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The endoplasmic reticulum (ER) is a tightly regulated organelle that requires
specific environmental properties to efficiently carry out its function as a major
site of protein synthesis and folding. Embedded in the ER membrane, ER stress
sensors inositol-requiring enzyme 1 (IRE1), protein kinase R (PKR)-like
endoplasmic reticulum kinase (PERK), and activating transcription factor 6
(ATF6) serve as a sensitive quality control system collectively known as the
unfolded protein response (UPR). In response to an accumulation of
misfolded proteins, the UPR signals for protective mechanisms to cope with
the cellular stress. Under prolonged unstable conditions and an inability to regain
homeostasis, the UPR can shift from its original adaptive response tomechanisms
leading to UPR-induced apoptosis. These UPR signaling pathways have been
implicated as an important feature in the development of cardiac fibrosis, but
identifying effective treatments has been difficult. Therefore, the apoptotic
mechanisms of UPR signaling in cardiac fibroblasts (CFs) are important to our
understanding of chronic fibrosis in the heart. Here, we summarize the
maladaptive side of the UPR, activated downstream pathways associated with
cell death, and agents that have been used to modify UPR-induced
apoptosis in CFs.
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1 Introduction

Understanding the signaling cascades responsible for CF apoptosis could uncover ways
to ameliorate chronic cardiac fibrosis (Matsumoto et al., 1996; Han et al., 2009; Groenendyk
et al., 2016; Ren et al., 2021). Fibroblasts secrete and maintain tissue extracellular matrix
(ECM) and, when differentiated into myofibroblasts, they enhance the matrix to aid in cell
migration, communication, and wound healing (Galbraith and Sheetz, 1998; Brown et al.,
2007; Jellis et al., 2010; van Nieuwenhoven and Turner, 2013). ER stress results from many
cardiac pathologies, and homeostasis is maintained by signaling through the three arms of
the UPR: IRE1, PERK, and ATF6 (Figure 1) (Minamino and Kitakaze, 2010; Arrieta et al.,
2018). While the UPR is typically protective, under prolonged stressful conditions, such as
oxidative stress, proteotoxicity, or impaired calcium signaling, it may shift to maladaptive
signaling resulting in programmed cell death (Liang et al., 2012; Muchowicz et al., 2015;
Losada et al., 2020).

UPR-induced apoptosis may be divided into three phases that include initiation,
commitment, and execution (Szegezdi et al., 2006a). Unresolvable stress initiates signaling,
causing a commitment to apoptosis by upregulation of CCAAT enhancer-binding protein
C/EBP homologous protein (CHOP) by all three arms, and an execution phase through
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downstream caspase activation (Matsumoto et al., 1996; Zinszner et al.,
1998; Szegezdi et al., 2006b; Yang et al., 2020). The mechanisms that
contribute to each phase have not been well characterized in CFs. Most
studies have been performed in vitro, leaving many unanswered
questions, such as how UPR signaling contributes to in vivo
replacement, interstitial, and perivascular fibrosis (Factor et al., 1991;
Aoki et al., 2011; Dai et al., 2012). Here, we review the known
maladaptive pathways of the UPR, the current literature available
about the role of the UPR in CF apoptosis, and areas of expansion
needed in this field.

2 The UPR in cardiac fibroblast
cell death

Maladaptive downstream effectors of the UPR, such as Jun-N-
terminal kinase (JNK) and the B-cell lymphoma-2 (Bcl-2)/Bax ratio,
have been assessed as a standard indicator for cell death in CFs (Tian
et al., 2002; Zhao and Eghbali-Webb, 2002; Mayorga et al., 2004; Lai
et al., 2009; Ghavami et al., 2012a; Ghavami et al., 2012b; Parra-Flores
et al., 2021). Ghavami, et al. investigated maladaptive UPR signaling in
the context of the mevalonate cascade, a pathway important in
cholesterol synthesis (Ghavami et al., 2012a). Clinically, statins,
which inhibit 3-hydroxy-3-methyl-glutaryl-CoA reductase (HMG-
CoA), have been observed to decrease cardiac remodeling and
activate apoptosis (Ghavami et al., 2012a). It was reported that
inhibiting HMG-CoA with simvastatin simultaneously activated
apoptosis and the UPR in human atrial fibroblasts and could be
reversed by exposure to exogenous mevalonate (Ghavami et al.,
2012a). This was supported with evidence that IRE1, cleaved ATF6,
phosphorylated PERK, and CHOP expression increased upon

simvastatin treatment. Spliced X-box binding protein 1 (XBP1) had
the most significant increase in expression compared to all the UPR
components examined (Ghavami et al., 2012a). This was further
substantiated by characterization of maladaptive downstream
molecules of IRE1, such as JNK, p53-upregulated modulator of
apoptosis (PUMA), NOXA, and Bcl-2/Bax (Ghavami et al., 2012a).
There was a significant increase in Bax, PUMA, NOXA, and caspase-3/
7/9 expression with a simultaneous decrease in Bcl-2 and Mcl-1
(Ghavami et al., 2012a). The decrease in Bcl-2 was reversed by JNK
inhibition, indicating that JNK signaling may be responsible for
additional promotion of apoptotic effects which the authors suggest
is limited by autophagic flux (Ghavami et al., 2012a). By performing a 3-
(4,5dimethylthiazol-2-yl)-2,5-diphenyl-2H-tetrazolium bromide (MTT)
assay for cell viability, the data suggested that an increase in
IRE1 expression was accompanied with an increase in human atrial
fibroblast death (Ghavami et al., 2012a). The authors did not investigate
the direct relationship between ATF6 activation and CHOP-mediated
apoptosis, leaving it undetermined if ATF6 signaling orchestrated the
observed maladaptive cell death pathways. Further clarifying the
association between CF apoptosis and the Bcl-2/Bax ratio, Ghavami
et al. exposed rat ventricular myofibroblasts to the trans-fatty acids
(TFAs), vaccenic acid (VA) and elaidic acid (EA), at concentrations of
200 and 400 µM (Ghavami et al., 2012b). These treatments resulted in a
significant increase in the percentage of apoptosis and a significant
decrease in cell viability (Ghavami et al., 2012b). This was corroborated
with a significant decrease in Bcl-2/Bax ratio (Ghavami et al., 2012b).
Although TFAs are known ER stressors and UPR inducers, they are
reported to not all have the same effect on cellular homeostasis and
additional work is required to establish that specific TFAs (such as VA
and EA) induce CF apoptosis through maladaptive UPR mechanisms
(Oteng and Kersten, 2020).

FIGURE 1
Adaptive UPR signaling pathways. Upon accumulation of misfolded proteins and ER stress, BiP (GRP78) disassociates from the UPR sensors to act as
a chaperone. This allows IRE1 homodimerization causing the RNase domain to splice XBP1 mRNA resulting in the expression of XBP1s. PERK also
homodimerizes, resulting in kinase activity that phosphorylates eIF2⍺. This leads to a global translation block and a reading frame shift in ATF4 that allows
it to escape the block. ATF6 translocates to the Golgi apparatus where it is cleaved by proteases S1P and S2P, releasing its 50kD N-terminus. These
pathways lead to the translocation of transcriptionally active XBP1s, ATF4, and N-ATF6 to the nucleus to upregulate UPR genes in response to ER stress
Created with BioRender.com.
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Most of the work investigating the UPR in CF cell death has been
completed in vitro, so more in vivo experiments are necessary to
understand the broader physiological impacts of these pathways.
This is particularly relevant when investigating CFs because they are
mechanosensitive while functioning in an environment with repeated
movement and a precise matrix composition and stiffness. In a recent
study by Parra-Flores and collaborators, an in vivo model of ischemia/
reperfusion (I/R), a known activator of the UPR, was used (Zhang et al.,
2017; Parra-Flores et al., 2021). They saw a decrease in neonatal CF
viability and an increase in apoptotic signaling following I/R; these
effects were recovered by antioxidant exposure (Parra-Flores et al.,
2021). This was associated with toll-like receptor 4 activation, a known
regulator of IRE1 and XBP1 (Martinon et al., 2010; Parra-Flores et al.,
2021). Further analyses showed decreases in pro-caspase 3/9 expression,
decreases in p38 MAPK and JNK phosphorylation, and an increase in
the Bcl-2/Bax ratio (Parra-Flores et al., 2021). Because all these
components are important downstream players in maladaptive
IRE1 signaling, expanding this work could clarify how the UPR may
orchestrate pathways leading to CF apoptosis (Wang and Ron, 1996;
Griffiths et al., 2001; Zong et al., 2001; Hitomi et al., 2004; Kato et al.,
2012; Parra-Flores et al., 2021).

3 IRE1 in cell death

Irreversible ER stress causes IRE1 dimerization, resulting in
recruitment of tumor necrosis factor receptor associated factor 2
(TRAF2) and apoptotic-signaling-kinase 1 (ASK1) that leads to
maladaptive signaling (Urano et al., 2000; Nishitoh et al., 2002; Luo
et al., 2008). The most referenced maladaptive downstream player of
IRE1, JNK, activates apoptotic pathways and phosphorylates the anti-
apoptotic family of Bcl-2 proteins (Lei and Davis, 2003;Wei et al., 2008;
Shimizu et al., 2010; Kato et al., 2012). The upregulation of CHOP by
the IRE1-TRAF2-ASK1 complex increases apoptotic proteins, such as
Bcl-2-like 11 (BIM) and death receptor 5 (DR5), while simultaneously
suppressing anti-apoptotic gene expression such as Bcl-2 (Wang and
Ron, 1996;McCullough et al., 2001; Ghosh et al., 2012; Jung et al., 2015).
The IRE1-TRAF2-ASK1 complex also activates caspases, such as
caspase-12 and caspase-3, required for apoptosis (Yoneda et al.,
2001; Hitomi et al., 2004).

3.1 IRE1 in cardiac fibroblast cell death

The significance of maladaptive downstream signalers of IRE1 in
CF apoptosis can be supported through the work done by Feng and
collaborators (Feng et al., 2018). These authors showed that the
elevated levels of BiP, CHOP, PUMA, and caspase-3 protein
resulting from transverse aortic constriction (TAC) could be
significantly reduced when these mice were treated with
hydrogen sulfide (H2S) (Feng et al., 2018). It was unclear if these
expression levels were specifically due to CFs or other cardiac cell
types, but these effects were supported in vitro through H2S
attenuation of hydrogen peroxide (H2O2)-mediated apoptosis in
isolated human CFs (Feng et al., 2018).

The Bcl-2/Bax ratio is regulated downstream of IRE1 and
influences CF apoptosis (Mayorga et al., 2004; Shemorry et al.,
2019). siRNA knockdown of Bcl-2 resulted in an increase in CF

apoptosis (Mayorga et al., 2004). JNK phosphorylation can inhibit
Bcl-2 function and reduce the cell’s ability to properly regulate Ca2+

homeostasis in the ER and increase mitochondrial Ca2+ uptake
(Murphy et al., 1996; He et al., 1997; Lei and Davis, 2003;
Scorrano et al., 2003; Wei et al., 2008). Indeed, IRE1 can also
activate JNK through TRAF2 and ASK1 leading to disinhibition
of Bax/Bak by Bcl-2, and enabling cytochrome c release from the
mitochondria (Gorman et al., 2012). Mitochondrial-mediated
apoptosis was associated with shifts in Bcl-2, Bax, or caspase
expression (Tian et al., 2002). Tian et al. treated rat CFs with
inflammatory cytokines, which induced nitric oxide-mediated
apoptosis (Tian et al., 2002). This exposure was reported
alongside a significant 3.5-fold increase in Bax, a 2.5-fold increase
in caspase-3 expression, and a 7-fold increase in caspase-3 activity
(Tian et al., 2002). Meanwhile, Lai and others showed that higher
doses of norepinephrine up to 100 µM significantly increased
apoptosis and decreased the number of viable rat CFs (Lai et al.,
2009). This exposure was reported to be associated with an increase
in Bax mRNA expression and caspase-3 activity, indicating
cytotoxicity and the activation of apoptotic pathways (Lai et al.,
2009). Although these authors did not identify the upstream
mediators of these results, it has been demonstrated that
norepinephrine can induce UPR signaling, specifically ATF6 and
IRE1, in HepG2 cells, human fat explants, and 3T3-L1 mouse
adipocytes (Lai et al., 2009; Abdullahi et al., 2020).

Interestingly, Zhao and collaborators looked at differences by
sex of rat CFs to apoptotic stimuli (Zhao and Eghbali-Webb, 2002).
They found that following 15 min of hypoxia, isolated CFs from
males had a steeper increase in JNK expression relative to females in
comparison to each of their basal levels, but females had an overall
higher basal JNK expression compared to male CFs (Zhao and
Eghbali-Webb, 2002). Evidence in rodents and humans supports
that there is less cardiac remodeling and fibrosis in females (Kessler
et al., 2019). Because sex differences are associated with human
cardiovascular disease progression and outcomes, this perspective of
CF cell death is worth exploring further. Of particular significance
when considering CFs in vitro is the absence of intrinsic, sex-based
hormonal signaling, such as estrogen, a known contributor to
enhanced wound repair. With this, the lack of complex sex
specific characteristics in cell culture should be taken into
consideration. Other tissue types, such as the kidney, have also
shown sex differences in UPR signaling through increased ER stress
markers and apoptosis in tunicamycin-treated male mice, compared
to females (Hodeify et al., 2013). Using the perspective taken by
Zhao, et al., the potential role of UPR signaling through JNK and its
apoptotic effects in CFs could further clarify factors contributing to
the observed sex differences in cardiac outcomes.

4 PERK in cell death

The serine/threonine kinase activity of PERK phosphorylates
eukaryotic translation initiation factor 2a (eIF2⍺) (Koumenis et al.,
2002; Cui et al., 2011). This attenuates overall translation while
increasing the translation of specific mRNAs such as activating
transcription factor 4 (ATF4), critical for the transcription of CHOP
(Fawcett et al., 1999; Blais et al., 2004). CHOP upregulates three
important components of UPR-induced apoptosis which are
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tribbles-related protein 3 (TRB3), DR5, and growth arrest and DNA
damage-inducible gene 34 (GADD34) (Marciniak et al., 2004;
Yamaguchi and Wang, 2004; Ohoka et al., 2005). TRB3 prevents
proliferation, transcription, and differentiation signaling by binding
Akt and inhibiting phosphorylation (Du et al., 2003). Apoptotic
signaling is enhanced through DR5 by the activation of caspases
(Tanner and Grisanti, 2021). When ER stress cannot be reversed,
GADD34 binds protein phosphatase-1⍺ to dephosphorylate eIF2⍺ and
remove the translation block which is associated with apoptosis (Brush
et al., 2003; Choy et al., 2015; Collier et al., 2015). Pro-apoptotic
signaling through CHOP also influences Bax/Bak and outer
mitochondrial membrane permeabilization by reducing Bcl-2 and
increasing BIM (Puthalakath et al., 2007; Luna-Vargas and Chipuk,
2016; Zhou et al., 2019).

4.1 PERK in cardiac fibroblast cell death

PERK may orchestrate maladaptive effects in CFs because
multiple downstream PERK signaling molecules, such as CHOP,
ATF4, DR5, and Bcl-2, have been shown to influence CF apoptosis
(Mayorga et al., 2004; Humeres et al., 2014; Sokolova et al., 2017;
Feng et al., 2018; Olivares-Silva et al., 2021; Tanner and Grisanti,
2021). Since all three arms of the UPR regulate CHOP signaling,
defining which branch has the most impact on CF apoptosis is
critical for fully explaining the role of CHOP in this process (Yang
et al., 2020). Recently, Olivares-Silva and others reported that ER
stress induced by tunicamycin, ischemia, and I/R increased CHOP
protein expression in neonatal Sprague Dawley rat CFs (Olivares-
Silva et al., 2021). This was associated with an increase in apoptosis
and reduction of viability in a time and concentration-dependent
manner (Olivares-Silva et al., 2021). Similarly, Humeres and
collaborators isolated CFs from neonatal Sprague-Dawley rats
and induced ER stress through thapsigargin treatments (Humeres
et al., 2014). This increased GRP78, protein disulfide-isomerase
(PDI), ATF4, and CHOP protein levels while simultaneously
decreasing cell viability in a time and concentration-dependent
manner (Humeres et al., 2014). Work by Feng et al. found that
exposure to H2O2 resulted in a significant decrease in human CF
viability and an increase in apoptosis in a dosage dependent manner,
which occurred concurrently with an increase in CHOP expression
and could be ameliorated by exposure to H2S (Feng et al., 2018).
Together, these investigations provide evidence that downstream
mediators of PERK signaling, such as CHOP and ATF4, modulate
CF cell viability.

Sokolova and coauthors recently found that palmitate (PA), a
saturated fatty acid found in plasma, induced ER stress in adult
mouse CFs (Sokolova et al., 2017). PA increased the gene expression
of CHOP and ATF4 while also increasing CF apoptosis and
decreasing CF contractile function (Sokolova et al., 2017).
Annexin V-fluorescein isothiocyanate (FITC) labeling detected a
significant increase in early-stage apoptosis while propidium iodide
binding to nuclear DNA did not show a significant late-stage
apoptosis/necrosis when treated with PA (Sokolova et al., 2017).
This is particularly interesting because it has been reported that
PERK induction of CHOP is more significant in the later stages of
apoptosis, as indicated by propidium iodide staining, in other cell
types (Lu et al., 2017; Liu and Zhang, 2020). It may be useful to apply

these apoptotic stage analyses to evaluate the timing of maladaptive
signaling within each of the UPR branches. Further, determining the
time point of each switch between adaptive and maladaptive UPR
signaling could have clinical applications in treatments targeting
these mechanisms.

PERK is a known upstream mediator of DR5 (Lu et al., 2014).
Tanner and others showed that DR5 signaling was correlated with
proliferation in inactivated ventricular fibroblasts but apoptosis in
activated ventricular myofibroblasts (Tanner and Grisanti, 2021).
This was evident through a significant increase in DR5 expression,
caspase 3/7 activity, and apoptosis, measured by terminal
deoxynucleotidyl transferase dUTP nick end labeling (TUNEL)
staining, in myofibroblasts compared to fibroblasts (Tanner and
Grisanti, 2021). This was further substantiated in vivo by Masson’s
Trichome staining, which showed that after isoproterenol injection
there was an increase in fibrosis in DR5 gene-deleted mice compared
to control mice (Tanner and Grisanti, 2021). Studies such as this that
compare UPR signaling in fibroblasts and myofibroblasts could help
to clarify the roles of these signaling pathways in CF cell death.

5 ATF6 in cell death

Elevated ATF6 expression, due to either disease processes or viral
transduction, is associated with increased cellular apoptosis (Morishima
et al., 2011; Tan et al., 2020). In colorectal cancer cells, the
ATF6 transcriptionally active N-terminus increased GRP78, DDIT3
(which encodes CHOP), and EIF2AK3 (which encodes PERK) gene
expression and significantly increased apoptotic cells (Spaan et al.,
2019). Similarly, overexpression of ATF6 increased CHOP and Bax
mRNA and protein levels, decreased Bcl-2 expression, and significantly
increased the rate of apoptosis (Huang et al., 2018). Depletion of
ATF6 decreased CHOP expression and increased Bcl-2 expression,
resulting in a decrease of apoptosis (Xiong et al., 2017). Upon
ATF6 silencing, pro-apoptotic effects of hydroxycamptothecin on
fibroblasts was significantly weakened (Wei et al., 2018; Yao et al.,
2019; Tao et al., 2021). Further examination of the PERK/p-eLF2α/
ATF4 pathway could elucidate ATF6’s role in apoptosis, as it has been
reported that eIF2⍺ phosphorylation andATF4 activation are necessary
for ATF6 activation (Teske et al., 2011).

5.1 ATF6 in cardiac fibroblast cell death

Little work has been done to examine the role of ATF6 signaling in
CF apoptosis. ATF6 activity is generally protective in the heart, but it is
unclear how its signaling affects CF activity and survival (Toko et al.,
2010; Glembotski et al., 2019). Data presented by Toko and
collaborators showed that inhibition of ATF6 with 4-(2-aminoethyl)
benzenesulfonyl fluoride or knockdown of ATF6 with siRNA decreased
cardiac function, increased myocardial infarction mortality rate, and
increased cardiomyocyte apoptosis in mice (Toko et al., 2010).
However, ATF6 is also known to transcriptionally upregulate the
important UPR-mediated proapoptotic molecule, CHOP (Yoshida
et al., 2000; Yang et al., 2020).

The role of ATF6 in CF function has recently been expanded on in
Stauffer, et al. (Stauffer et al., 2020). It was reported that pharmacologic
activation of ATF6 using compound 147 in murine ventricular
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fibroblasts resulted in a decrease in fibroblast activation and contraction
while the opposite was seen in siRNA knockdown of ATF6 (Stauffer
et al., 2020). However, ATF6 effects on apoptosis and cell viability were
not measured (Stauffer et al., 2020). Because CHOP upregulation is not
entirely dependent on ATF6 signaling, many experiments did not
consider the potential contribution of the ATF6 pathway in their
analyses. Because ATF6 has not been fully explored and its
significance to maladaptive UPR signaling in CFs is unclear, it is a
plausible target for further investigation.

6 Cardiac fibroblast resistance
to apoptosis

Fibroblasts have unique characteristics and gene expression
patterns that are organ-specific (Lindner et al., 2012). In most
tissues, fibroblasts undergo apoptosis following scar formation
(Desmouliere et al., 1995). However, in the heart, activated and
⍺SMA-expressing cardiac myofibroblasts have been found in the
infarct scar up to 17 years following an initial cardiac event (Willems
et al., 1994). Continuous presence of myofibroblasts results in
excessive synthesis and secretion of ECM components causing
ventricular stiffness and heart failure (van den Borne et al.,
2010). Elucidating the specific regulatory mechanisms that allow
CFs to elude apoptosis more frequently than other tissue fibroblasts
could identify key features of how the UPR may contribute to
chronic cardiac fibrosis.

A possible explanation for CF apoptosis evasion is through
distinctive extrinsic pro-survival conditions, such as integrin-
mediated transduction, paracrine factors, or a specific composition
of ECM network resulting from the electrical and mechanical stimuli in
the heart (Huebener et al., 2008; Cai et al., 2019; Titus et al., 2021).
Another explanation for enhanced apoptotic resistance is that the
augmented pro-survival pathways are more magnified than the
maladaptive signals, causing an increase in fibroblast viability (Bea
et al., 2022). CFs could also have heightened resistance to apoptosis
through response to intrinsic signaling and continual autophagy
(Zeglinski et al., 2016). It has been shown that activated cardiac
myofibroblasts are more resistant to apoptosis than quiescent CFs,
indicating enhanced pro-survival molecular mechanisms in those cells
(Lagares et al., 2017; Hinz and Lagares, 2020). Some of the suggested
cytoprotective molecular mechanisms aiding in apoptosis avoidance
include canonical Transforming Growth Factor β (TGFβ) signaling, a
decrease in Bax and caspase expression, and an increase in Bcl-2
expression (Mayorga et al., 2004; Anuka et al., 2013; Vivar et al.,
2013; Olivares-Silva et al., 2021). The UPR is a potential candidate to
investigate CF survival due to its crosstalk with TGFβ signaling and its
response to Bcl-2 upregulation (Mayorga et al., 2004; Vivar et al., 2013;
Olivares-Silva et al., 2021).

7 Discussion

ER stress and the UPR are contributors to various cardiac
pathologies such as hypertrophy, ventricular dysfunction, and
heart failure (Park et al., 2012). There is a significant amount of
literature describing the relevance of the UPR in apoptosis in other
cell types or in fibroblasts of other tissues (Shi et al., 2013;

Hong et al., 2015; Tang et al., 2016; Delbrel et al., 2018; Pibiri
et al., 2020). UPR regulation of CF cell death is relatively
understudied in the context of reducing pathological cardiac
fibrosis. Downstream effectors of IRE1 such as Bax, Bcl-2,
PUMA, JNK, and caspase-3 have been reported to be involved in
CF apoptosis (Tian et al., 2002; Mayorga et al., 2004; Lai et al., 2009;
Ghavami et al., 2012a; Ghavami et al., 2012b; Feng et al., 2018; Parra-
Flores et al., 2021). Research has also affirmed that activation of
ATF6 upregulates CHOP, but the extent to which this regulates CF
apoptosis has not been explored (Yoshida et al., 2000; Ghavami et al.,
2012a; Yang et al., 2020). All three UPR arms upregulate CHOP, but
the PERK pathway is essential for CHOP expression in comparison
to IRE1 and ATF6 (Humeres et al., 2014; Sokolova et al., 2017;
Olivares-Silva et al., 2021). Therefore, this may suggest that PERK-
ATF4-CHOP signaling is the most influential UPR arm in
CF apoptosis.

Much of the work reviewed did not explicitly identify the specific
UPR arm influencing CF cell death and instead looked at their
downstream mediators. Expanding these investigations can
determine if these downstream molecules are signaled to through a
specific UPR pathway or an alternative upstream mechanism.
Additionally, studies investigating UPR-mediated CF apoptosis use a
variety of methods to induce cellular stress that may result in different
ER stress mechanisms being activated and variations in severity that
could obfuscate our understanding. Future work exploring these
mechanisms will provide a better understanding of chronic fibrosis,
CF apoptotic resistance, and potential pharmacological manipulations
thatmight provide new therapies for various cardiovascular pathologies.
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