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For forty generations, two lines of White Leghorn chickens have been selected for
high (HAS) or low (LAS) antibody response to a low dose injection of sheep red
blood cells (SRBCs). Their gut is home to billons ofmicroorganisms and the largest
number of immune cells in the body; therefore, the objective of this experiment
was to gain understanding of the ways the microbiome may influence the
differential antibody response observed in these lines. We achieved this by
characterizing the small intestinal microbiome of HAS and LAS chickens,
determining their functional microbiome profiles, and by using machine
learning to identify microbes which best differentiate HAS from LAS and
associating the abundance of those microbes with host gene expression.
Microbiome sequencing revealed greater diversity in LAS but statistically higher
abundance of several strains, particularly those of Lactobacillus, in HAS.
Enrichment of microbial metabolites implicated in immune response such as
lactic acid, short chain fatty acids, amino acids, and vitamins were different
between HAS and LAS. The abundance of several microbial strains corresponds
to enriched host gene expression pathways related to immune response. These
data provide a compelling argument that themicrobiome is both likely affected by
host divergent genetic selection and that it exerts influence on host antibody
response by various mechanisms.
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Introduction

Gut microbes are integral to intestinal physiology. Necessary for maintaining
homeostatic balance between roles of nutrient absorption and pathogen response;
resident microbes train the intestine to tolerate commensals while recognizing and
responding to pathogens (Shulzhenko et al., 2011; Oakley et al., 2014). The accessibility
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of next-generation tools, such as 16S ribosomal RNA sequencing,
has facilitated better characterization of chicken microbiomes and
correlated associations between commensal microbes and bird
health and physiology (Benson et al., 2010; Oakley et al., 2014;
Al-Marzooqi et al., 2020). Research is emerging which further
connects host humoral response to vaccines and the commensal
microbiota (Zimmermann and Curtis, 2018; Gonçalves et al., 2021;
Jordan, Carding, and Hall, 2022).

Lines of White Leghorns have been divergently selected for high
or low antibody response 5 days post injection with intravenous
sheep red blood cells (Siegel and Gross, 1980). These lines, HAS and
LAS, have been under constant divergent selection for over
40 generations and are valuable models for avian immunology
and genetics, however the majority of the phenotypic differences
remain unexplained (Gehad et al., 1999; Dorshorst, Siegel, and
Ashwell, 2011; Lillie et al., 2017). Fecal 16S sequencing of HAS
and LAS, along with associated lines where selection was relaxed,
HAR and LAR, show selection associated differences in microbial
abundance (L. Yang et al., 2017). Understanding how selection
affects changes in microbiome composition and abundance is
important in exploring the host microbe relationship. Equally
important however, is unravelling ways in which the resident
microbes may influence host phenotype.

In addition to simply characterizing the resident microbes, there
is much interest in functional analysis to better explain host-microbe
interactions. For amplicon-based sequencing, functional analysis is
inferentially determined using software tools such as Phylogenetic
Investigation of Communities by Reconstruction of Unobserved
States (PICRUSt) (Douglas, Beiko, and Langille, 2018). Functional
profile inference provides more information to better understand
what molecules may be involved in host-microbe interactions,
however this approach has obvious limitations both in terms of
incomplete information due to dependence on previously sequenced
microbial genomes as well as understanding how microbial gene
products may affect host physiology. More integrative approaches
are necessary to make accurate associations between microbes and
host molecular responses.

Machine learning is revolutionizing omics data analysis (Lin and
Lane, 2017; Leite et al., 2018; Oh et al., 2021). Predictive algorithms
make it possible to identify patterns in large data sets and make
relevant associations. This is useful in microbiome data analysis
because the abundance of specific microbes can identify microbial
“signatures” specific to, and able to differentiate between, two or
more groups. This analysis can complement conventional methods
to define which microbes best characterize a phenotypic
group. Additionally, once microbial signatures are identified, that
information can be used as the “classifier” for subsequent machine
learning with other data. We have RNA sequencing data for the
jejuna segments from which the microbes for 16S sequencing were
obtained (Nolin Shelly et al., 2023). Machine learning utilizing
microbial signatures with gene expression data, enables the
identification of patterns of gene expression which best predict
microbe abundance. By determining what molecular pathways
are altered by genes differentially expressed in chickens with
specific microbial signatures we are then able to make
associations of host gene expression with commensal
microbiomes. The integration of microbial data, with genetic line
and gene expression data becomes a novel means to further explain

howmicrobes may influence underlying host physiology and in turn
host phenotype.

Materials and methods

Animal work

Eggs from the 40th generations of lines HAS and LAS were
obtained from Virginia Polytechnic Institute and State University
and co-incubated until hatch. At hatch, all chicks were tagged for
line identification and randomly transferred to battery cages such
that chickens from both lines were raised together for the duration of
the experiment. At 46 days of age, six chickens from each line were
randomly selected, euthanized, and intestinal content samples
collected from the duodenum, jejunum, and ileum for microbial
DNA isolation. Corresponding intestinal tissue samples were
collected for RNA isolation. This time point was selected because
it is the traditional age of selection and the age corresponding to that
of a cohort of chickens which had been injected with SRBC 5 days
prior. All animal research was done in accordance with the North
Carolina State University Institutional Animal Care and
Use Committee.

Nucleic acid isolation, quantitation, and
sequencing

Microbial DNA was isolated from intestinal contents using the
QiaAmp DNA Stool Mini Kit and RNA was isolated from each
jejunum sample using the RNEasy mini kit (Qiagen, Hilden,
Germany) using the manufacturer’s protocols. RNA and
microbial DNA quantity were measured, and purity was assessed
using the NanoDrop ND2000 spectrophotometer (Thermo Fisher
Scientific, Waltham MA). Five hundred nanograms of each sample
for 16S rRNA sequencing targeting the V3-V4 hypervariable region
were sent to the University of North CarolinaMicrobiome center for
library preparation, barcoding, and pyrosequencing on the Roche
454 sequencer. Two micrograms of RNA from each sample were
taken to the North Carolina State University Genomics Sciences
Laboratory for library preparation and sequencing on the Illumina
HiSeq 2,500 sequencer.

Sequencing data analysis

CLC Genomics Workbench (Qiagen, Hilden, Germany) was
used for all sequencing and statistical analyses. Statistical
comparisons use a generalized linear model and calculate a
p-value as well as false discovery rate p-value (FDRp) and
Bonferroni correction to correct for multiple testing.

16S amplicon sequencing data was analyzed using the CLC
Microbial GenomicsModule. Sequence reads passing quality control
were grouped into operational taxonomic units (OTUs) based on
97% sequence similarity to reference database SILVA SSU 99 version
138.1 (Pruesse et al., 2007; Quast et al., 2012; Yilmaz et al., 2014;
Glöckner et al., 2017) and representative sequences were selected
from each OTU for taxonomic assignment. Metrics were calculated
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for alpha (within line) diversity using total number of OTUs and
beta (between line) diversity using weighted unifrac. Differences in
OTU abundance between HAS and LAS were considered significant
at p ≤ 0.05. Additionally, weighted unifrac permutational
multivariate analysis of variance (PERMANOVA) was run to
investigate line by tissue differences and were also considered
significant at p ≤ 0.05.

The microbial genomics module also contains a tool for
inferring functional microbial profiles utilizing PICRUSt2
(Douglas et al., 2020). By importing a table containing Kmer
frequency profiles with term multipliers and associated 16S copy
numbers, the software can produce approximate functional profiles
for mapped OTUs. This tool was used to create functional profiles as
represented by KEGG (Kyoto encyclopedia of genes and genomes)
(M. Kanehisa and Goto, 2000; Kanehisa, 2019; Kanehisa et al., 2021)
identifiers present for HAS and LAS. Differential abundance of
microbial molecules was calculated using the same GLM tool for
determining OTU abundance. Due to the large number of functional
molecules as well as the inferential nature of the data, the most
conservative cut-off, Bonferroni correction ≤0.05 was considered
significant. Differentially abundant KEGG molecules were entered
into the KEGG orthology database and analyzed for module
enrichment between lines.

CLC Genomics Workbench version 11 (Qiagen, Hilden,
Germany) was used for RNA sequencing analysis as described
previously (Nolin Shelly et al., 2023). High quality RNA
sequencing reads were mapped to the Galgal6 reference genome
(GCA_000002315.5) and differentially expressed genes were
determined between lines, with FDRp ≤0.05 considered
statistically significant.

Machine learning

Waikato Environment for Knowledge Analysis suite (WEKA)
(Hall et al., 2009) was used for Machine learning. Three algorithms
were used: support vector machines, artificial neural networks, and a
decision tree. Algorithms were validated using two cross validation
methods, a %-split and a K-fold stratified hold-out. A % split cross
validation randomly splits the data into training or test. In our
experiment we used a 66%–34% split, wherein 66% of the data was
assigned to be the training set and the remaining 34% used to test.
Sample groups are equally represented in the test and training sets.
The K-fold stratified hold-out works by randomly dividing the data
into K datasets, where K-1 datasets are used for training with the
remaining 1 “hold-out” dataset as the test set. For our experiment,
6 is the number of biological replicates for each line/tissue, so K = 6.
This algorithm runs sequentially 6 times, such that each dataset is
the test set only once and included in the training set the remainder;
performance is given as the average for the 6 runs. Performance for
all machine learning is calculated as the average for the three
algorithms and two validation methods.

To utilize machine learning to associate microbes with genetic
line and later host gene expression, first we ran the algorithms to
determine which jejunal microbes were most predictive of line. We
started by running the algorithms with all OTUs to determine the
predictive performance using the entire dataset. Next the OTUs were
ranked by combining the entropy based InfoGainAttribute ranker

function in WEKA (Li et al., 2004) with the p-value which was
calculated for differential abundance for each OTU. A portion of
OTUs were then removed (those with the highest p-value and lowest
entropy) and the algorithms were re-run with the smaller set of
OTUs. This process was repeated until the optimal microbial
signatures were determined for highest prediction performance.
This is known as reduction of data dimensionality and allows for
identifying the optimal microbial “signature” for line prediction.
Once these microbes were identified, they were each used as the sole
attribute for running the algorithms to determine their individual
predictive performance. Microbes with <75% correct prediction
performance were eliminated from further analysis, as were those
exclusively present in only one line.

These remaining OTUs were divided into groups by their
relative abundance as high, low, or absent, or if the microbe was
present in all samples as high, medium or low, as shown in Table 1.
Abundance could then be used as the classifier and each sample,
previously identified as HAS# or LAS#, was now identified by
relative OTU abundance. OTU counts greater than the mean (for
all present samples) were classified as high and those less than the
mean as low, samples which did not contain any OTU counts were
obviously grouped as absent. For microbes which were present in all
samples, high was calculated as the mean OTU counts +50%, low as
mean −50%, and medium were counts in between. Dividing the
abundances for the microbes into three groups was necessary to
avoid samples being classified solely by line. RNA sequence data for
each sample was then used as the attributes with microbial
abundance as the classifiers for machine learning in order to
determine the gene expression patterns which predict microbe
abundance. As statistical analysis of differential gene expression
could not be performed based on microbial abundance, the
InfoGainAttribute ranker function in WEKA (Li et al., 2004) was
used to rank the genes for purposes of reducing data dimensionality
as before. The optimal gene lists for each microbe were run in
Ingenuity Pathway Analysis (IPA, Qiagen, Hilden, Germany) to
determine enriched host pathways.

Negative controls for machine learning were also run for line
prediction and microbial abundance. Datasets were randomized,
wherein each sample identifier was randomly assigned to the data
for a different sample, this allows for disassociation between
classifier and attributes. Ten random datasets were used for each
comparison and the average performance was calculated for each of
the ten runs. Given two groups, HAS versus LAS 50% correct
prediction would indicate random chance, whereas for microbial
abundance with three classifiers, it would be ~33%. If the negative
controls performance is close to that of random probability, we can
be confident that true machine learning occurred in our
experimental data sets.

Results

Microbial diversity and abundance

A total of 2,543 OTUs were identified, however those with less
than 10 total OTU counts were filtered out, leaving 450 OTUs
remaining for further analysis. LAS had the slightly more diverse
microbiota of the two lines, with 350 OTUs present versus 304 OTUs

Frontiers in Physiology frontiersin.org03

Nolin et al. 10.3389/fphys.2023.1304051

https://www.frontiersin.org/journals/physiology
https://www.frontiersin.org
https://doi.org/10.3389/fphys.2023.1304051


present in HAS. There was overlap of 204 OTUs common to both
lines, leaving a substantial percentage of the microbiota unique to
one line or the other, see Figures 1A–F. As previously reported
(Yang et al., 2017), firmicutes were the most abundant phyla in both
lines, as well as for all intestinal segments, accounting for >80% of all
microbes in our samples, followed by actinobacteria, cyanobacteria,
and proteobacteria as shown in Figure 2. Within the firmicutes, lactic
acid bacteria of the closely related genera Lactobacillus,
Ligilactobacillus, and Limosilactobacillus are by far the most
dominant for HAS and LAS, both in terms of relative abundance
(>95%) as well as number of individual OTUs. Each intestinal
segment also had a microbial signature unique from the others.
At the order level, the duodenum had the most diversity, followed by
the ileum, and very little diversity was found in the jejunum. These
data are shown in Figure 3.

Alpha diversity box plots in Figure 4 further illustrate the
microbial richness of LAS vs. HAS, as the total number of OTUs
observed for LAS samples are greater than those of HAS for each
intestinal segment. Additionally, while rarefaction curves are not
shown, the diversity captured in HAS seems thorough, whereas
additional sequencing in LAS may have identified
additional OTUs.

Beta diversity, variation between samples, as shown by principal
coordinate analysis in Figure 5 illustrates how the samples cluster by
tissue and line. In general, it seems that within line microbial
differences became less prominent while between line differences
became more prominent from anterior to distal segments, given that
samples cluster somewhat more closely in the ileum and jejunum
than in the duodenum, particularly so for the HAS line.

Statistical differences in abundance

We found 206 OTUs which differed in abundance between lines,
irrespective of tissue, at FDRp ≤0.05. Of those, 65 OTUs were
observed in both lines. In contrast to most of the data where
LAS had exhibited more diversity only 18 of the common OTUs
were more abundant in LAS while 47 weremore abundant in HAS as
shown in Figure 6. Additionally, 100 of the 206 OTUs only present
in one line were found exclusively in HAS while 41 were only
found in LAS.

PERMANOVA revealed statistically significant line by tissue
differences. The jejunum and ileum were significantly different
between lines, though there was not a significant difference
between the duodenum of HAS versus LAS. Within line,
significant differences were observed between HAS duodenum
and jejunum, and between LAS jejunum and ileum.

Functional analysis

Functional analysis identified 1385 KEGGmolecules which were
differentially abundant between lines; 704 more abundant in LAS
versus 681 more abundant in HAS. Using the KEGGmapper tool for
each list of molecules revealed enrichment of modules for different
types of metabolic pathways between lines. Of the top 10 modules in
HAS five were associated with biosynthesis of molecules fatty acid,
lysine, pyrimidine, riboflavin, and coenzyme A. Four were involved
in the 3-Hydroxypropionate bi-cycle, glycolysis, antimicrobial
resistance, and ATPase activity. Conversely, LAS had three
modules involved in degradation: AMP, GMP, and phenylacetate.
Three modules were enriched for reductive carbon conversion, two
were involved in menaquinone biosynthesis, and one in NAD
biosynthesis. LAS and HAS both had enriched modules for
C5 isoprenoid, though HAS was enriched for the mevalonate
pathway whereas the non-mevalonate pathway was enriched in LAS.

Machine learning and host pathway analysis

Figure 7 summarizes the machine learning workflow. In the
jejunum, the combination of the top twenty OTUs identified via
machine learning resulted in an average predictive performance of
98.61%, that is to say the algorithms were able to identify patterns in
the abundance data for these microbes which could be used to
accurately classify the samples as being from the HAS line or LAS
line on average 98.61% of the time. The randomized datasets
performed at an average of 45%, which is very close to the 50%
expected by random probability and assured us that “true” machine
learning occurred. Of those top twenty OTUs, eleven had average
individual predictive performance >75%, however two were only
present in the LAS line. The nine remaining OTUs which were

TABLE 1 Explanation of how samples were identified by microbial abundance as, absent (A), low (L), medium (M), or high (H).

OTU HAS1 HAS2 HAS3 HAS4 HAS5 HAS6 LAS1 LAS2 LAS3 LAS4 LAS5 LAS6

1 A L A A A A H H H L L H

2 M H H H M M L L L L L L

3 M H H H M M M L L L L L

4 M H H H M M M M L L M M

5 L A A A L L H H L A L L

6 L H H H H M M L L L M L

7 L H L H H L L A L A L L

8 H L H H H L A L L A A L

9 L L H H H A A A L L L A
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both predictive of line and present in at least one sample from each
line included eight uncultured strains of the genus Lactobacillus
identified as EU776306.1.1423, AY958858.1.1540,
EU460910.1.1421, EU774852.1.1423, EU774852.1.1423,
IEDS9QS05FX4Q0, sp. HM218868.1.1554, and HM218952.1.1524,
one species of Lactobacillus crispatus: EU559595.1.1562, and one of
the genus Enterococcus EU459393.1.1420 (also uncultured). These
OTUs were subsequently used to identify host gene expression
associated with the relative abundance of each microbe, which
were used as input for pathway enrichment analysis.

Each OTU dataset was run independently using the three
machine learning algorithms and two cross validation methods.
The relative abundance of microbes was used as the classifier
(absent, low, medium, or high) and the predictive dataset

attributes were composed of the gene expression data in
transcripts per million. RNA was sequenced from the jejunum
tissue samples, the contents from which the microbial DNA was
isolated. The list of genes whose expression patterns most accurately
predicted relative OTU abundance was determined for each of the
nine OTUs and used for pathway enrichment analysis. Predictive
performance for each optimized gene list was between 67% and 90%.
Genes lists varied from 35–500 and IPA was able to map >60% of
those in each list. The randomized negative control dataset
performances were between 27% and 38%, close to the expected
33.3% indicative of random chance. The results of machine learning
and IPA are summarized in Table 2, and all metrics for the machine
learning algorithm runs with optimized feature sets can be found in
Supplementary Table S1.

FIGURE 1
(A–F) Relative OTU composition of HAS and LAS small intestine.
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Discussion

Forty generations of divergent selection have resulted in a
greater than six-fold difference in 5 day post injection antibody
titer to sheep red blood cells between the HAS and LAS lines.
Previous research has identified differences which help explain the
phenotype, including their major histocompatibility B-haplotypes,
as well as other genetic loci identified via pooled resequencing and
quantitative trait loci mapping of an advanced intercross line
(Gehad et al., 1999; Dorshorst, Siegel, and Ashwell, 2011; Lillie
et al., 2017). However, much of the variation in antibody response
has yet to be elucidated. The microbiome has become a key area of

immunology research, and given that commensal microbes are
thought to coevolve with their host (Zhao et al., 2013; Meng
et al., 2014; Yang et al., 2017; Koskella and Joy, 2020), and
influence host humoral response to vaccines (Zimmermann and
Curtis, 2018; Gonçalves et al., 2021) the microbiomes of HAS and
LAS likely play a role in their differential antibody response
phenotypes.

Sequencing the small intestinal microbiome of HAS and LAS has
demonstrated an association between genetic selection and
microbial composition and diversity. The microbiome of the
small intestine were distinctly different between lines HAS and
LAS, wherein LAS exhibited greater microbial diversity than

FIGURE 2
Relative abundance of the top 20% of microbes at the Phylum level in HAS and LAS total and by intestinal segment.

FIGURE 3
Relative abundance of microbes at the Order level in HAS and LAS by intestinal segment.
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HAS, in agreement with previous fecal microbiome research (Zhao
et al., 2013). Genetic selection for high or low antibody response to
SRBCs appears to have resulted in an inverse relationship with
commensal microbe diversity. While LAS exhibited greater
numerical diversity, it is also important to note that from a
statistical standpoint HAS displayed an increased abundance of
more microbial strains. The discordant observances in statistical
versus numerical abundance may be attributed to greater within line
diversity in LAS than HAS. That is to say, HAS may have more
microbes which differ statistically from LAS, but that is because LAS
samples differ more from one another than HAS samples do. This is
further supported by the results of the alpha diversity analysis, where
the diversity captured in the HAS samples appears more
comprehensive.

Lactobacillus, being a predominant genus in both lines, warrants
additional exploration. The species/strains of lactobacilli present in
one line are often significantly reduced or entirely absent in the other
and it is important to consider the additive effects of small
differences in microbial abundance and composition that may
contribute to host physiology. Studies of feeding different
probiotic Lactobacillus strains result in various degrees and types
of immunostimulant (Perdigón, Fuller, and Raya, 2001). One of the
main ways microbes exert an effect on host immune response in the
gut is via fermentation products such as lactic acid, and the short

FIGURE 4
Alpha diversity plot total number of OTUs for duodenum, jejunum and ileum in lines HAS and LAS.

FIGURE 5
Beta diversity plot principal coordinate analysis for all HAS and
LAS duodenum, jejunum, and ileum sample.
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FIGURE 6
Statistically different microbes between HAS and LAS for OTUs observed in both lines in any intestinal segment.

FIGURE 7
Flowchart of the machine learning process.
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chain fatty acids (SCFA) (Kim, 2018). As its name suggests,
Lactobacillus is responsible for producing lactic acid and while
some strains can produce short chain fatty acids or manipulate
the microbial environment leading to SCFA production by other
microbes (H. Li et al., 2020) there is a negative correlation between
Lactobacillus and SCFA content, particularly butyrate, in the small
intestine of poultry (H. Yang et al., 2018; Du et al., 2020; Ranjitkar
et al., 2016). Butyrate, and to a lesser degree propionate, have been
reported to inhibit dendritic cells, T helper cells, and B cells (Millard
et al., 2002; Singh et al., 2010; Arpaia et al., 2013; Trompette et al.,
2014; Sanchez et al., 2020) all of which would contribute to
diminished immunoglobulin production. If the intestinal
microbiome composition of HAS favors a reduction in SCFA
producing bacteria compared to LAS, it could help explain the
enhanced antibody response to sheep red blood cells observed in
that line. Conversely, while intestinal lactic acid concentration has
not been studied specifically in regard to antibody response, there
are data to indicate that it may contribute positively. Cell culture
experiments with supplemented lactic acid resulted in an increase in
antibody production (Kromenaker and Frirdrich, 1994). Children

suffering from rotavirus induce diarrhea given oral probiotic
Lactobacillus gg exhibited an increase in antibody secreting cells
(Kaila et al., 1992) and broilers fed probiotic Lactobacillus bulgaris
had increased antibody titer to Newcastle’s Disease Virus
vaccination (Apata, 2008). Additionally lactic acid bacteria are
currently being investigated as a useful vector for vaccines
(Szatraj, Szczepankowska, and Chmielewska-Jeznach, 2017).
Whether it is a result of the higher levels of lactic acid, or some
other metabolite produced by Lactobacillus, the antibody response
to SRBCs observed in HAS is likely influenced by the increased
abundance of commensal Lactobacillus.

Other microbial metabolites can also stimulate host physiology.
Modules for microbial riboflavin and lysine biosynthesis were more
enriched in HAS compared to LAS, which have been shown to
impact immune cell function and antibody response. Antibodies to
Salmonella pullorum were observed to be impaired in animals with
diets deficient in riboflavin (Panda and Combs, 1963) and influenza
vaccines containing riboflavin adjuvants resulted in increased
antibody titers (Quintilio et al., 2016). Additionally, microbes
have been shown to present riboflavin metabolites to the MHCI

TABLE 2 Functional pathway enrichment for genes associated with most predictive microbes.

Taxa % Correct line
prediction

Top ave %
performance for

RNASeq

# Genes for
maximum

performance

#IPA
mapped
genes

Top enriched pathways

Ent_UnCul_EU459393.1.1420 90 82 339 244 Neuroinflammation Signaling
Pathway, Antigen Presentation
Pathway, Virus Entry via
Endocytic Pathways

LB_crispatus_EU559595.1.1562 83 85 35 22 Flavin Biosynthesis IV,
Tetrapyrrole Biosynthesis II,
Selenocysteine Biosynthesis II

LB_UnCul_EU776306.1.1423 78 78 325 253 Glycolysis I, Colanic Acid
Building Blocks Biosynthesis,
Heme Degradation

LB_UnCul_AY958858.1.1540 88 74 349 264 Gnaq Signaling, fMLP Signaling
in Neutrophils, IL-1 Signaling

LB_UnCul_EU460910.1.1421 76 88 83 58 Synaptogenesis Signaling
Pathway, Neuregulin Signaling,
UDP-N-acetyl-D-galactosamine
Biosynthesis II

LB_UnCul_EU774852.1.1423 79 85 500 444 Role of Macrophages, Fibroblasts
and Endothelial Cells in
Rheumatoid Arthritis, ERK/
MAPK Signaling, Role of
Osteoblasts, Osteoclasts and
Chondrocytes in Rheumatoid
Arthritis

LB_UnCul_IEDS9QS05FX4Q0 76 90 228 186 Phagosome Maturation, Antigen
Presentation Pathway, Colanic
Acid Building Blocks
Biosynthesis

LB_UnCul_sp.HM218868.1.1554 79 75 312 219 WNT/B-catenin Signaling,
Neuroinflammation Signaling
Pathway, Stearate Biosynthesis I,
(SLC25A51)

LB_UnCul_HM218952.1.1524 78 67 45 40 NADH Repair, Salvage Pathways
of Pyrimidine
Deoxyribonucleotides, Insulin
Secretion Signaling Pathway
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related protein (MR1) of mucosal associated invariant T-cells
(Treiner et al., 2003; Toubal et al., 2019). Lysine deficiency has
been associated with reduced antibody response to Newcastle
disease in broilers, and chickens on diets with supplemented
lysine were found to have an increase in antibody titer (Chen,
Sander, and Dale, 2003; Faluyi et al., 2015). Future studies may
include full metagenomic sequencing to better characterize the
spectrum of gut microbial metabolites which may impact chicken
antibody response.

Machine learning allows for the addition of host pathway analysis
related to microbe abundance. These data further support the
involvement of commensal microbes in antibody response as the
abundance of the microbial strains most predictive of host line are
associated with enriched expression of host genes involved in antigen
presentation, inflammation, and immune cell responses. Future studies
may look to better determine how these specific microbes may be
impacting the molecular pathways identified using this integrated
machine learning approach.

By taking an integrated approach which includes 16S
microbiome sequencing, functional microbiome analysis, and
machine learning to characterizing the small intestinal
microbiome of genetically selected lines, HAS and LAS we have
been able to demonstrate differences which may influence antibody
response to SRBCs. In agreement with the results of fecal
microbiome sequencing (Yang et al., 2017) we saw an increase in
microbial diversity in LAS birds and an increase in Lactobacillus
abundance in HAS birds. In addition to characterizing the
microbiota of the separate small intestinal segments versus the
combined microbiota of feces, another novel aspect of our
experiment is that the chickens in our study had not been
injected with sheep red blood cells, thus the differences we
observe are native and not influenced by antigen exposure. Based
on what has been published with regard to Lactobacillus and
microbial metabolites, our results support a role for the
involvement of the associated gut microbiome with the high and
low antibody response to SRBCs in these divergently selected lines.
Including functional microbiome data has allowed for the inferential
identification of enriched microbial modules, the products of which
may influence host phenotype. Finally, machine learning allows for
identifying specific microbe strains whose abundance accurately
predicts line (HAS or LAS) and enables associating those microbial
abundances with host gene expression data to further explore the
host-microbe relationship to host antibody response. This is to our
knowledge the first time these different data types have been
integrated together in this way via the use of machine learning
algorithms and offers a novel approach to better understanding host
physiology with regard to microbiota composition.
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