
Predictive modeling of
perioperative blood transfusion in
lumbar posterior interbody fusion
using machine learning

Fang-Fang Lang1, Li-Ying Liu1 and Shao-Wei Wang2*
1School of Public Health, Shanxi Medical University, Taiyuan, China, 2Department of Orthopedics, The
Second Hospital of Shanxi Medical University, Taiyuan, China

Background: Accurate estimation of perioperative blood transfusion risk in lumbar
posterior interbody fusion is essential to reduce the number, cost, and
complications associated with blood transfusions. Machine learning algorithms
have the potential to outperform traditional prediction methods in predicting
perioperative blood transfusion. This study aimed to construct a machine
learning-based perioperative transfusion risk prediction model for lumbar
posterior interbody fusion in order to improve the efficacy of surgical
decision-making.

Methods: We retrospectively collected clinical data on 1905 patients who
underwent lumbar posterior interbody fusion surgery at the Second Hospital of
Shanxi Medical University between January 2021 and March 2023. All the data was
randomly divided into a training set and a validation set, and the “feature_
importances” method provided by eXtreme Gradient Boosting (XGBoost)
algorithm was applied to select statistically significant features on the training
set to establish five machine learning prediction models. The optimal model was
identified by utilizing the area under the curve (AUC) and the probability calibration
curve on the validation set. Shapley additive explanations (SHAP) and local
interpretable model-agnostic explanations (LIME) were employed for
interpretable analysis of the optimal model.

Results: In the postoperative outcomes of patients, the number of hospital days in
the transfusion group was longer than that in the non-transfusion
group. Additionally, the transfusion group experienced higher total hospital
costs, 90-day readmission rates, and complication rates within 90 days after
surgery than the non-transfusion group. A total of 9 features were selected for
the models. The XGBoost model performed best with an AUC value of 0.958. The
SHAP values showed that intraoperative blood loss, intraoperative fluid infusion,
and number of fused segments were the top 3 most important features affecting
perioperative blood transfusion in lumbar posterior interbody fusion. The LIME
algorithm was used to interpret the individualized prediction.

Conclusion: Surgery, ASA class, levels fused, total intraoperative blood loss,
operative time, and preoperative Hb are viable predictors of perioperative
blood transfusion in lumbar posterior interbody fusion. The XGBoost model
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has demonstrated superior predictive efficacy compared to the traditional logistic
regression model, making it a more effective decision-making tool for
perioperative blood transfusion.
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Introduction

Lumbar interbody fusion is a classic surgical procedure widely
utilized both domestically and internationally for the treatment of
degenerative lumbar spine disorders such as lumbar disc
herniation, lumbar spinal stenosis, and lumbar spondylolisthesis
(Ristagno et al., 2018; Tang et al., 2020). This type of surgery
provides spinal stability by eliminating nerve compression, which
can significantly relieve nerve root symptoms and pain (Guan
et al., 2022; Xiong et al., 2023). However, blood transfusions are
frequently required during the perioperative period since the
surgical procedure is highly intrusive and necessitates complete
dissection of the paravertebral soft tissue as well as excision of the
lamina and intervertebral disc (Suk et al., 1997; Nuttall et al., 2000;
Salehi et al., 2004; Willner et al., 2016). Previous studies have
shown that perioperative blood transfusion increases the risk of
postoperative complications, including infection, fever,
transmission of blood-borne diseases, pneumonia, and
incisional complications, which is a huge economic burden for
the healthcare system (Shander et al., 2010; Aoude et al., 2016a;
Kato et al., 2016). Therefore, clarifying the predictors of
perioperative blood transfusion can better identify high-risk
patients for early intervention to reduce the number of
transfusions and related complications.

Artificial intelligence (AI) has recently been increasingly
applied in various fields of medicine (Chaofan et al., 2022;
Zhen et al., 2022; FukHay et al., 2023). Machine learning (ML),
a subfield of AI, can automatically predict the output through
algorithms based on the characteristics of input data. Compared
with traditional statistical methods, ML can process big data more
accurately, thereby significantly improving the accuracy of
diagnosis and prognosis prediction ability (Khan et al., 2020;
Bellini et al., 2022; Ren et al., 2022). Although logistic regression
(LR) have been extensively utilized in clinical disease prediction
research and are comprehensible to clinical workers, it also has
some limitations including poor classification accuracy,
underfitting, and prediction efficacy that is easily affected by
missing data (Boehm et al., 2016; Mistry et al., 2017). Most
studies on predicting perioperative blood transfusion in lumbar
interbody fusion currently use traditional logistic regression
methods to analyze risk factors (Wang et al., 2021a; Liu et al.,
2021; Chen et al., 2022). However, consensus on the risk factors
and prediction accuracy remains insufficient. The objective of this
study was to develop interpretable machine learning prediction
models to improve the efficacy of perioperative blood transfusion
risk prediction for lumbar posterior interbody fusion and to
provide clinicians with better surgical transfusion decision
making.

Materials and methods

Study population

Electronic medical records for patients who underwent lumbar
interbody fusion surgery at the Second Hospital of Shanxi Medical
University were collected retrospectively. Inclusion criteria: 1)
patients who met the diagnosis of lumbar degenerative disease
and failed to respond to standard conservative treatment; 2)
posterior lumbar interbody fusion (PLIF) or transforaminal
lumbar interbody fusion (TLIF); 3) age ≥40 years. Exclusion
criteria: 1) minimally invasive surgery; 2) lumbar spine tumour;
3) lumbar spine tuberculosis; 4) brucellosis; 5) lumbar scoliosis
deformity; 6) lumbar fracture and dislocation; 7) cervical or
thoracic surgery; 8) autologous blood transfusion; 9)
preoperative blood transfusion (Wang et al., 2021a). The study
waived informed consent and was approved by the Ethics
Committee of the Second Hospital of Shanxi Medical University
(Ethical approval code: 2023YX235). Between January 2021 and
March 2023, there were 1,987 patients satisfied the inclusion and
exclusion criteria, with 82 patients who had a missing clinical data
rate exceeding 20% being excluded. Ultimately, 1,905 patients were
enrolled in this trial, consisting of 953 (50%) males and 952 (50%)
females, all of whom underwent standard lumbar interbody fusion.
Blood transfusion was defined as intraoperative or postoperative
transfusion of at least 1 U of allogeneic suspension-concentrated
red blood cells.

Data collection and processing

Based on a literature search and experience in clinical practice
(Lou et al., 2022), this study documented patients’ clinical
information in electronic medical records, including gender, age,
body mass index (BMI), duration of disease, concomitant diseases,
Previous history, preoperative laboratory tests, surgery, American
Stroke Association (ASA) class, levels fused, intraoperative fluid
infusion volume, total intraoperative estimated blood loss,
intraoperative urine volume, operative time, time to surgery,
tranexamic acid use, preoperative functional status, and
postoperative outcomes data, which included length of stay, total
hospitalization cost, 90-day readmission, and postoperative
complications (within 90 days). According to the data collected,
subjects with more than 20% missing information were eliminated,
and subjects with less than 20% missing information were filled.
Continuous variables were filled using the conditional mean filling
method, whereas categorical variables were filled using the random
interpolation filling method.
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Statistical analysis

SPSS 26.0 statistical software was used to analyze the differences
in characteristics between the blood transfusion group and the non-
blood transfusion group. Continuous characteristics were expressed
as mean ± SD and compared with the use of Student’s t-test or the
Mann Whitney U test. Categorical characteristics were expressed as
numbers and percentages and compared using Pearson’s chi-
squared test or Fisher’s exact test. Variables with a p-value less
than 0.05 in univariate analysis were entered into a multivariate
logistic regression analysis to ascertain the independent risk factors
for perioperative blood transfusion in posterior lumbar interbody
fusion. Statistical significance was considered for p < 0.05.

Development of predictive models

The research cohort was randomly divided into a training set (80%)
and a validation set (20%). In the training set, features with p values less
than 0.05 in the univariate analysis were chosen as alternative features,
and the “feature_importances” method provided by the XGBoost
algorithm was applied for feature selection (Chen and Guestrin,
2016). XGBoost is based on the gain of the structure scores to
determine which feature to choose as the segmentation point, and
the importance of this feature depends on the sum of its number of
occurrences in all tree structures. When an attribute is widely used in
the model to build a decision tree, its importance increases accordingly.
One advantage of using the XGBoost algorithm for feature selection is
that the importance score of each feature can be calculated relatively
intuitively after building the promotion tree. The predictors with the
highest feature importance scores are entered into 5ML algorithms,
namely, Extreme Gradient Boosting (XGB), random forest (RF),
support vector machine (SVM), naïve bayes (NB) and artificial
neural network (ANN), to build the prediction model. Ten-fold
cross-validation and grid search techniques were utilized to fine-
tune the optimal parameters of the model, and the conclusive
updated parameters following several iterations were deemed as the
ideal configuration for the current model. The algorithm’s parameters
are provided in (Supplementary Table S1). Model performance was
assessed on a validation set using AUC, accuracy, recall, specificity, F1-
Scores and probability calibration curves (Moons et al., 2019). SHAP
(Lundberg et al., 2020; Wang et al., 2021b) and LIME (Molnar, 2020)
were used to explainably analyze the optimal model. All data analysis
and construction were conducted using Python 3.10.9. LR, XGBoost,
RF, SVM and NB were established and trained using the scikit-learn
(1.2.2) package within Python. The ANN model was mainly
constructed using the keras (2.12.0) and tensorflow (2.12.0)
frameworks. SHAP explanatory analysis was conducted using shap
(0.42.1), and LIME analysis utilized lime (0.42.1) and jupyter (1.0.0).

Results

Demographic baseline characteristics

A total of 1905 valid samples were included and a few samples
had missing values. Missing values for continuous variables were
imputed using the conditional mean method, while missing values

for categorical variables were imputed using the random
interpolation method. In the transfusion group, there were
360 patients (18.9%) with an average age of (65.0 ± 9.9) years,
while the non-transfusion group comprised 1545 patients (81.1%)
with an average age of (60.7 ± 9.5) years. Table 1 shows the
comparison of preoperative and intraoperative characteristics
data of patients between the two groups by univariate analysis.
For postoperative outcomes, the transfusion group had a longer
length of stay compared to the non-transfusion group. Additionally,
the total hospitalization cost, 90-day readmission rate, and incidence
of complications within 90 days after operation were higher in the
transfusion group. All differences had p-values below 0.05, as shown
in Table 2. The results of multivariate logistic regression analyses
showed a higher risk of perioperative blood transfusion in lumbar
posterior interbody fusion patients with hypertension, PLIF Surgery,
ASA class ≥ III, levels fused ≥2, higher total intraoperative blood
loss, longer operative time, and lower preoperative hemoglobin
(Hb)、preoperative sodium、preoperative albumin, as shown in
Table 3.

Machine learning results

After univariate analysis, there were 23 significant features. In
order to facilitate comparison with traditional logistic regression, the
XGBoost algorithm was also applied to select the 9 features with top
importance scores, including levels fused, total intraoperative blood
loss, ASA class, surgery, intraoperative fluid infusion volume,
preoperative Hb, preoperative hematocrit (HCT), operative time,
and age (Figure 1). Five machine learning models were constructed
based on the nine features. Among these models, the XGBoost
model has the largest AUC value of 0.958, accuracy of 0.903, recall of
0.897, specificity of 0.904, F1-Score of 0.767, and precision of 0.670.
all of them are higher than the Logistic regression model with AUC
value of 0.930, accuracy of 0.866, recall of 0.882, specificity of 0.863,
F1-Score 0.702, and precision 0.583 (Table 4). Furthermore,
probabilistic calibration curves are utilized to assess the model’s
performance. A superior model would possess a calibration curve
situated close to the standard line. As can be observed in Figure 2,
the Logistic Regression model shows a Sigmoid-like shape and is a
lack of confidence. Whereas the ANN model illustrates an inverse
Sigmoid shape and represents overconfidence. The RF, SVM andNB
models gives even worse results, while the XGBoost model performs
the optimal outcome with a calibration curve very close to the
standard line.

Model explainability

Based on the above comparisons, we determined that the
XGBoost model was the best prediction model for perioperative
blood transfusion in posterior lumbar interbody fusion. We attempt
to unlock the “black box” in the XGBoost model by SHAP values and
explain how the model predicts blood transfusion. An overview of
the SHAP values for each feature in each sample is shown in
Figure 3A. The color represents feature values where the redder
shade signifies a larger feature value. The figure shows that the risk
factors for perioperative blood transfusion in posterior lumbar
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TABLE 1 Comparison of preoperative and intraoperative data of the two groups of patients.

Variable Non-transfusion (N = 1545) Transfusion (N = 360) t/χ2 P

Sex 0.230 0.632

Female 777 (50.3%) 176 (48.9%)

Male 768 (49.7%) 184 (51.1%)

Age (years) 60.7 ± 9.5 64.9 ± 9.9 7.438 <0.001

BMI (kg/m2) 25.1 ± 3.5 25.7 ± 3.8 2.324 0.021

Duration of disease (months) 53.5 ± 71.9 65.2 ± 79.5 2.554 0.011

Comorbidities (%)

Hypertension 520 (33.7%) 182 (50.6%) 35.828 <0.001
Diabetes mellitus 184 (11.9%) 70 (19.4%) 14.346 0.001

Coronary heart disease 79 (5.1%) 42 (11.7%) 21.080 0.024

Previous history (%)

Surgical history 604 (39.1%) 174 (48.3%) 10.316 0.001

Blood transfusion 31 (2.0%) 12 (3.3%) 2.330 0.127

Allergies 178 (11.5%) 47 (13.1%) 0.660 0.417

Smoking 420 (27.2%) 91 (25.3%) 0.541 0.462

Alcohol 281 (18.2%) 44 (12.2%) 7.343 0.007

Preoperative laboratory tests

WBC 6.4 ± 1.8 6.4 ± 2.1 −0.193 0.847

RBC 4.6 ± 0.5 4.5 ± 0.5 −5.154 <0.001
Hb 142.6 ± 15.4 137.2 ± 19.0 −4.998 <0.001
HCT 0.4 ± 0.0 0.4 ± 0.1 −4.834 <0.001
PLT 229.8 ± 60.7 229.2 ± 82.1 −0.142 0.887

PT 13.7 ± 0.9 13.9 ± 1.2 4.168 <0.001
INR 1.0 ± 0.1 1.0 ± 0.1 3.784 <0.001
FIB 2.8 ± 0.6 2.9 ± 0.7 1.687 0.09

APTT 30.7 ± 3.1 30.8 ± 3.2 0.783 0.434

Sodium 140.6 ± 2.2 140.3 ± 3.0 −2.114 0.035

Calcium 2.3 ± 0.2 2.3 ± 0.3 −0.379 0.705

Albumin 40.5 ± 3.3 39.7 ± 3.8 −4.042 <0.001

Surgery 76.130 <0.001
TLIF 489 (31.7%) 32 (8.9%)

PLIF 1056 (68.3%) 328 (91.1%)

ASA class 75.829 <0.001
Ⅰ、Ⅱ 1291 (83.6%) 227 (63.1%)

≥Ⅲ 254 (16.4%) 133 (36.9%)

Levels fused 326.961 <0.001
1 1207 (78.1%) 116 (32.2%)

2 307 (19.9%) 186 (51.7%)

≥3 31 (2.0%) 58 (16.1%)

Intraoperative FIV (mL) 1851.0 ± 419.1 2137.6 ± 547.5 9.316 <0.001

Total intraoperative EBL (mL) 235.2 ± 149.4 614.9 ± 309.7 22.655 <0.001

Intraoperative UV (mL) 392.2 ± 190.8 494.4 ± 259.3 7.050 <0.001

Operative time (min) 134.2 ± 33.3 169.8 ± 42.6 14.854 <0.001

Time to surgery (days) 4.3 ± 2.3 4.8 ± 2.8 3.270 0.001

Tranexamic acid use 0.859 0.354

Yes 252 (16.3%) 66 (18.3%)

No 1293 (83.7%) 294 (81.7%)

(Continued on following page)
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interbody fusion were total intraoperative blood loss, intraoperative
fluid infusion volume, levels fused, operative time, ASA class,
surgery, and age, while the protective factors were preoperative
HCT and preoperative Hb. Additionally, SHAP dependence analysis
was utilized to explore how individual features affected the output of
the XGBoost prediction model. The SHAP dependence plots of the
top 3 relatively important features output by the XGBoost prediction
model are shown in Figures 3B–D. According to the figure, when the
total intraoperative blood loss is higher than 400 mL and levels
fused ≥2, the corresponding SHAP value is positive, thereby
increasing the risk of blood transfusion for the patient. The
intraoperative fluid infusion volume’s blood transfusion warning
range is not particularly clear. Further detailed outcomes of SHAP
dependence plots for the remaining six features are presented in the
Supplementary Material.

Subsequently, we applied SHAP force analysis and the LIME
algorithm to illustrate the individualized prediction of blood
transfusion by extracting two samples from the validation set.

TABLE 1 (Continued) Comparison of preoperative and intraoperative data of the two groups of patients.

Variable Non-transfusion (N = 1545) Transfusion (N = 360) t/χ2 P

Preoperative functional status 0.48 0.488

Independent 237 (15.3%) 50 (13.9%)

Dependent 1308 (84.7%) 310 (86.1%)

WBC, white blood cell count; RBC, red blood cell count; Hb, Hemoglobin; HCT, hematocrit; PLT, platelet; PT, prothrombin time; INR, international normalized ratio; FIB, fbrinogen; APTT,

activated partial thromboplastin time; FIV, fluid infusion volume; EBL, estimated blood loss; UV, urine volume.

TABLE 2 Comparison of postoperative outcomes of the two groups of patients.

Non-transfusion (N = 1545) Transfusion (N = 360) t/χ2 P

Length of stay (days) 9.0 ± 3.2 10.2 ± 3.8 5.828 <0.001

Total hospitalization cost (yuan) 68572.6 ± 14721.4 78928.4 ± 21864.8 8.546 <0.001

90-day readmission 23 (1.5%) 11 (3.1%) 4.089 0.043

Postoperative complications (within 90 days) 31 (2.0%) 18 (5.0%) 10.440 0.001

TABLE 3 Multivariate logistic regression analyses for risk factors of blood transfusion.

Risk factors β SE Wald value P OR (95%CI)

Hypertension 0.479 0.199 5.832 0.016 1.615 (1.095–2.384)

Surgery 0.995 0.287 12.000 0.001 2.704 (1.540–4.748)

ASA class 0.936 0.220 18.176 <0.001 2.551 (1.658–3.923)

Levels fused

2 1.063 0.217 24.085 <0.001 2.896 (1.894–4.429)

≥3 1.657 0.370 20.064 <0.001 5.242 (2.539–10.822)

Total intraoperative EBL 0.008 0.001 173.783 <0.001 1.008 (1.007–1.009)

Operative time 0.010 0.003 10.110 0.001 1.010 (1.004–1.016)

Preoperative Hb −0.036 0.006 31.876 <0.001 0.965 (0.953–0.977)

Sodium −0.086 0.038 5.031 0.025 0.918 (0.852–0.989)

Albumin −0.062 0.030 5.031 0.039 0.939 (0.885–0.997)

FIGURE 1
Importance score plot of the top nine features in the XGBoost
model.
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Figures 4A1, A2 present a transfusion case of a 79-year-old man with
a history of hypertension and coronary heart disease who was
admitted to the hospital for lumbar spinal stenosis. The blood
transfusion probability predicted by XGBoost model was 94%.
The factors that increased the risk of blood transfusion included
total intraoperative blood loss of 600 mL, levels fused of 3, operative
time of 200 min, intraoperative fluid infusion volume of 2200 mL,
age of 79 years, and ASA classⅣ. The factor that reduced the risk of
blood transfusion was TLIF surgery. The XGBoost model predicted
blood transfusion in this patient, and the actual result was also a
transfusion. Similarly, Figures 4B1, B2 presents a non-transfusion
case of a 44-year-old female admitted for lumbar spondylolisthesis
with lumbar disc herniation. The XGBoost model predicted a 1%
probability of blood transfusion. The patient’s total intraoperative
blood loss of 200 mL, intraoperative fluid infusion volume of
2200 mL, levels fused 1, preoperative HCT of 0.42 L/L, and
preoperative Hb of 150 g/L reduced the risk of blood transfusion,
whereas PLIF surgery increased the risk of blood transfusion. The

XGBoost model predicted no blood transfusion for this patient,
which was the actual outcome.

Discussion

Based on clinical data from patients undergoing posterior
lumbar interbody fusion, classical logistic regression and five
machine learning perioperative transfusion risk prediction models
were built in this study. All prediction models ultimately included
the 6 variables of surgery, ASA class, levels fused, total intraoperative
blood loss, operative time, and preoperative Hb. This fully proves
that the above six factors are important predictors of perioperative
blood transfusion in lumbar posterior interbody fusion, which is
basically consistent with the results of previous similar studies
(Basques et al., 2015; Morcos et al., 2018; Jeremy et al., 2023).
This study also compared the postoperative prognosis based on
blood transfusion in patients undergoing lumbar posterior

TABLE 4 Comparison of the prediction performance of the six models on validation set.

Models AUC Accuracy Recall Specificity F1-Score Precision

LR 0.930 0.866 0.882 0.863 0.702 0.583

XGBoost 0.958 0.903 0.897 0.904 0.767 0.670

RF 0.932 0.874 0.882 0.872 0.714 0.600

SVM 0.933 0.861 0.882 0.856 0.694 0.571

NB 0.908 0.874 0.824 0.885 0.700 0.609

ANN 0.926 0.885 0.809 0.901 0.714 0.640

FIGURE 2
Comparison of calibration curves of the six models on validation set.
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interbody fusion and showed that patients in the blood transfusion
group had longer actual length of stay, higher total hospitalization
costs, higher 90-day readmission rates, and higher incidence of
complications within 90 days after surgery (Basques et al., 2014;
Morcos et al., 2018).

According to this study, there is a higher chance of perioperative
blood transfusion following PLIF surgery. Kunder et al. (de Kunder
et al., 2017) and Lei F et al. (Lei et al., 2020) have demonstrated that
intraoperative bleeding in TLIF surgery is significantly lower than in
PLIF surgery, potentially due to differences in anatomical regions.
The classical PLIF technique involves removal of the ligamentum
flavum and complete removal of the posterior lamina to access the
intervertebral space via extensive laminotomy (Cloward, 1953).
However, TLIF technique is a modification of the PLIF
technique, which involves removal of only one side of the facet
joints to access the posterolateral intervertebral discs via a unilateral
foraminal approach (Lowe and Tahernia, 2002), preserving the
other side of the facet joints, vertebral plates, and posterior
ligaments of the spine. Therefore, the TLIF technique may be
associated with fewer complications, shorter operative time, and

less blood loss than the PLIF technique. Patients with ASA class
3 and above also have increased transfusion rates, wherein higher
ASA classes indicate more medical comorbidities. Patients with
considerable comorbidities tend to have lower reserves and lower
transfusion thresholds (Morcos et al., 2018). Levels fused, total
intraoperative blood loss and operative time are also risk factors
for perioperative blood transfusion (Aoude et al., 2016a; Durand
et al., 2018; Wang et al., 2021a). The lumbar spine is richly endowed
with blood vessels, mainly including the internal vertebral venous
plexus and the external vertebral venous plexus, to collect venous
blood from the spinal cord, spine and soft tissues. The more the
number of fusion segments in spinal fusion, the more extensive
stripping of paravertebral muscles and soft tissues is required for
pedicle nail placement and intravertebral decompression. Owing to
the abundant blood vessel distribution in the lumbar vertebrae, a
larger operation scope necessitates more operations, thereby
prolonging the operation time and correspondingly increasing
blood loss in the body. Hence, carefully inquiring the medical
history, performing a physical examination and analysis of
imaging data, grasping the indications of fusion surgery, and

FIGURE 3
SHAP summary plot of the XGBoost model based on shapley additive explanations values. (A) An overview of the SHAP values for each feature in
each sample. Each line represents a feature,a point represents a sample and the abscissa is the SHAP value. Red dots indicate higher feature values,
whereas blue dots indicate lower feature values. (B–D) are SHAP dependence plots of the top 3 relatively important features output by the XGBoost
prediction model. SHAP values for specific features exceed zero, representing an increased risk of blood transfusion.
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elucidating the responsible segments for precise lumbar fusion
surgery are effective ways to lower the risk of perioperative blood
transfusion. Notably, a lower preoperative hemoglobin level also
raises the perioperative transfusion rate. The lower the preoperative
red blood cell count, hemoglobin and hematocrit, the worse the
ability to compensate for intraoperative bleeding, and the greater the
likelihood of perioperative blood transfusion. This suggests that
orthopedic surgeons should focus on improving hemoglobin levels
before surgery, which can reduce the risk of intraoperative and
postoperative blood transfusion (Liu et al., 2021).

Furthermore, five machine learning predictive models were
developed based on selected features of the XGBoost algorithm.
The performance of each model was evaluated on the validation set
data. The results showed that the XGBoost model had the best
prediction effect, with an AUC value of 0.958, small differences in

the accuracy, recall, specificity, F1-Score, and precision, and the
calibration curve was closest to the standard line. The superior
predictive performance of the XGBoost model is primarily
attributed to: The XGBoost algorithm is a nonlinear integrated
learning algorithm. Its tree model has the ability to infinitely
split, thus allowing for infinite approximation of the Vapnik-
Chervonenkis dimension and improving the accuracy of data
fitting. To address the issue of overfitting caused by high
dimensions, the algorithm utilizes the L1 and L2 regularization
method. Additionally, the modelling retains correlation among
variable features, enhancing the model’s predictive effectiveness.
By contrast, the logistic regression model in this study had an AUC
value of 0.930, and its accuracy, recall, balanced F-score, precision,
and calibration curve performance was inferior to that of the XGB
model. One possible explanation for this could be the model’s low

FIGURE 4
SHAP force analysis and local interpretable model-agnostic explanations (LIME) algorithm for explaining individual’s prediction results. (A) The true
outcome is transfusion, and the predicted outcome is transfusion. (B) The true outcome is non-transfusion, and the predicted outcome is non-
transfusion. (A1, B1), the red and blue bars represent risk factors and protective factors, respectively; longer bars indicate greater importance of the
feature. (A2, B2), the left part of the figure shows the predicted outcomes using LIME. The middle part shows the critical values of the nine variables
when they have the greatest effect on transfusion or non-transfusion. The length of each feature bar indicates the importance (weight) of that feature in
the prediction. The right panel specifically lists the numerical sizes of the samples in these features.
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computational complexity, which is liable to cause underfitting and
a low classification accuracy. However, it is worth noting that the
predictive performance of the logistic regression model in this study
was significantly better than that of the nomogram model (AUC
value 0.890) reported in previous literature (Liu et al., 2021). The RF
and SVM models exhibit moderate predictive capabilities. Random
Forest comprises numerous decision trees resulting in high
computational complexity and dependence on vast training
datasets for improved prognostication. While support vector
machine lacks a universal approach to nonlinear difficulties,
occasionally necessitating the identification of an appropriate
kernel function. The prediction performance of the ANN model
is slightly inferior, possibly because the neural network requires a
large number of parameters and protracted learning time. This can
lead to local minima or even a failure to achieve the learning
objective. Whereas the NB model has the worst prediction
performance, probably due to the use of the assumption of
sample attribute independence, so its effect is not good if the
sample attributes are correlated. Therefore, the prediction model
based on XGBoost algorithm has great potential in the prediction of
perioperative blood transfusion in posterior lumbar interbody
fusion. Several previous studies across various patient populations
have also demonstrated the efficacy of XGBoost in disease prediction
studies, highlighting the model’s widespread applicability (Hu et al.,
2022; Ma et al., 2022; Fan et al., 2023).

Moreover, machine learning’s usefulness is limited by the fact that
they often exhibit “black box” performance that is challenging to
interpret (Watson et al., 2019; Azodi et al., 2020). To address this issue,
this study uses the SHAP algorithm, a post-hoc interpretable
technique for machine learning models, to perform global
interpretive analysis and personalised attribution analysis of nine
risk features in the XGBoost model, and further proposes the warning
range of the risk features. At the same time, two specific instances are
selected for visual prediction based on LIME algorithm, which is easier
to be understood and used by clinical practitioners.

This study also has several limitations. Firstly, it is a
retrospective study conducted in a single large-capacity center
with missing or incomplete data, which may introduce selective
bias and weaken statistical test efficacy. In future studies, prospective
randomized controlled studies will be conducted to further confirm
the present findings and for external validation, especially in other
regions and countries. Secondly, the XGBoost classifier has many
parameters, and fine-tuning it with the grid search method is
inefficient. The performances of the classifier in this work may
depend largely on the results of feature selection, and the effects of
different feature selection methods on model performance will be
further investigated in future studies.

Conclusively, this study has retrospectively analyzed clinical data
to construct the XGBoost prediction model. This model can predict
perioperative blood transfusion in lumbar posterior interbody fusion,
which can assist orthopedic surgeons in enhancing their surgical
transfusion decision-making efficiency. It is worthy of promotion and
application in the clinic. No research has been found to have utilised
machine learning models to predict the risk associated with
perioperative blood transfusion in posterior lumbar interbody
fusion, beyond traditional logistic regression modelling. This is the
first study to construct and compare multiple machine learning
models for individualized prediction of perioperative blood

transfusion based on the clinical data of patients undergoing
posterior lumbar interbody fusion.
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