pivotal role in triggering noxious responses, mostly associated with
pain, cold, and itch (Gao et al., 2020). A large array of endogenously
released chemical mediators, including nitric oxide, hydrogen sulfide,
hydrogen peroxide, prostaglandin J, among others, as well as
exogenous stimuli like cinnamaldehyde, allicin, allyl isothiocyanate,
ligustilide, and acrolein can modulate the activity of TRPA1 channels
(Gao et al., 2020). Additionally, MGO has been shown to activate the
TRPA1 channel, particularly in diabetic neuropathic pain conditions
(Ohkawara et al., 2012; Andersson et al., 2013; Huang et al., 2016;
Griggs et al., 2017; Becker et al., 2023). The TRPA1 channel is
expressed in the lower urinary tract, including nerve endings of
the bladder wall (Andrade et al., 2011; Steiner et al., 2018;
Andersson, 2019; de Oliveira et al., 2020; Kudsi et al., 2022; Zhao
et al., 2022; Hayashi et al., 2023), and is believed to mediate bladder
sensory transduction and contractility in diabetes (Philyppov et al.,
2016; Blaha et al., 2019; Vanneste et al., 2021). TRPA1 mRNA

expression has been detected in the bladder mucosa and bladder
muscular layer, with upregulation seen in tissues obtained from
patients with bladder outlet obstruction (Du et al., 2008). Given
the implication of the TRPA1 channel in diabetes-related
complications, we hypothesized that the TRPA1 channel plays an
important role in the pathophysiology of urinary bladder dysfunction
induced by chronic MGO intake. Therefore, the main objectives of
this study were to identify alterations in TRPA1 expression in the
bladder wall (mucosa and detrusor smooth muscle), and to evaluate
the effects of the TRPA1 antagonist HC-030031 (Eid et al., 2008) on
the in vivo and in vitro bladder dysfunction resulting from a 12-week
treatment with MGO in female mice.

Materials and methods

Animals

Five-week-old female C57BL/6 mice weighing 19 ± 0.30 g at the
beginning of the study were provided by Multidisciplinary Center for
Biological Research on LaboratoryAnimal Science (CEMIB) of the State
University of Campinas (UNICAMP, Sao Paulo, Brazil). Mice were
housed in cages made of polypropylene with dimensions 30 × 20 ×
13 cm placed in ventilated cage shelters with a constant humidity of
55% ± 5% and temperature of 24°C ± 1°C under a 12 h light-dark cycle.
The animals (three mice per cage) were acclimated for 10 days before
starting the treatments. Animals received standard food and filtered
water ad libitum. Animal procedures and experimental protocols were
approved by Ethics Committee in Animal Use of UNICAMP (CEUA-
UNICAMP; protocol numbers 5443-1/2019 and 5842-1/2021). Animal
studies follow the ARRIVE guidelines.

Experimental design

We initially employed a randomization calculator, which is available
at https://www.graphpad.com to allocate the mice into two groups,
namely, Control group (n = 51) and MGO group (n = 51). In the
MGO group, the animals received 0.5%MGO (Sigma Aldrich, Missouri,
United States) in their drinking water for a duration of 12 weeks, as
outlined in our previous study (Medeiros et al. 2021). The control group
received only tapwater. In thefirst part of this study, animals in theMGO
group exhibiting voiding dysfunction through the void spot assay in filter
paper were anesthetized using isoflurane and subsequently euthanized by
cervical dislocation. Their bladders were then exposed and removed for
the subsequent immunohistochemical and Western blotting assays, as
described below. The same procedure was carried out in the control
group. In the second phase of this study, filling cytometry in anesthetized
animals and in vitro bladder contractility were selected to test the
TRPA1 blocker HC-030031 in both control and MGO groups. The
HC-030031 dose was set at 1 nmol/min for the 1-h intravesical infusion
during cystometry or 10 µM for the in vitro assays.

Void spot assay in filter paper

The objective of this test was to analyze the voiding behavior of
animals that had been chronically administered MGO for 12 weeks.
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The analyzed parameters included the total void volume (the overall
volume voided in 3 h), volume per void (average volume per void),
and the total number of voids. Additionally, the number of voids was
categorized based on volumes lower than 25 μL, volumes between
25 and 100 µL, and volumes higher than 100 µL. We also registered
the distribution of voids in the center and corner of the filter paper to
observe changes in spot distribution and normal micturition
behavior, which involves animals seeking the corners of the cage,
a phenomenon known as thigmotaxis (Hill et al., 2018). As such, the
animals were individually housed in clean cages, each covered with a
filter paper measuring 25 × 15 cm (qualitative filter paper 250 g
Unifil®, Cod. 502.1250). Animals had no access to water but were
provided with unrestricted access to food. The experiment was
consistently conducted during a specific time window (9–10 a.m.
to 12–13 p.m.), lasting for a duration of 3 h within the cages. The
temperature of the roomwasmaintained at 24 ± 1°C with a humidity
level of 53% ± 1%. The animals were acclimated to the filter paper for
2 days, and void measurements were performed on the third day. At
the conclusion of the assay, the animals were returned to their
regular housing condition. Following the test, the voiding points
were encircled with a pencil, and overlapping points were marked
for subsequent quantification. The filter papers were dried and
imaged using UV light (Photo-documenter Chemi-Doc, Bio-Rad,
California, United States). The filter papers were then analyzed using
the Fiji version of ImageJ Software (version 1.46r) (http://fiji.sc/wiki/
index.php/Fiji), as previously described (Oliveira et al., 2021).
Particles smaller than 0.20 cm2 (equivalent to 2 μL) were
disregarded from consideration to minimize potential
interference related to the paws or tail marks of the animals.

Filling cystometry in anesthetized mice and
TRPA1 antagonism with HC-030031

Filling cystometry was conducted following the method outlined
as previously described (Oliveira et al., 2021). The animals were
anesthetized using a rodent inhalation anesthesia system (Harvard
Apparatus) and were maintained under anesthesia with a mixture of
2% isoflurane and 98% oxygen at a rate of 2 L/min. An abdominal
incision was made to expose the urinary bladder. A PE10 catheter
was carefully inserted into the apex of the bladder and fixed in place
using a 6-0 nylon suture. Subsequently, the bladder was
repositioned, and the surrounding musculature and skin were
sutured closed. Following the completion of this surgical
procedure, isoflurane anesthesia was discontinued, and an
intraperitoneal injection of urethane (1.2 g/kg) was administered.
The cannula was then connected to a 3-way tap, with one port linked
to an infusion pump via a PE-10 catheter. Before initiating
cystometry, a 10-min stabilization period was observed, after
which continuous intravesical saline infusion was maintained at a
rate of 0.6 mL/h for 1 h. Subsequently, the animals underwent
continuous intravesical infusion for 1 h with either saline
(0.01 mL/min), vehicle (0.001% DMSO) or the selective
TRPA1 channel blocker HC-030031 (1 nmol/min; Catalogue No.
H4415, Sigma-Aldrich, United States). Data acquisition was carried
out using PowerLab system, and subsequent analyzes were
performed using LabChart® Software (ADInstruments Inc.,
Sydney, AU, https://www.adinstruments.com/products/labchart).

The following parameters were assessed during the first hour of
data acquisition: voiding frequency (number of voids/minute),
bladder capacity (functional bladder capacity, which represents
the volume infused during the intermicturition interval), voided
volume (volume released during a voiding event), compliance (the
ratio between capacity and threshold pressure, expressed in µl/
mmHg), basal pressure (the minimum pressure observed between
two voiding events), threshold pressure (the intravesical pressure
immediately before voiding events), and maximum pressure (the
highest bladder pressure recorded during a void). All the parameters
were evaluated across all micturition cycles during the first hour of
data acquisition. At the conclusion of the experimental protocols,
the animals were euthanatized and disposed of accordingly.

Exploring the effects of HC-030031 on the
bladder contractions induced by electrical-
field stimulation (EFS) and carbachol

At the conclusion of the 12-week MGO treatment, the animals
were anesthetized with isoflurane, administered at a concentration
exceeding 5%. Subsequently, cervical dislocation was performed to
confirm euthanasia. The bladder was then removed and carefully
divided into two strips, each representing an intact portion of the
bladder. Strips were mounted in 10-mL organ baths containing
Krebs-Henseleit solution, composed of the following constituents:
117 mM NaCl, 4.7 mM KCl, 2.5 mM CaCl2, 1.2 mM MgSO4,
1.2 mMKH2PO4, 25 mM NaHCO3 and 11 mM Glucose, pH 7.4.
The solution was continuously oxygenated with a mixture of 95%O2

and 5% CO2. The tissues were allowed to equilibrate for 45 min
under resting tension and were subsequently adjusted to a force of
5 mN. Changes in isometric force were recorded using a PowerLab
system (ADInstruments Inc., Sydney, AU). After the stabilization
period, one strip was incubated with the vehicle (0.001% DMSO)
while the other was exposed to the selective TRPA1 antagonist HC-
030031 (10 µM) for a duration of 30 min. Following the incubation
period, EFS was applied using platinum ring electrodes placed
between two strips, and connected to a stimulator (Grass
Technologies, RI, United States). EFS was conducted at 80 V,
with a pulse width of 1 ms pulse width, and trains of stimuli
lasting 10 s were administered at varying frequencies ranging
from 1 to 32 Hz, with 2-min intervals between each stimulation.
Subsequently, cumulative concentration-response curves were
generated for the muscarinic receptor agonist carbachol ranging
from 1 nM to 100 μM (Sigma Aldrich, MI, United States). Non-
linear regression analysis to determine the potency (pEC50) of
carbachol was carried out using GraphPad Prism (GraphPad
Software, Inc., CA, United States) with the constraint that F = 0.
The concentration-response data were fitted to a logarithmic dose-
response function with a variable slope in the form: E = Emax/([1 +
(10c/10x) n] + F), where E is the effect of above basal, Emax is the
maximum response produced by agonists; c is the logarithm of the
pEC50, the concentration of drug that produces a half maximal
response; x is the logarithm of the concentration of the drug; the
exponential term, n, is a curve-fitting parameter that defines the
slope of the concentration–response line, and F is the response
observed in the absence of added drug. The contractile responses to
EFS or carbachol were expressed as mN/mg.
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Immunohistochemistry for MG-H1 in
bladder tissues

Bladder immunoperoxidase reactions were processed based on a
previous study (Oliveira et al., 2022). Briefly, whole bladders were
removed, immersed in 10% formalin fixative solution for 48 h, and
embedded in paraffin. Five-micron sections were mounted onto
aminopropyltriethoxysilane-coated glass slides. Sections were
deparaffinized, rehydrated, and washed with 0.05 M Tris buffer
solution (TBS) at pH 7.4. Subsequently, for antigen retrieval,
sections were treated with 0.01 M citrate buffer containing 0.05%
Tween-20 (pH 6.0) for 40 min at 98°C. Endogenous peroxidase
activity was inhibited with 0.3% hydrogen peroxide (H2O2) solution.
For blocking the non-specific sites, a 5% bovine serum albumin
(BSA) solution containing 0.1% Tween-20 for 60 min was used.
Sections were incubated with mouse monoclonal anti-MG-
H1 primary antibody (1:90; Cell Biolabs, INC., Catalogue No.
STA-011, San Diego, United States) diluted in TBS containing
3% BSA overnight at 4°C. Subsequently, sections were washed,
and incubated with biotinylated goat anti-mouse IgG, avidin and
biotinylated HRP (1:20; Catalogue No. EXTRA2, Sigma Aldrich, St
Louis, MO, United States) following themanufacturer’s instructions.
For detection of the immunostained area with MG-H1, a
3.3′diaminobenzidine solution (DAB; Catalogue No. D4293,
Sigma Aldrich) was employed. As a negative control, a section
was used in parallel to primary antibody omission. All slides
were counterstained with hematoxylin and mounted for
observation by microscopy. Representative images were acquired
using a light microscope (OPTIKA ITALY B-1000 Series, OPTIKA
S.r.l., Ponteranica, BG, Italy) equipped with a digital camera under a
4 × and 10 × objective.

Immunohistochemistry for TRPA1 in bladder
tissues

For immunohistochemistry of TRPA1, we followed the
manufacturer’s instructions. The sections were deparaffinized,
rehydrated, and washed with 1× phosphate buffered saline
containing 0.1% Tween-20 (PBS-T). For antigen retrieval, the
slides were boiled in 0.01 M sodium citrate buffer (pH 6.0) for
10 min, then cooled on bench top for 30 min. The sections were
washed in distilled H2O (dH2O) three times for 5 min each, followed
by a washing section 1 × PBS-T for 5 min. Endogenous peroxidase
activity was inhibited with a 0.3% H2O2 solution. Each section with
blocking solution (5% BSA) was blocked in 1× PBS-T solution for
1 h at room temperature. The blocking solution was then removed,
and the primary antibody was diluted in 1× PBS-T with 5% BSA and
added to each section and incubated overnight at 4°C with
TRPA1 antibody (1:60; Catalogue No. 40763, Novus Biologicals,
LLC, United States). The antibody solution was removed by washing
1 × PBS-T; and biotinylated secondary antibody diluted in 1 × PBS-
T with 5% BSA was incubated for 30 min at room temperature (1:20;
Catalogue No. EXTRA2, Sigma Aldrich, St Louis, MO,
United States). The secondary antibody was removed by washing
1 × PBS-T and 100 µL streptavidin HRP reagent (1:20) was
incubated for 30 min at room temperature in each section. For
detection of the immunostained area with TRPA1, a

3.3′diaminobenzidine solution (DAB; Catalogue No. D4293,
Sigma Aldrich) was employed, and sections were immersed in
dH20. The sections were counterstained in hematoxylin and
mounted for observation by microscopy. Representative images
were acquired using a light microscope (OPTIKA ITALY B-1000
Series, OPTIKA S.r.l., Ponteranica, BG, Italy) equipped with a digital
camera under a 40 × objective.

Western blot analysis of MG-H1, Glo1 and
TRPA1 in bladder tissues

Total protein extracts were obtained from homogenized
bladders using RIPA buffer (Catalogue No. R0278, Sigma-
Aldrich, Darmstadt, Germany) containing protease inhibition
cocktail (10 μL/mL; Catalogue No. P8340, Sigma-Aldrich,
Darmstadt, Germany). The samples were incubated for 1 h at 4°C
and then centrifuged at 12.000 g for 15 min at 4°C. Protein
concentrations in the supernatants were determined using the
DC Protein Assay Kit I (Catalogue No. 5000111EDU, BioRad,
Hercules, CA, United States). An equal amount of protein
(30 µg) from each sample was treated with 4× Laemmli buffer
containing 355 mM of 2-mercaptoethanol (Catalogue No. 161-
0747, BioRad, Hercules, CA, United States). The samples were
heated in boiling water bath for 5 min and resolved by sodium
dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE).
The proteins were then electrotransferred to a nitrocellulose
membrane at 20 V for 20 min using a semi-dry device (Bio-Rad,
Hercules, CA, United States). To reduce nonspecific protein binding,
the membrane was pre-incubated overnight at 4°C in blocking buffer
(0.5% non-fat dried milk, 10 mM Tris, 100 mM NaCl, and 0.02%
Tween 20). Primary antibodies for mousemonoclonal MG-H1 (1:1000;
Cell Biolabs, INC., Cat. No STA-011, San Diego, United States), Glo1
(Cat. No. ab96032, Abcam), TRPA1 (cat. No. 40763, Novus Biologicals,
LLC, United States) and monoclonal β-actin peroxidase (1:50000,
Catalogue No. A3854, Sigma-Aldrich, Darmstadt, Germany) were
diluted in basal solution containing 3% BSA. These primary
antibodies were validated and tested according to previous studies
(Lee et al., 2016; Jandova and Wondrak, 2021; Smith et al., 2022;
Chandrakumar et al., 2023; Luostarinen et al., 2023). The antibody was
incubated overnight at 4°C, while the β-actin antibodywas incubated for
1 h at room temperature. Subsequently, the membranes were incubated
with the secondary antibody HRP-linked anti-rabbit IgG (1:5000;
Catalogue No. 7074S, Cell Signaling Technology, Massachusetts,
United States) diluted in basal solution for 1 h. Immunoreactive
bands were detected using the Clarity Western ECL Substrate
(Catalogue No. 1705061, BioRad, Hercules, CA, United States), an
enhanced BioRad chemiluminescence system. Densitometry analysis
was performed using the Image Lab Software Version 6.1 (BioRad,
Hercules, CA, United States). The results were represented as the ratio
of protein expression relative to β-actin.

Assessment of Glo 1 activity in bladder
tissues

The bladders were isolated, homogenized in 350 µL of PBS
(pH 7.0), and then centrifuged at 2000 × g for 30 min at 4°C.
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Following centrifugation, the supernatant was removed and placed
on ice. Glyoxalase I activity was assessed in duplicate using the
Glyoxalase activity assay kit (Catalogue No. MAK114, Sigma-
Aldrich, United States), following the manufacturer’s instructions.
To normalize the results, the total protein content of the samples was
determined in triplicated using the DC™ Protein Assay Kit II
(Catalogue No. 5000112, Bio-Rad Laboratories, Inc. California,
United States).

Statistical analysis

The GraphPad Prism Version 6 Software (GraphPad Software,
Inc., San Diego, CA, United States) was used for all statistical
analysis. The parametric distribution of the data was assessed
using the Shapiro test. Statistical difference between two groups
was determined using Student’s unpaired t-test. One-way ANOVA
followed by Dunnett’s multiple comparison test was used when

FIGURE 1
Void spot analysis in female mice exposed to 0.5% methylglyoxal (MGO) for 12 weeks. (A) displays representative images of the void spot assay in
both the control group (receiving tap water alone) and the MGO-exposed groups. (B–D) show data on the number of voids, volume per void, and total
void volume, respectively. The distribution of void spots across different volume ranges is shown in (E) (<25 µL), (F) (between 25 and 100 µL), and (G)
(>100 µL). The number of voids in the corner and the center on the filter paper is illustrated in (H,I), respectively. The data are expressed as the
mean ± SEM (n = 6–7 animals per group). *p < 0.05, **p < 0.01 compared to control group (unpaired t-test).
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comparing more than two groups with control group and one-way
ANOVA followed by Tukey or Bonferroni’s test were used when
comparing all groups together. All results are presented as the
means ± standard error of the mean (SEM). Results with
p-values lower than 0.05 were considered significant.

Results

Alterations in void spot patterns on the filter
paper assay

The voiding dysfunction induced by a 12-week oral intake of
MGO was initially screened in conscious mice using the void spot
assay on filter paper (Figure 1). Figure 1A shows representative
images of the void spot assays, revealing a significant increase in the
number of spots in the MGO compared to the control group (p <
0.01; n = 6–7; Figure 1B). Furthermore, the volume per void
(Figure 1C) was significantly reduced in the MGO group
compared to the control group (p < 0.01), while no significant
differences in total void volume were observed (Figure 1D). The
number of voids based on their volume sizes revealed that mice

treated with MGO exhibited a higher number of spots with volumes
lower than 25 µL (p < 0.05; Figure 1E) and between 25 and 100 µL
(p < 0.05; Figure 1F), along with a decreased number of spots with
volumes greater than 100 µL (p < 0.01; Figure 1G) compared to
control group. Notably, in the control group, void spots were
essentially concentrated in the corner of the filter paper with no
voids in the center, as expected under normal conditions. In
contrast, the MGO-treated group exhibited a different
distribution pattern of void spots, with voids now detected both
in the center and the corner of the filter (Figures 1H, I).

Protein levels and immunohistochemistry
for MG-H1 in the bladder

Higher protein levels of MG-H1 were found in MGO compared
to control group (p < 0.05; Figures 2A, B; Supplementary Figure
S1A). Immunohistochemical assays showed a marked MG-H1
immunostaining in both the urothelium and detrusor smooth
muscle layers of MGO-treated mice, whereas only minimal MG-
H1 immunostaining intensity was detected in the urothelium of the
control group (Figure 2C).

FIGURE 2
Quantification ofmethylglyoxal (MGO)-derived hydroimidazoloneMG-H1 and glyoxalase 1 (Glo1) in the bladders ofMGO-treatedmice. (A,B) display
densitometry analyses and representative Western blots of MG-H1, respectively. (C) depicts immunohistochemistry for MG-H1, demonstrating negative
staining (absence of primary antibody binding) and positive immunostainings in control and MGO groups. In the control group, there is a weak positive
staining observed in the urothelium, while in the MGO group, a strong positive staining is observed in both the urothelium and detrusor smooth
muscle. In (C), black bars represent a scale of 10 μm (×10 objectives). (D,E) display the protein expression, whereas (F) shows theGlo1 activity. The data are
expressed as mean ± SEM (n = 5–6 animals per group). *p < 0.05 compared to control group (unpaired t-test).
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Protein levels and enzyme activity of Glo1 in
the bladder

Protein levels of Glo1 in bladder tissues did not significantly
differ between the control and MGO groups (Figures 2D, E;
Supplementary Figure S1B). However, MGO treatment led to a
significant decrease in Glo1 activity in bladder tissues compared
to control group (Figure 2F).

Levels of TRPA1 are enhanced in the bladder
of MGO-Treated mice

Western blotting and immunohistochemistry assays were
carried out in bladder tissues obtained from control and
MGO-treated mice to investigate the expression of TRPA1.
The results revealed a marked increase in TRPA1 protein
levels in the bladder of MGO-treated mice compared to
control groups (p < 0.05; Figure 3A; Supplementary Figure
S2). In both control and MGO-treated groups,
TRPA1 immunostaining was detected in the bladder mucosa,
including the lamina propria and urothelial cells. Notably, the
MGO-treated group exhibited a substantially higher intensity of
TRPA1 immunostaining (Figure 3B). It is worthing mentioning
that no TRPA1 immunostaining was detected in the detrusor
smooth muscle layer of either group.

Intravesical infusion of HC-030031 reverses
cystometric alterations in MGO-Treated
mice

In order to evaluate the role of TRPA1 on voiding dysfunction
induced by chronic MGO intake, we moved to the model of filling
cystometry assays in anesthetized mice, which allowed us testing the
TRPA1 antagonist HC-030031 by intravesical infusion on the resulting
voiding dysfunction. Control andMGO-treated mice were intravesically
infused with HC-030031 (1 nmol/min), saline or vehicle (0.001%
DMSO; n = 5–7 animals per group). Compared to control group, a
different pattern of voiding was found in MGO groups infused with
either saline or vehicle, as characterized by a significantly higher voiding
frequency (Figures 4A, B), paralleling significant reductions of bladder
capacity (Figure 4C), voided volume (Figure 4D) and compliance
(Figure 4E). The basal pressure (Figure 4F), threshold pressure
(Figure 4G), and maximum pressure (Figure 4H) did not
significantly differ between control and MGO groups. In MGO-
treated mice, the infusion of HC-030031 almost completely reversed
the changes in voiding frequency, bladder capacity, voided volume, and
compliance. The basal pressure, threshold pressure, and maximum
pressure remained unaltered. Infusion of HC-030031 at the same
dose into the control group did not have a significant effect in any
of the cystometric parameters. Therewere no statistical differences in any
parameter between the saline and vehicle infusions in both the control
and MGO groups.

FIGURE 3
Protein expression of TRPA1 in the bladders of mice was assessed following a 12-week treatment with 0.5% methylglyoxal (MGO) or in control
animals receiving tap water alone. (A) illustrates the results of protein expression analysis using Western Blotting analysis. (B) displays the
immunohistochemistry for TRPA1 in bladder, showing negative immunostaining (absence of the antibody signal), and positive immunostainings in control
and MGO groups. Positive immunostaining is observed in lamina propria and urothelial cells. The black bars in (B) represent a scale of 10 μm, as
viewed under ×20 and ×40 objectives. In (A), data are expressed as mean ± SEM (n = 7–8 animals per group). *p < 0.05 compared to control group
(unpaired t-test).
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HC-030031 reduces the in vitro bladder
contractility of MGO-Treated mice

The contractile responses elicited by EFS and carbachol were
examined in intact bladder strips (Figure 5). Electrical-field
stimulation at a frequency of 1–32 Hz produced frequency-
dependent bladder contractions in both the control and MGO
groups. However, the contractions in the MGO were significantly
higher than those in the control group, as evidenced at frequencies of
1–16 Hz (Figure 5A). In the control group, the prior incubation of
bladder strips with HC-030031 (10 μM, 30 min) had no significant
effect on EFS-induced contractions. Conversely, in the MGO group,
HC-030031 completely restored the contractile responses to the
levels observed in the control group (Figure 5A).

Addition of carbachol (10−10 to 3 × 10−5 M) produced
concentration-dependent bladder contractions with no differences
between MGO and control groups (Figure 5B). However, in the
MGO group, HC-030031 (10 μM, 30 min) significantly reduced the
carbachol-induced contractions, whereas in the control group HC-
030031 had no significant effect (Figures 5B, C). The pEC50 values

for carbachol did not significantly differ between groups, with values
of 6.06 ± 0.11 for control + vehicle, 5.98 ± 0.06 for control + HC-
030031, 6.09 ± 0.10 for MGO + vehicle, and 5.85 ± 0.08 for MGO +
HC-030031.

Discussion

Chronic exposure to MGO induces an overactive bladder
phenotype in mice, as observed in previous studies (de Oliveira
et al., 2020; Oliveira et al., 2021; Oliveira et al., 2022). TRPA1 is
expressed in human (Du et al., 2008), rat (Streng et al., 2008;
Andrade et al., 2011) and mouse bladders (de Oliveira et al.,
2020) and is upregulated in pathological conditions such as
bladder outlet obstruction and spinal cord injury. We tested here
the hypothesis that TRPA1 activation in bladder tissues contributes,
at least in part, to MGO-induced bladder dysfunction in
female mice.

Initially, we assessed voiding dysfunction in MGO-treated mice
using the void spot on the filter paper assay (Hill et al., 2018). The

FIGURE 4
Effect of continuous infusion of the selective TRPA1 antagonist HC-030031 on cystometric changes inmice following 12-week treatment with 0.5%
methylglyoxal (MGO) or control animals receiving tap water alone. In control and MGO groups, animals were infused continuously with saline (0.01 mL/
min), vehicle (0.001% DMSO) or HC-030031 (1 nmol/min) for 1 h. (A) shows representative cystometric tracings from each sub-group, with arrows
indicating micturition peaks. (B–H) show data on voiding frequency, bladder capacity, voided volume, compliance, basal pressure, threshold
pressure and maximum pressure, respectively. All data are expressed as mean ± SEM (n = 5–7 animals per group). *p < 0.05, **p < 0.01, ***p <
0.001 compared to respective control group; ##p < 0.01, ###p < 0.001 compared to saline infusion in MGO group; &&p < 0.01, &&&p < 0.001 compared
vehicle infusion in MGO group (one-way ANOVA followed by Dunnett’s multiple comparisons test for comparison to the control group and Bonferroni’s
multiple comparisons test to compare all groups).
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data confirmed the presence of an overactive phenotype in MGO-
treated male mice (de Oliveira et al., 2020), as evidenced by an
increased number of urine spots together with a reduction in voided
volume per void. Furthermore, the MGO-treated group exhibited a
higher number of voids with small volumes (less than 25 µL and
between 25 and 100 µL), primarily concentrated in the center of the
filter paper. Despite the bladder weight increases by about of 20% in
female mice treated with MGO, the water consumption does not
significantly differ between MGO and vehicle groups (Oliveira et al.,
2022), suggesting that alterations of voiding behavior in MGO-
treated mice does not reflect mechanisms dependent on fluid intake,
as observed in streptozotocin-injected animals, leptin-deficient ob/
ob mice, and leptin receptor-deficient db/db mice (Suriano et al.,
2021; Yesilyurt et al., 2022). Subsequently, we evaluated the protein
levels and immunostaining of the MGO adduct MG-H1 in bladder
tissues of both controls and MGO-treated mice. Compared to
control group, the MGO-treated mice displayed higher protein
levels and increased immunostaining of the MG-H1 in both the
urothelium and detrusor smooth muscle. Dicarbonyl stress is
characterized by an abnormal glycolytic overload and elevated

cellular MGO concentration, which is critically regulated by
Glo1 activity, one of the primary enzymes involved in MGO
detoxification (Rabbani and Thornalley, 2019; He et al., 2020). In
the present study, the protein expression of Glo1 in bladder tissues
remained unchanged following MGO treatment. However,
Glo1 activity was significantly reduced in the MGO compared to
control group. This reduction in Glo1 activity in MGO-treated mice
is likely attributed to the accumulation of MGO in the bladders, as
evidenced by the higher levels of the MGO adduct MG-H1,
consistent with the presence of a true dicarbonyl stress in
bladder tissues of these animals.

We then explored the role of TRPA1 in MGO-induced voiding
dysfunction. Higher levels of TRPA1 protein were found in the
bladder tissues of MGO-treated mice as compared to control
group. Additionally, intense TRPA1 immunostaining was
detected in the lamina propria of the MGO group, despite
urothelial cells expressing TRPA1 being also observed.
Nevertheless, no TRPA1 immunostaining was detected in the
detrusor smooth muscle layer. In a separate set of experiments,
cystometric assays were conducted in anaesthetized control and

FIGURE 5
Effects of the selective TRPA1 antagonist HC-030031 on the contractile responses induced by electrical-field stimulation (EFS) and the muscarinic
agonist carbachol in intact bladder strips obtained frommice treated with 0.5%methylglyoxal (MGO, 12 weeks) or tap water (control group). (A) illustrates
the contractions induced by EFS at frequencies ranging from 1 to 32 Hz in both the control and MGO-treated groups in the presence of vehicle (0.001%
DMSO) or HC-030031 (10 μM, 30 min). (B) displays the contractions induced by carbachol at concentrations ranging from 10−10 to 3 × 10−5 M in both
the control and MGO-treated groups, in the presence of vehicle or HC-030031. (C) shows the maximal responses (Emax) to carbachol in all experimental
groups. The data are expressed as mean ± SEM (n = 7 animals per group). *p < 0.05, **p < 0.01 compared to corresponding control vehicle group. #p <
0.05 ##p < 0.01 ###p < 0.001 compared to respective MGO vehicle group (One-way ANOVA followed by the Tukey).
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MGO-treated mice, with and without intravesical infusion of the
TRPA1 blocker HC-030031, vehicle (0.001% DMSO) or saline.
Methylglyoxal-treated mice displayed increased voiding frequency
along with reductions of voided volume, bladder capacity, and
compliance, consistent with the voiding alterations observed in
conscious animals using the void spot assay. Importantly, these
MGO-induced cystometric alterations were all reversed by intravesical
infusion of HC-030031, indicating that TRPA1 activation in the
urothelium plays a role in the machinery leading to overactive bladder.

Next, we assessed in vitro bladder contractions in response to
EFS and carbachol in both control and MGO-treated mice. EFS-
induced bladder contractions are chiefly mediated by acetylcholine
release from parasympathetic fiber terminals, acting through the
activation of post-synaptic muscarinic M3 receptor in detrusor
smooth muscle (Fry et al., 2010; Sellers and Chess-Williams,
2012). Muscarinic M3 receptors coupled to phospholipase
C-dependent signals mediate bladder contractions via generation
of the second messenger inositol triphosphate (IP3), which activates
the IP receptor to release Ca2+ from internal stores, in addition to
extracellular Ca2+ influx secondary to L-type Ca2+ channel opening
(Abrams et al., 2006; Frazier et al., 2008; Leiria et al., 2011). Nerve-
mediated ATP release is also observed in mouse detrusor smooth
muscle, which is said to mediate the atropine-resistant bladder
contraction through P2X1 receptor activation (Tsai et al., 2012;
Hao et al., 2019; McCarthy et al., 2019; Chakrabarty et al., 2022). A
crosstalk between the purinergic and cholinergic transmitter
systems, where ATP appears to induce the release of
acetylcholine has also been reported (Stenqvist et al., 2020). We
then assessed in vitro bladder contractions in response to EFS and
carbachol in both control and MGO-treated mice. A previous study
of our group showed that the contractile responses to the selective
muscarinic agonist carbachol in MGO-treated mice remain
unchanged intact bladder strips, but mucosal removal
significantly increases in carbachol-induced bladder contractions
(Oliveira et al., 2022). Interestingly, however, in the present study
using intact bladder strip preparations, HC-030031 significantly
reduced the carbachol-induced contractions in MGO-treated
mice. On the other hand, MGO exposure was described to
significantly enhance the contractile responses to both EFS and α,β-
methylene ATP (a P2X1 purinergic receptor agonist) independently of
the presence or not of urothelium (Oliveira et al., 2022). In the present
study, the higher contractile response to EFS in bladders ofMGO-treated
mice was normalized by prior incubation with HC-030031. These data
are indicative that MGO exposure via TRPA1 activation leads to
enhancement of purinergic over cholinergic neurotransmission in the
bladder. Of interest, interaction of TRPA1 and purinergic P2X receptors
has been proposed to explain the pain pathophysiology in models of
formalin-induced behavioral nociceptive responses in the rat (Krimon
et al., 2013) and intracolonic administration of a low dose mustard oil in
mice (Gonzalez-Cano et al., 2021). However, future experiments
exploring the P2X1 purinergic component of the EFS-induced
excitatory transmission might help to shed some light on the
potential interactions of P2X and TRPA1 receptors in bladder of
MGO-treated mice.

Collectively, our data from molecular and functional (in vivo
and in vitro) studies support an important role of urothelial
TRPA1 in modulating the bladder contractile responses after
exposure to MGO. A previous study carried out in diabetic rats

showed an increased mRNA expression of TRPA1 in dorsal root ganglia
(DRG) that innervate the bladder and TRPA1 activation enhances the
amplitude of EFS-induced detrusor smooth muscle contractions through
mechanisms related to the activation of the tachykininergic and
prostanoid systems (Philyppov et al., 2016). Increased
TRPA1 expression was also seen in the bladders of insulin-resistant
obese Zucker rats, but EFS-induced bladder contractions were instead
reduced being this reduction attributed to excessive oxidative stress and
downregulation of the cysthathionine-γ-lyase (CSE)/hydrogen sulfide
(H2S) pathway (Blaha et al., 2019). TRPA1 has been proposed to
serve as an oxidative stress sensor (Yamamoto and Shimizu, 2016;
Anraku, 2022), and exposure to MGO increases the production of
reactive-oxygen species (ROS) that in turn leads to activation of Rho
kinase system in detrusor smooth muscle, ultimately promoting detrusor
overactivity (Oliveira et al., 2022). Therefore, further investigation is
needed to identify the intracellular signal mediated by MGO that
upregulates TRPA1 in bladder urothelium and lamina propria, thereby
enhancing detrusor smooth muscle contractility.

Conclusion

In conclusion, this study shows that prolonged exposure to
MGO inmice results in elevated levels of the advanced glycation end
product MG-H1 in bladder tissues, inducing an upregulation of
TRPA1 expression in the mucosal layer (lamina propria and
urothelium). The effective blockade of TRPA1 with HC-030031
efficiently mitigated MGO-induced overactive bladder and detrusor
hyperactivity. TRPA1 antagonists could potentially serve as a
valuable therapeutic approach for managing diabetic bladder
dysfunction in individuals with high MGO levels.
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