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The Segmentation of infected areas fromCOVID-19 chest X-ray (CXR) images is of
great significance for the diagnosis and treatment of patients. However, accurately
and effectively segmenting infected areas of CXR images is still challenging due to
the inherent ambiguity of CXR images and the cross-scale variations in infected
regions. To address these issues, this article proposes a ERGPNet based on
embedded residuals and global perception, to segment lesion regions in
COVID-19 CXR images. First, aiming at the inherent fuzziness of CXR images,
an embedded residual convolution structure is proposed to enhance the ability of
internal feature extraction. Second, a global information perception module is
constructed to guide the network in generating long-distance information flow,
alleviating the interferences of cross-scale variations on the algorithm’s
discrimination ability. Finally, the network’s sensitivity to target regions is
improved, and the interference of noise information is suppressed through the
utilization of parallel spatial and serial channel attention modules. The interactions
between each module fully establish the mapping relationship between feature
representation and information decision-making and improve the accuracy of
lesion segmentation. Extensive experiments on three datasets of COVID-19 CXR
images, and the results demonstrate that the proposedmethod outperforms other
state-of-the-art segmentation methods of CXR images.
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1 Introduction

COVID-19 is an acute respiratory infectious disease. The patients usually have uncertain
symptoms such as ground-glass opacity, bilateral lower lobe consolidation (Zhang et al.,
2023), diffuse airspace disease (Bougourzi et al., 2023), and pleural effusion (Jacobi et al.,
2020) in the lungs. Accurately determining the lung disease areas of COVID-19 patients can
help clinicians formulate appropriate treatment to prevent further deterioration of the
patient. As an important means in the field of computer-aided diagnosis, image
segmentation can assign semantic category information to each pixel. Therefore, it is
widely used in practical tasks such as disease judgment (Wang et al., 2021), precise
treatment (Lyu et al., 2022), and lesion monitoring (Chowdhury et al., 2020).
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During the epidemic, many COVID-19 image segmentation
methods based on deep learning were explored. Such as (Huang
et al., 2020; Zhou et al., 2020; Paluru et al., 2021) based on
convolutional neural networks, (Bhattacharyya et al., 2022), based
on conditional generative adversarial networks, (Tiwari and Jain,
2022), based on lightweight capsule networks, (Jia et al., 2023), based
on graph reasoning, and (Joshi et al., 2022; Tiwari et al., 2022)
combined with transfer learning. These methods have made effective
contributions to the diagnosis and treatment of COVID-19 patients.
However, due to the limitations of the receptive field of conventional
convolution operations, long-distance dependencies of feature
information cannot be established. Therefore, it is difficult to
make adequate judgments on diseased pixels when facing the
following challenges:

The first challenge is that COVID-19 CXR images are
characterized by sparse features and blurred backgrounds,
making it difficult to form rich semantic representations. As
depicted in the top row of Figure 1, the red arrows indicate the
infected areas. However, the image does not exhibit clear infection
characteristics, which poses a challenge for the network to
accurately distinguish and classify infected pixels. To alleviate
this issue, some researchers employ multi-task learning to
improve the network’s capability of capturing features of
infected pixels. For instance, (Zhao et al., 2022), proposed a
cascaded segmentation classification network to suppress the

interference of background regions during feature extraction by
utilizing prior knowledge from the lung segmentation network.
They improved the network’s capability to extract features by
combining key point extraction with a deep neural network.
(Munusamy et al., 2021). developed a novel Fractal CovNet
architecture using Fractal blocks and U-Net for the
segmentation of chest CT-scan images to localize the lesion
region. (Fan et al., 2022). proposed a segmentation network for
COVID-19 infected regions. This network incorporates an edge-
guided module and a reverse attention module to fully extract the
blurred boundary details of the infected area. (Chen et al., 2023).
designed an unsupervised method for COVID-19 segmentation,
that utilizes a teacher-student network to learn rotation-invariant
features for segmentation. However, multi-task learning imposes
an additional computational burden on the network, and
traditional cascaded convolutions have limited receptive fields
and cannot capture deep feature information within the codec
layer. Therefore, these methods struggle to adequately identify the
details of infected pixels in COVID-19 CXR images.

The second challenge is that the outline and scale of the
infected area in COVID-19 CXR images vary greatly, which
increases the difficulty for the network to identify cross-
regional weakly correlated features. As shown in the second
row of Figure 1, the white area represents the region impacted
by COVID-19. However, this change in scale and range blurs the

FIGURE 1
Sample images of infected patients, where the red arrow points to the lesion area in the first row, and the bright white area in the second row
represents the lesion area.
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FIGURE 2
Overall architecture of the ERGPNet.

FIGURE 3
(A) Deep Embedding Residual Structure. (B) Shallow embedding residual structure.
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details, making it difficult for the network to establish associations
between local and global features, leading to misclassification.
Therefore, enhancing the global long-distance dependencies and
multi-scale feature mapping relations of the network is essential for
alleviating the aforementioned problems. For instance, (Mahmud et al.,
2021), designed a horizontal expansion module for the multi-level
encoder-decoder structure and combined it with pyramidal multi-scale
feature fusion tominimize the semantic gap between features of varying
scales. (Wang et al., 2020). proposed an anti-noise Dice loss to
effectively handle lung lesions of varying sizes and appearances.
(Mahmud et al., 2020). proposed a three-layer attention-based
segmentation network, combining a three-layer attention mechanism
with parallel multi-scale feature optimization to achieve precise
segmentation of COVID lesions. (Yu et al., 2022). improved the
network’s ability to perceive features in infection regions at different
scales by combining a dual-branch encoder structure with spatial

attention. (Li et al., 2022). proposed a multi-level attention-based
lightweight segmentation network. It helps the network handle
changes in scale by incorporating Atrous Pyramid Pooling at the
encoding and decoding bottlenecks. However, most of these
methods enhance the network’s global perception ability by using
multi-scale convolution kernels or by fusing encoder features from
different scales. The detailed information on low-dimensional and high-
dimensional features cannot be fully utilized, and the long-distance
dependencies of high-order features are ignored. Therefore, it cannot
effectively deal with the cross-scale variation of the infected area.

To solve the above problems, this paper proposes a new global
perception network (ERGPNet) based on embedded residual
convolution. The network mainly consists of Embedded residual
module (ERM), global perception module (GPM), attentionmodule,
and deep supervision module. The ERM replaces the 3 ×
3 convolution kernel which increases the convolution depth

FIGURE 4
The structure of the global perception module.

FIGURE 5
(A) Structure of Parallel Spatial Attention Modules. (B) Structure of the serial channel attention module.
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within the codec layer. The features inside the encoding and
decoding layers are fused through the residual connection so that
the network can extract multi-scale features inside the encoding and
decoding layer. The GPM performs multi-dimensional perceptual
integration of high-dimensional semantic information at the

bottleneck and guides the decoder to perceive global semantic
information in low dimensions. The attention module respectively
performs spatial and categoryweight corrections on feature information
to enhance the network’s sensitivity to target information. Finally, the
error of the prediction results is optimized through the deep supervision

FIGURE 6
(A) Loss curve on validation set. (B) Accuracy curve on the validation set.

TABLE 1 Quantitative evaluation metrics on the COVID-QU-Ex dataset, the optimal and suboptimal indicators are marked with bold values.

Methods Accuracy Precision Recall F1-score MIoU

U-Net Ronneberger et al. (2015) 0.9593 0.8775 0.8993 0.8821 0.8047

U-Net++ Zhou et al. (2019) 0.9598 0.8914 0.8934 0.8871 0.8124

MiniSeg-Net Qiu et al. (2021) 0.9500 0.8617 0.8742 0.8617 0.7750

AttentionU-Net Oktay et al. (2018) 0.9600 0.8933 0.8939 0.8884 0.8137

CENet Gu et al. (2019) 0.9606 0.8942 0.8935 0.8884 0.8139

COPLE-Net Wang et al. (2020) 0.9609 0.8826 0.9010 0.8859 0.8105

Inf-Net Fan et al. (2020) 0.9606 0.8842 0.9043 0.8877 0.8128

Ours 0.9628 0.8972 0.9055 0.8927 0.8166

TABLE 2 Quantitative evaluation metrics on the QaTa-COV19 dataset, the optimal and suboptimal indicators are marked with bold values.

Methods Accuracy Precision Recall F1-score MIoU

U-Net Ronneberger et al. (2015) 0.9634 0.8600 0.9020 0.8734 0.7956

U-Net++ Zhou et al. (2019) 0.9621 0.8515 0.9035 0.8700 0.7894

MiniSeg-Net Qiu et al. (2021) 0.9499 0.8340 0.8608 0.8399 0.7496

AttentionU-Net Oktay et al. (2018) 0.9630 0.8532 0.9037 0.8702 0.7908

CENet Gu et al. (2019) 0.9647 0.8642 0.9002 0.8747 0.7989

COPLE-Net Wang et al. (2020) 0.9610 0.8336 0.8649 0.8490 0.8011

Inf-Net Fan et al. (2020) 0.9660 0.8715 0.9013 0.8730 0.8045

Ours 0.9654 0.8541 0.9055 0.8793 0.8079
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module. ERGPNet achieved the optimal MIoU indicators of 81.66%,
80.79%, and 81.73% in the COVID-QU-Ex, QaTa-COV19, and
COVID-19 CXR enhanced datasets, respectively. The main
contributions of this article can be summarized as follows.

(1) ERM is designed to extract deeper and wider feature
information inside the encoding and decoding layers to
reduce the impact of the inherent ambiguity of COVID-19
CXR images on network segmentation.

(2) GPM is proposed to promote the high-dimensional
feature information of the codec structure to form global
perception capabilities, and then guide the low-dimensional
features to establish dependencies between long-distance
feature information, thereby reducing the interference caused
by cross-scale lesions on feature recognition.

(3) Spatial and channel attention are designed to correct the weights
of feature information at different stages to improve the
network’s sensitivity to target information.

TABLE 3 Quantitative evaluation on the feature-augmented COIVD-19 image dataset, the optimal and suboptimal indicators are marked with bold values.

Methods Accuracy Precision Recall F1-score MIoU

U-Net Ronneberger et al. (2015) 0.9610 0.8782 0.9008 0.8843 0.8052

U-Net++ Zhou et al. (2019) 0.9623 0.8941 0.8974 0.8871 0.8125

MiniSeg-Net Qiu et al. (2021) 0.9517 0.8712 0.8755 0.8628 0.7821

AttentionU-Net Oktay et al. (2018) 0.9605 0.8925 0.8949 0.8867 0.8146

CENet Gu et al. (2019) 0.9631 0.8958 0.8975 0.8891 0.8151

COPLE-Net Wang et al. (2020) 0.9614 0.8827 0.9046 0.8848 0.8127

Inf-Net Fan et al. (2020) 0.9627 0.8844 0.9047 0.8885 0.8134

Ours 0.9620 0.8979 0.9065 0.8941 0.8173

FIGURE 7
Visual segmentation results on the COVID-QU-Ex test dataset. (A) Images. (B)Mask. (C) Ours. (D) U-Net. (E) U-Net++. (F) MiniSeg-Net. (G)
Attention-Net. (H) CENet. (I) COPLE-Net. (J) Inf-Net.

Frontiers in Physiology frontiersin.org06

Yue et al. 10.3389/fphys.2023.1296185

https://www.frontiersin.org/journals/physiology
https://www.frontiersin.org
https://doi.org/10.3389/fphys.2023.1296185


2 Materials and methodology

2.1 Data description

In order to validate the effectiveness of the method proposed in
this paper, we conducted extensive experiments on two publicly
available datasets and one dataset with enhanced images. Among
them, the public datasets COVID-QU-Ex (Tahir et al., 2021) and
QaTa-COV19 (Degerli et al., 2021) are from researchers at Qatar
University and Tampere University. We only used data for which
there was a breakdown of COVID-19, and the details of the data are
described below.

The COVID-QU-Ex with 33,920 CXRs including 2913 COVID-
19 samples with their corresponding ground-truth segmentation
masks. The pixel size is 256 × 256, and the depth is 8-bit. These
images are divided into a training set of 1864, a validation set of 466,
and a test set of 583.

The QaTa-COV19 with 121,378 CXRs including 9258 COVID-
19 samples with their corresponding ground-truth segmentation
masks. The pixel size is 224 × 224, and the depth is 8-bit. Among
them, 5716 images were used as the training set, 1429 images were
used as the validation set, and 2113 images were used as the test set.

In the COVID-19 CXR enhanced dataset, we use contrast-
limited adaptive histogram equalization and gamma correction
techniques to enhance the original image, and then fuse the two

enhanced images with the original image to obtain the final dataset.
The COVID-19 CXR enhanced dataset contains 2400 images with a
pixel size of 256 × 256 and a depth of 24-bit. There are 1600 images
as the training set, 400 images as the test set, and 400 images as the
validation set.

2.2 Overview of the network

The overall architecture of ERGPNet is shown in Figure 2, which
includes ERM, GPM, attention module, and deep supervision. ERM
consists of deep embedded residuals (DER) and shallow embedded
residuals (SER), which extract low-dimensional features and
high-dimensional features, respectively, and mutually enhance
the information obtained from each other. GPM radiates the
global perception ability of high-dimensional features to low-
dimensional space, guides the fusion of global contextual
information and captures feature relationships between cross-
scale pixels. The attention module consists of parallel spatial
attention and serial channel attention, which enhance the
network’s sensitivity to target regions and target channels,
respectively, while reducing the influence of noise information
on network discrimination. The deep supervision enables the
network to calculate the loss in more detail, thereby achieving
optimal prediction results.

FIGURE 8
Visual segmentation results of the QaTa-COV19 test dataset. (A) Images. (B)Mask. (C)Ours. (D) U-Net. (E) U-Net++. (F)MiniSeg-Net. (G) Attention-
Net. (H) CENet. (I) COPLE-Net. (J) Inf-Net.
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2.3 Embedded residual module

The network needs to utilize more comprehensive information
in order to establish an accurate mapping relationship between
features. Most convolutional neural networks, however, utilize two
linear convolutions of size 3 × 3 in the encoder-decoder layer to
extract features. This method limits the receptive field of the network
at the encoder-decoder layer and disregards deeper details, leading
to the inability to accurately identify infected pixels. Inspired by U2-
Net (Qin et al., 2020) and the residual structure, we propose ERM to
extract deeper and wider feature information inside the encoder-
decoder layer. Specifically, ERM has two structures, including DER
and SER.

The structure of DER is shown in Figure 3A. First, the input
feature fin is sequentially passed through two convolution blocks to
extract shallow features fi(i� 1, 2){ }. Then, the shallow semantic
features obtained are inputted into four convolution blocks
successively to extract deep features of different scales
fi(i� 3, 4, 5, 6){ }. Among them, shallow features highlight local
fine-grained information, while deep features have abstract
information with better generalization. In addition, we utilize the
residual connection to merge the shallow features fi(i� 1, 2){ } with
the features ti(i� 1, 2){ } during the feature recovery process. Then,
the merged features are inputted into the corresponding feature
recovery convolution block, which emphasizes the representation of
detailed information. Fusing cross-scale deep features
fi(i� 3, 4, 5, 6){ } to obtain fc:

fc � Cat D2 f3( ), D4 f4( ), f5, f6{ } (1)
Where Cat ·{ } represents the channel concatenation operation,

Dn means downsampling by a factor of n. Then fc is upsampled by
different multiples and input into the corresponding feature
recovery convolution block to obtain ti(i� 2, 3, 4){ } respectively.
The information from each feature recovery convolution block is
fused with multi-scale features fc, resulting in the extraction of
richer information. The calculation process is given as follows:

t4 � ReLU BN Conv Cat fc, f6( )( ){ }{ } (2)

FIGURE 9
Visual segmentation results on the COVID-enhanced image test set. (A) Images. (B)Mask. (C) Ours. (D) U-Net. (E) U-Net++. (F) MiniSeg-Net. (G)
Attention-Net. (H) CENet. (I) COPLE-Net. (J) Inf-Net.

TABLE 4 Ablation studies of ERM, GPM, and MixAttention on the COVID-QU-Ex
dataset.

Module FI-score MIoU

Baseline 0.8821 0.8047

Baseline + ERM 0.8872 0.8091

Baseline + GPM 0.8848 0.8069

Baseline + Attention 0.8855 0.8081

ERGPNet 0.8927 0.8166
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t3 � ReLU BN Conv Cat U2(fc ,) U2 t4( )( )( ){ }{ } (3)
t2 � ReLU BN Conv Cat U4(fc ,) U2 t3( )( )( ){ }{ } (4)

t1 � ReLU BN Conv Cat f2, U2 t2( )( ), U2 t2( )( ){ }{ } (5)
fout � ReLU BN Conv Cat f1, U2 t1( )( ), U2 t1( )( ){ }{ } (6)

The structure of SER is shown in Figure 3B. Because the feature
information of the underlying encoder-decoder block has low
resolution and high abstraction characteristics, an excessively

deep convolutional structure can lead to overfitting of features.

Therefore, SER is designed with only three layers of

convolutional extraction blocks. At the same time, we use dilated

convolutions with different parameters instead of downsampling to

prevent the loss of high-dimensional abstract information. And the

cross-level feature information is integrated through the residual

connection. Furthermore, the information flow across layers is

integrated via residual connections to increase the feature-aware

FIGURE 10
Node characteristics under different modules. (A) Baseline Structure (B) ERB (C) GPM (D) Attention.

FIGURE 11
Visual comparison of feature changes between ERGPNet and U-Net.
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range of convolutional blocks. Thus, SER can effectively capture
valuable information in high-dimensional features.

2.4 Global perception module

The cross-scale variation of infected regions in COVID-19 CXR
images poses a great challenge for network segmentation. Usually,
low-dimensional semantic information is helpful in identifying
small-scale detail features, while targets with large scale changes
often require high-dimensional information with global perception
capabilities as a guide. While ASPP (Chen et al., 2017) can capture
cross-regional features through multi-scale convolution kernels,
FPN (Lin et al., 2017) can obtain long-range feature
dependencies by fusing prediction information at different scales.
However, these methods may cause the repulsion of features of
different scales, resulting in the loss of some feature information.
Therefore, after fully considering the characteristics of the encoder-
decoder structure network, we have designed a simple and effective
GPM at the bottleneck. This module guides the generation of low-
dimensional features by leveraging the global awareness of high-
dimensional features.\

The structure of the GPM is shown in Figure 4. The input
feature information fin is extracted respectively by three

different feature extraction methods. First, global average
pooling is used to compress fin in the spatial dimension,
reducing the amount of feature calculation while establishing
the association between channel feature information and
spatial feature information. The calculation process is given
as follows:

Fc � ∑16
y�1

∑16
x�1

fc
xy

⎛⎝ ⎞⎠ ×
1
16

×
1
16

(7)

fg � SoftMax Cat F1, F2, F3,/, F512( ){ } (8)

Where C ∈(1, 2, 3,/, 512) represents the channel of the feature,
Fc represents the feature of channel C after spatial pooling, fc

xy

represents the eigenvalue with coordinates are (x, y) on channel C,
Cat ·{ } represents the channel concatenation operation. Each point
on the one-dimensional feature fg after pooling contains feature
information of a spatial plane. Secondly, the channel dimension of
the feature fin is compressed to one dimension through 1 ×
1 convolution, and the relationship between channels is
established, so that the features of different channels can be
learned interactively. Then, the one-dimensional channel feature
map is spatially downsampled by a factor of 2, and the
downsampling feature is matrix multiplied by the feature fg to
obtain fm:

FIGURE 12
Visual comparison of different network heatmaps. (A) Images. (B) U-Net++. (C)MiniSeg-Net. (D) CENet. (E) Inf-Net. (F) Ours.
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fm � fg ⊗ Maxpool{ Conv1×1 F( in{ }) } (9)

Where ⊗ represents matrix multiplication, and Conv1×1 means
1 × 1 convolution operation. Each pixel in fm has channel and
spatial weight information. Then, use 3 × 3 convolution to extract
the feature of fin, and fuse it with the upsampling by a factor of
2 feature fm to obtain the final output feature fout:

fout � Conv3×3 fin( )⊕ Upsample fm( ) (10)
Where ⊕ denotes elementwise summation. Each pixel in the

output feature fout perceives the information of other pixels. Finally,
the feature fout is upsampled and fused to the decoder side to
provide guidance for low-dimensional perceptual global
information. This helps improve the robustness of the network
when extracting features across scales.

2.5 Attention mechanism module

The attention mechanism can assign different weights to the
feature information in order to enhance the network’s ability to
respond to the target area and category. However, since CXR
images have more blurred features than natural images, the
conventional single attention mechanism cannot maintain
high sensitivity to feature information. To enhance the
network’s ability to perceive feature information of COVID-19
CXR images, we redesign the attention module. Specifically, in
the feature information transfer process of the encoder-decoder
structure network, the encoding end is more inclined to extract
regional feature information, while the decoding end is more
inclined to extract category feature information. Therefore, we
designed parallel spatial attention and serial channel attention to
improve the sensitivity of the network to regional information
and category information, respectively.

Figure 5A shows the parallel spatial attention. Given an encoder
output feature fe ∈ RCe×He×We , where e ∈ 1, 2, 3{ } denote the features
output by different encoding layers, C, H, and W denote the depth,
height, and width of the feature, respectively. Then, two pooling
kernels are used to reshape the feature fe in the height and width
dimensions to obtain the two-dimensional feature matrix of the
feature map in the height and width dimensions. The calculation
process is given as follows:

fe
w � 1

w
∑m

w�1f
e c, h, wm( ) (11)

fe
h �

1
w
∑n

w�1f
e c, hn, w( ) (12)

Where m and n represents the number of two-dimensional
feature matrices in the width and height dimensions, respectively.
Then, we transpose the feature matrix fe

w ∈ RCe×He to obtain
fe
w ∈ RHe×Ce , and subsequently perform matrix multiplication

with fe
h ∈ RCe×We to obtain fe

c ∈ RHe×we :

fe
c,mn �

exp fe
c�1,mn( )∑c

1exp fe
c�1,mn( ) (13)

Where fe
c,mn represents the feature pixel of point (m, n) in the

feature matrix of fe
c. Then, apply SoftMax processing to obtain

fe ∈ R1×He×We . Next, use a 1 × 1 convolution operation and
Sigmoid activation to obtain the output feature Fe ∈ RCe×He×We .
Finally, it is fused with the input feature fe, and the feature mapM
corrected by spatial attention is output:

M � fe + Sigmoid Conv{ 1×1 SoftMax( fe( ))} (14)
Compared to the previous method of directly connecting feature

information between encoders and decoders, the use of spatial
attention correction can enhance the representation of spatial
feature information and improve the network’s sensitivity to
regional features.

Figure 5B shows the serial channel attention. For the features
fd ∈ RCd×Hd×Wd output by the decoder layer, where d ∈ 2, 3, 4{ },
represent the features output by different solution layers. First,
reshape it as fd ∈ RCd×Nd , where Nd � Hd × Wd. Then, matrix
multiplication is performed on the transposed matrix of fd and fd.
After SoftMax processing, the channel feature matrix fd ∈ RCd×Cd

is obtained:

fd
ij �

exp fd
ij( )

∑Cd
i�1exp fd

ij( ) (15)

Where (i, j) represents the number of different channels of fd,
and fd

ij represents the influence of channel i on channel j. Perform
adaptive pooling and Sigmoid operation on the feature fd ∈ RCd×Nd

and then multiply it with fd ∈ RCd×Nd to obtain fd
c ∈ RCd×Nd :

fd
c � fd⊗ Sigmoid Adpool f( d( )) (16)

Finally, perform matrix multiplication with the channel feature
matrix fd ∈ RCd×Cd to obtain the final output matrix K:

K � δ(fd

c ⊗ fd) (17)

Where δ is a learnable parameter initialized from 0. This method
combines two techniques: non-local autocorrelation matrix
operation and self-setting pooling. The goal is to enhance the
interdependence between channel features and improve the
network’s sensitivity to the channel response of the target
category.

2.6 Deeply supervised loss function

Deep supervision can improve the reliability of the network’s
prediction outcomes. Therefore, this paper uses deep supervision to
optimize the training process of ERGPNet. Specifically, we fuse
feature prediction losses at different depths at the decoder side to
guide the network to make feature information decisions. The
calculation process is given as follows:

L � ∑d
d�1

Wd
pLd

p+WLp (18)

Where Ld
p, (d� 1, 2, 3, 4) represents the loss of each layer in the

encoder prediction map.Wd
p denotes the weight of each layer in the

encoder prediction loss.Lp signifies the loss after merging the multi-
level prediction map, andW represents the weight used to merge the
multi-level prediction loss. For each level of loss L, we use binary
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cross entropy to calculate it. The calculation process is given as
follows:

 � −∑ H,W( )
x,y( ) (Gt

x,y( ))logPt
x,y( ) + 1 − Gt

x,y( ))log (1−Pt
x,y( )( )[ ]

(19)
Where (x, y) are the coordinates of the pixel, (H,W) is the

height and width of the image, Gt
(x,y) represents the true label of the

feature pixel, and Pt
(x,y) represents the predicted label of the feature

pixel. By stacking the prediction loss of multiple levels of feature
maps, the error of network segmentation results is reduced.

3 Experimental results and discussion

3.1 Evaluation metrics

We quantitatively evaluate the model’s performance at the pixel
level using a confusion matrix. First, the pixels in the infected area
are marked as positive, and the background pixels are marked as
negative. Then count the following elements: the number of pixels
correctly predicted as the positive class (TP); the number of pixels
correctly predicted as the negative class (TN); the number of
pixels incorrectly predicted as the positive class (FP); and the
number of pixels incorrectly predicted as negative class Number
of pixels (FN). Finally, we evaluated the model’s performance
using the following metrics: Accuracy, Precision, Recall, F1-
score, and MIoU. The mathematical definitions of these
evaluation metrics are as follows:

Accuracy � TP + TN

TP + TN + FP + FN
(21)

The accuracy here is the ratio of correctly classified pixels among
the overall pixels.

Precision � TP

TP + FP
(22)

The precision rate here refers to the probability that among the
samples predicted to be infected pixels are actually infected pixel
samples.

Recall � TP

TP + FN
(23)

The recall rate here refers to the probability of predicting an
infected pixel sample among samples that are actually infected
pixels.

F1 � 1 + β2( ) Precision × Recall

β2Precision + Recall
(24)

The F1 here is the harmonic mean of precision and recall. It is
often used to measure the overall performance of both when high
precision and high recall are required.

MIoU � 1
K+1∑K

i�0
TP

FN + FP + TP
(25)

The MIoU is used to evaluate the overlapping ratio between the
actual segmentation mask and the predicted segmentation mask.

3.2 Implementation details

We conduct experiments on a workstation equipped with an
Intel Xeon Gold 8350 CPU @ 2.60 GHz and a 12 GB NVIDIA
GeForce RTX 3080Ti. The experimental language used was Python
3.8, and all models were executed in PyTorch 1.10. CUDA 11.3. In
the training process, in order to balance memory usage and
convergence efficiency, we use Adam optimizer and set β1� 0.9
and β2� 0.999. The initial learning rate is set to 0.0001, and an
adaptive learning rate decay strategy is adopted at the same time.
After every 10 epochs, if the loss of the validation set does not
decrease, the learning rate is reduced to 0.1 times its original value.
We set the batch size to 8, applied a weight decay of 0.0005, and
implemented early stopping and gradient clipping techniques to
prevent overfitting. Finally, the model weights obtained from
training are tested on the test set, and the corresponding
evaluation metrics are obtained.

3.3 Comparison of different networks

In order to validate the effectiveness of the proposed method, we
conducted comparative experiments with other state-of-the-art
models using different datasets. Including U-Net (Ronneberger
et al., 2015), U-Net++ (Zhou et al., 2019), MiniSeg-Net (Qiu
et al., 2021), AttentionU-Net (Oktay et al., 2018), CENet (Gu
et al., 2019), COPLE-Net (Wang et al., 2020), and Inf-Net (Fan
et al., 2020). To ensure fairness, we use the same training parameters
and evaluation methods for all networks.

Figure 6A shows the loss curves of all networks on the
verification set data for 100 epochs. For clarity, the loss curve of
the proposed ERGPNet is shown in black. It can be seen that the loss
of all networks reaches a balance between 60 and 80 epochs and no
longer decreases. This indicates that the network has achieved
convergence. Among them, ERGPNet, U-Net++, CENet, and
AttentionU-Net utilize deep supervision loss during training,
resulting in higher than other networks.

Figure 6B shows the accuracy curves of all networks for
100 epochs on the validation set. Similarly, the accuracy curve of
the ERGPNet proposed in this paper is represented in black. It can
be observed from the figure that the accuracy curves of the validation
set for all networks fluctuate significantly. This fluctuation may be
attributed to the complex characteristics of the task of segmenting
the infection region in COVID-19 CXR images. Although the fitting
process exhibits strong fluctuations, these fluctuations decrease as
the Epoch increases, eventually reaching a stable state. And it can be
seen that the accuracy of the proposed ERGPNet is better than other
methods.

In order to understand the structural advantages of ERGPNet,
we compared it with the structures of other networks. The details are
as follows.

(1) U-Net: The symmetric up-and-down sampling process and skip
connections in this network provide a benchmark for the codec
structure. However, due to the single convolution process of
U-Net and the simple skip connections between encoders and
decoders, network training is prone to overfitting. Therefore, as
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shown in Tables 1–3, U-Net obtained lower MIoU indicators of
80.47%, 79.56%, and 80.52% in the three data sets, respectively.

(2) U-Net++: This network changes the skip connection method in
U-Net and adopts a dense connection method so that the
decoder side obtains more information flow. And error
correction is performed through in-depth supervision, which
further improves the network’s decision-making ability on
feature information. However, dense links also cause
additional calculations, and no attention is paid to the
extraction of multi-scale information. Therefore, Unet++ still
cannot have good performance on the COVID-19
segmentation task.

(3) MiniSeg-Net: In order to reduce the computational load of
densely connected networks, MiniSeg-Net uses the
Downsampler Block and Attentive Hierarchical Spatial
Pyramid Module as the basic modules. First, the network
feature information is dimensionally reduced, and then the
information of different sizes of receptive fields is obtained
through multi-scale feature fusion. This network has minimal
experimental parameters and training speed but cannot obtain
enough rich feature information. Therefore, there are many
missed detections in the determination of infected pixels. See
Figure 7, 8, 9.

(4) AttentionU-Net: This network adds attention-gating units
in the skip connection process, mainly to highlight the
salient features of specific local areas. However, single
attention cannot enhance the network’s sensitivity to
target category information, so there will be some errors
in determining the category, resulting in mediocre
performance.

(5) CE-Net: Since continuous pooling will lead to the loss of
spatial information, a contextual feature extraction module
is proposed in CE-Net to capture broader and deeper
semantic features by cascading multi-scale atrous
convolutions. And further obtain contextual information
through multi-scale pooling operations. Because this
network has powerful multi-scale spatial information
extraction capabilities, it has good performance on the
COVID-19 segmentation task. The MIoU in Table 1 and
Table 3 reached sub-optimal indicators of 81.39% and
81.51%, respectively.

(6) COPLE-Net: An anti-noise framework is proposed in this
network, which adaptively integrates the student model and
the teacher model to suppress the influence of noise. And
capture multi-scale feature information through residual
connections and the ASPP module. However, because the
network uses a bridge connection of simple compression
channels, it is easy to create a semantic gap, which affects
the performance of the network.

(7) Inf-Net: This network extracts edge information from low-
dimensional features through the explicit edge attention
module, and then aggregates high-level features through
parallel partial decoders to generate regional information.
Finally, the reverse attention module is used to guide the
connection between edge information and regional
information. This method corrects the network’s
attention to the target area but ignores the connection of
hidden layer features outside the domain. This causes the

network to over-segment long-distance areas, as shown in
Figure 8.

Different from the above network structure, ERGPNet
changes the feature extraction method within the encoding
and decoding layer, can extract multi-scale information
within the encoding and decoding layer, and reduces the
problem of sparse features caused by the inherent blurriness
of COVID-19 CXR images. Different from the skip connection
methods of UNet and COPLE-Net, ERGPNet uses spatial
attention for optimization in the connection process, which
increases the weight of target area information while reducing
the semantic gap between codecs. At the same time, the channel
attention correction performed in the decoder part enhances the
network’s sensitivity to target category information, making the
information determination more accurate than other networks.
And unlike other networks that extract global information
through multi-scale convolution kernels or multi-scale
feature fusion, this paper globalizes the high-level semantic
information at the bottleneck of the codec structure in
different dimensions and establishes the correlation between
local features and global features. Therefore, ERGPNet
achieved the optimal MIoU of 81.66%, 80.79%, and 81.73% on
the three data sets, respectively.

To gain a more detailed understanding of the segmentation
performance of the networks, we visually compare the segmentation
results of all networks on the test dataset. Figure 7 shows the
segmentation results of the COVID-QU-Ex test dataset. The
irrelevant background area pixels are indicated in gray, the
lung area pixels are indicated in black, and the COVID-19
infected area is indicated in white. It can be observed that our
method achieves better detail segmentation results on the small-
area infected images in the first to third rows. Additionally, the
segmentation error rate of infected pixels is lower compared to
other networks. This is because ERB and SER can enable the
network to accurately extract features at different levels,
achieving a balance and interaction between feature
information, and obtaining more comprehensive feature
representations. On the large-area infected image
segmentation results of the fourth and fifth row images, our
method also achieved good performance. This also verifies the
robustness of ERGPNet when dealing with infected images of
various sizes.

Figure 8 and Figure 9 show the segmentation results of the
network on the QaTa-COV19 and COVID-19 enhanced datasets,
respectively. Pixels in the infected area are marked as white, while
other background pixels are marked as black. As shown, it can be
seen that the proposed method is superior, and it allows for more
accurate identification of subtle regions, such as lines 3-6 in
Figure 8 and lines 4-6 in Figure 9. This is because the ERM,
combined with the attention mechanism, enhances the network’s
sensitivity to the detailed features of the target area, thereby
preventing the loss of information during the segmentation of
small areas. And by comparing the infection segmentation results
of different scales and contours in Figure 7, Figure 8, and
Figure 9, it can be observed that our method is more effective
in distinguishing infected areas across various scales. This is
because GPM establishes the cross-region dependency of pixel
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features, which improves the robustness of the network for cross-
scale lesion segmentation. Through visual comparison of
network segmentation results, we further prove the
effectiveness of each module of ERGPNet.

3.4 Ablation analysis

In order to assess the effectiveness of ERM, GPM, and attention
module in ERGPNet, we conducted the ablation analysis in this
section. The hyperparameters are set the same during the
experiment to ensure the fairness of the results. Quantitative
experimental results are shown in Table 4, where the baseline
model represents the simplest U-Net network. Since our
proposed ERM can better extract the feature information in the
codec layer than the conventional convolution, F1 and MIoU are
increased by 0.51% and 0.44%, respectively. GPM enhances the
network’s ability to perceive global information, so F1-Score and
MIoU increase by 0.27% and 0.22%, respectively. The attention
module enhances the sensitivity of the network to target region and
channel features, so both F1-Score and MIoU are increased by
0.34%. In summary, each module can increase the segmentation
performance of the network to a certain extent.

In order to further verify the performance of eachmodule within
the network, we selected a node in the decoder and performed a
visual analysis of the node feature map after adding each module. As
shown in Figure 10. The feature map in column A is the node
features of the ordinary structure, column B is the node features
added to ERB, column C is the node features added to GPM, and
column D is the node features added to the attention module. First,
by comparing columns A and B, we can find that the added ERB
module obviously captures richer features. Secondly, it can be seen
from column C that the added GPMmodule makes the network pay
attention to the global contour information. Finally, the addition of
the attention module obviously enables the network to better focus
on the target area and reduces the representation of irrelevant
feature information. Overall, each module plays a positive role in
the network’s ability to extract feature information.

3.5 Feature comparative analysis

In order to analyze in detail how features change during network
computation, we visually compared the feature maps of ERGPNet
and U-Net. Figure 11 shows the output features of the first two layers
of encoders, the last two layers of decoders, the 1 × 1 convolutional
layer, and the Sigmoid function of the network. We randomly
visualized the four feature channels of the codec layer for
comparison. Although the features are fuzzy and abstract, it can
still be seen that the proposed method has advantages. Since the
feature maps output by the 1 × 1 convolutional layer and the
Sigmoid function only have background and foreground
channels, it is evident that the contours segmented by our
method are more detailed and accurate, as shown by the white
circles in the Figure 15. This is due to the fact that each of our
functional modules is specially designed to improve the network’s
feature awareness of infected areas.

3.6 Grad-GAM analysis

To explore the regions of interest during network learning, we
use Grad-CAM (Selvaraju et al., 2017) to visualize feature
information as heat maps. As shown in Figure 12. The U-Net++
network pays attention to the feature information of many non-
target areas, which may be caused by overfitting during feature
extraction. Due to the lightweight design of MiniSeg-Net, it is
difficult to generate sufficient attention to the target area. In
contrast, CE-Net, Inf-Net, and our network can generate
sufficient attention to the target region information. But overall,
our network is significantly clearer when focusing on infected areas,
which also illustrates the robustness and specificity of our network in
focusing on COVID-19 features.

4 Conclusion

This study proposes a novel ERGPNet network that can
accurately segment lesion areas of COVID CXR images with
inherent blur and cross-scale lesions. First, we propose an ERB to
replace the conventional convolution, which can extract richer
information in the encoder-decoder layer. Secondly, GPM is
designed to enhance the mapping relationship of global
features and reduce the impact of cross-scale changes of
infected regions on network segmentation performance. Then,
considering the characteristics of the encoder-decoder network,
parallel spatial attention and serial channel attention are
designed to enhance the network’s sensitivity to pixels in
infected regions. Finally, the deep supervision method is used
to ensure that the network achieves optimal convergence results.
The effectiveness and superiority of the proposed algorithm have
been verified through segmentation experiments conducted on
three datasets. In addition, ablation experiments and visual
analysis also demonstrate the effectiveness of each functional
module within the network. However, segmenting infected
regions with complex contours is still a challenge, as shown in
Figure 9, line 6. Therefore, further improving the network’s
ability to identify edge information in infected areas is our
future research direction.
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