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Background: Metabolite-based sensors are attractive and highly valued for
monitoring physiological parameters during rest and/or during physical
activities. Owing to their molecular composition consisting of nucleic acids,
proteins, and metabolites, extracellular vesicles (EVs) have become
acknowledged as a novel tool for disease diagnosis. However, the evidence for
sweat related EVs delivering information of physical and recovery states remains to
be addressed.

Methods: Taking advantage of our recently published methodology allowing the
enrichment and isolation of sweat EVs from clinical patches, we investigated the
metabolic load of sweat EVs in healthy participants exposed to exercise test or
recovery condition. -Ten healthy volunteers (-three females and -seven males)
were recruited to participate in this study. During exercise test and recovery
condition, clinical patches were attached to participants’ skin, on their back.
Following exercise test or recovery condition, the patches were carefully
removed and proceed for sweat EVs isolation. To explore the metabolic
composition of sweat EVs, a targeted global metabolomics profiling of
41 metabolites was performed.

Results: Our results identified seventeen metabolites in sweat EVs. These are
associated with amino acids, glutamate, glutathione, fatty acids, creatine, and
glycolysis pathways. Furthermore, when comparing the metabolites’ levels in
sweat EVs isolated during exercise to the metabolite levels in sweat EVs
collected after recovery, our findings revealed a distinct metabolic profiling of
sweat EVs. Furthermore, the level of these metabolites, mainly myristate, may
reflect an inverse correlation with blood glucose, heart rate, and respiratory rate
levels.

Conclusion:Our data demonstrated that sweat EVs can be purified using routinely
used clinical patches during physical activity, setting the foundations for larger-
scale clinical cohort work. Furthermore, the metabolites identified in sweat EVs
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also offer a realistic means to identify relevant sport performance biomarkers. This
study thus provides proof-of-concept towards a novel methodology that will focus
on the use of sweat EVs and their metabolic composition as a non-invasive
approach for developing the next-generation of sport wearable sensors.
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Introduction

Currently, wearable devices including sport watches, smart rings
and others are widely valued for monitoring wellbeing and
promoting physical activity, as well as social interaction (Kim
et al., 2019; Promphet et al., 2021). Given that most of these
sensors rely on electrical signal generated by temperature or
muscle pulsation like the heart, recording different parameters
during physical activities is an open challenge. To overcome
these challenges, we and others reported that sweat - one of
several natural body fluids, such as saliva, urine, and tears - may
offer avenues for non-invasive testing of a variety of biomarkers and
their association with health parameters. Furthermore, a particular
attention was given to specific analytes of sweat when developing
new generation of wearables, commonly lactate, pyruvate, urea, and
certain ions (Gao et al., 2016; Ghaffari et al., 2021; Ibrahim et al.,
2022; Wang et al., 2022; Gao et al., 2023; Yang et al., 2023).

Sweat is excreted by sweat glands, known as one of the skin
appendages, which differ in their function, distribution, and cellular
structure (Baker, 2019; Chen et al., 2020), however, whether sweat
glands’ responses against certain challenges may influence the
concentration of analytes in sweat remains an open question.
The new discovery of extracellular vesicles (EVs) as unique
signaling messengers composed of diverse array of molecular
components biomolecules (Boilard, 2018; van Niel et al., 2018;
Mathieu et al., 2019), in which their metabolic profiling can be
affected by cellular responses towards a variety of stressors, may
represent valuable tools for exploring the question addressed above.

Extracellular vesicles are categorized according to their
cellular origin and size. Exosomes are 10–150 nm in diameter
and are assembled in the multivesicular bodies (MVBs). The
macrovesicles are 500–1,000 nm in diameter and are derived
directly from the donor cell plasma membrane. Both EV types
are released into the extracellular space and transported
throughout the body via bodily fluids (van Niel et al., 2018;
Doyle and Wang, 2019). Owing to these distinct properties, EVs
were widely studied and numerous reports suggest that EVs may
offer the foundation for identifying the molecular patterns of
frequently occurring diseases (Piombino et al., 2021; Testa et al.,
2021; Zhao et al., 2021). Moreover, considering that sweat
contains a variety of vesicles, a particular attention was given
to explore the molecular composition of EVs presented in sweat,
with the aim of developing non-invasive diagnostic strategies (Yu
et al., 2017; Cheng and Hill, 2022; Yang et al., 2023). Our recent
publication demonstrating, for the first time, that metabolite
levels from sweat EVs may serve as a means for reflecting
metabolic changes in healthy and type 2 diabetes groups after
heat exposure, is highly relevant. Furthermore, with the aid of
clinical patches, we described a new non-invasive methodology

allowing the cost-effective enrichment and the isolation of sweat
EVs from healthy and diseased participants (Rahat et al., 2023).

In this current study, we employed our recently published
methodology (Rahat et al., 2023) for assessing the metabolic
signatures of sweat EVs in response to exercise and after
recovery. Healthy participants were recruited to take part in this
study. Clinical patches were attached to participants’ skin, on their
back during exercise test (25–30 min) or under recovery conditions
(30 min). Subsequently, sweat EVs were isolated from the clinical
patches and further characterized using nanoparticle tracking
analysis (NTA), electron microscopy, and Western blot. A
targeted metabolomic analysis of the sweat patch enriched EVs
revealed 17 metabolites which were determined by chromatography
analysis. Furthermore, when comparing the metabolite levels in
sweat EVs isolated from healthy participants during exercise tests,
with their levels in sweat EVs isolated from patches obtained after
recovery, our finding indicate that physical activity resulted in a
significant upregulation of the production of few metabolites
belonging to different biological and molecular pathways.
Statistical analysis of the data revealed that the level of
metabolites, mainly myristate, in sweat EVs may reflect a
correlation with blood glucose, heart rate, and respiratory rate levels.

Overall, this study is the first to demonstrate the enrichment of
sweat EVs from clinical patches during exercise tests and the
quantification of their metabolites, therefore, lays the groundwork
for large-scale population studies for monitoring sport performance
and recovery programs, in particular for athletes.

Material and methods

Study design

The controlled study has been approved by the Northern
Ostrobothnia Hospital District Ethics committee (EETMK:5/
2022). The inclusion criteria for this study were: BMI 15–25, age
18–50 years, fasting glucose blood between 3.9–5.6 mmol/L, and
HbA1c below 42 mmol/mol (5.7%–6%). The exclusion criteria for
this study were: history of any cardiovascular diseases, blood
pressure of >160 mmHg systolic/and >100 mmHg diastolic, -
medications that may affect blood pressure.

Prior to the experiment, all individuals were provided a
participation information document that contained all details
about the research proposal, procedures, aims, risks, and contact
details of the research team. Upon acceptance, participants were
invited to read and sign the consent document. In this study, all
participants declared no conflict of interest.

All volunteers who met the inclusion and exclusion criteria were
asked to meet researchers on two occasions: the first visit at Oulu
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University and the second visit at Polar Electro Oy, Kempele,
Finland.

During the first visit, volunteers were invited to read and sign
the informed consent document. Additionally, weight, height,
body fat, fasting blood glucose, and arterial blood pressure were
measured. Standard lead-II electrocardiography (Cardiolife,
Nihon Kohden, Tokyo, Japan), breathing frequency
(Respiratory Belt Transducer, ADInstrument, Australia), and
blood pressure by finger plethysmography (Nexfin, BMEYE
Medical Systems, Amsterdam, Netherlands) were recorded at
5min intervals in a seated position with a sampling frequency of
1,000 Hz (PowerLab 8/35, ADInstruments). Mean heart rate,
root mean square of successive differences in R-R intervals (the
time elapsed between two successive R-waves of the QRS signal
on the electrocardiogram) (rMSSD, ms), spectral power
densities (fast Fourier transform, length 512 beats) at low-
frequency (LF, 0.04–0.15 Hz, ms2) and high-frequency (HF,
0.15–0.40 Hz, ms2) components of heart rate variability
(HRV), and their ratio LF/HF were analyzed. For the
baroreflex sensitivity (BRS) analysis, a fast Fourier transform
(Welch method, segments of 128 samples with 50% overlap,
length 1,024 samples) was performed to analyze the LF power of
the R-R interval and systolic blood pressure (SBP) oscillations
(LF ms2, LFSBP mmHg2) for subsequent analysis of BRS by the
alpha, if sufficient coherence (≥0.5) between LF oscillations in
the R-R interval and SBP was verified (Kiviniemi et al., 2014). To
note, only nine - three women and six men - out of ten healthy
participants were involved in the ECG measurements and the
obtained data was then used for conducting correlation analysis
with resting heart rate and resting blood pressure levels.

Exercise test in the laboratory

The experiment was performed at the research center at Polar
Electro Oy, Kempele, Finland, where -ten healthy volunteers (three
women and seven men) were exposed to exercise test followed by a
recovery period. All experiments were performed at room temperature
(+22C). All volunteers wore light (sport) clothing (shorts, t-shirt, and
socks). During the first 30min, in a seated position, clinical patches were
then attached to participants’ skin, on their back. Following 3 minutes of
sitting on the saddle, volunteers were invited to start cycling. The
experiment started with an intensity of 40W for everyone. Resistance
increases were 15W for females and 20W for males and were increased
every 2 minutes. To note, the duration of exercise test was different for
each participant as showed by the average for females and males
(Table 1). Cycling was stopped when the subject could not continue
pedaling or wanted to stop (exhaustion). A cool down period consisting
of 40W resistance cycling during 5 minutes was applied followed by a
sitting period of 3 minutes. Subsequently, patches were removed, and the
total sweat absorbed was obtained via weighing the patches from each
participant before and after the exercise test. Finally, right after exercise,
all volunteers were invited to rest, in a seated position, for 30 min,
referred to as the recovery condition, where new skin patches were
attached to participants’ skin, on their back, then collected at the end of
this period.

Samples collected from ten of the healthy participants were
further used for sweat EVs isolation followed by a targeted
metabolomics analysis.

Isolation of sweat EVs

The EVs from sweat were isolated as previously described (Rahat
et al., 2023). After sweat collection, the Sorbact® dressing was
opened, and the superabsorbent layer was dissolved in 40 mL
(1x) PBS, before being filtered through a 40 mm sieve, to remove
large particles and pieces of fiber. The filtrate was then re-filtered
through 0.8 µm vacuum filter units (Thermo Fisher Scientific). The
filtrate was centrifuged in a Sorvall AH-629 rotor at 100,000 g for 3 h
in a Sorvall Ultracentrifuge Machine WX ultra 90 (VWR, Thermo
Electron Corporation). The supernatant was collected, and the
pellets were washed twice using 1x PBS followed by
centrifugation at 100.000 g for 2 h, and finally resuspended in
40–60 µL of 1x PBS.

Targeted LC-MS metabolomics analysis

Metabolites were extracted from sweat EVs and their intensity
was measured using a targeted LC-MS metabolomics approach, as
described in Rahat et al., 2023 (Rahat et al., 2023). The metabolite
intensity levels were normalized to sample volume and sweat EVs
concentration.

Western blot

The quantity of protein in the EV samples was calculated using
BCA assay (Pierce™ BCA Protein Assay Kit) according to the

TABLE 1 Characteristics of the participants in this study. Data are means ± SD.
For exercise and recovery studies, ten healthy participants (N = 10; three
women and seven men) were included and characterization of their age,
height, weight, blood glucose, BMI, and exercise were presented. For ECG
measurements, only nine healthy participants, three women and sixmen, were
involved. N. Number.

Variable Healthy participants

Gender Women Men

Number 3 7

Age 37.7 ± 6.6 38.7.± 3.6

Height. cm 167 ± 3.7 175.9 ± 6.0

Weight. Kg 63.07 ± 9.4 76.7 ± 13.1

Blood glucose (mmol/L) 5.3 ± 0.2 5.3 ± 0.3

Body mass index (BMI. Kg/m2) 18.9 ± 2.8 21.2 ± 2.0

Exercise Duration (minutes) 25.0 ± 1.6 29.4 ± 5.5

Exercise maximal Intensity (Watts) 180.0 ± 16.3 262.9 ± 61.4

Number 3 6

Resting blood pressure (mmHg) 114.0 ± 5.1 114.0 ± 6.4

Systolic 74.7 ± 10.0 72.5 ± 7.7

Diastolic

Resting heart rate 63.3 ± 4.3 54.8 ± 11.5
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manufacturer’s recommendations. Equal amounts of total protein
(10 µg) were separated by SDS-PAGE and electrophoretically
transferred to nitrocellulose membranes (741,280, BioTop,
Germany). The membranes were then incubated overnight at
4 °C with the following primary antibodies (anti-HSP70 [sc-
373867], and anti-CD63 [sc-5275]) from Santa Cruz
Biotechnology and then with the secondary antibody (P0260,
Aligent Tech, Glostrup, Denmark). The blots were then
developed using Pierce™ ECL plus Western blotting substrate
(32,132, Thermo Fisher Scientific, United States).

NanoSight - Nanoparticle tracking analysis

Nanoparticle tracking analysis (NTA) was performed using a
NanoSight NS300 (NanoSight Ltd, Amesbury, UK) equipped with a
405 nm laser. At least four 60 s videos were recorded for each
sample, with camera level 14 and detection threshold set at 5.
Temperature was monitored throughout the measurements.
Videos recorded for each sample were analyzed with NTA
software version 3 to determine the concentration and size of
measured particles with the corresponding standard error. For
analysis, auto settings were used for blur, minimum track length
and minimum expected particle size. Double-distilled H2O was used
to dilute the sample.

NTA technique was used for determining the concentration.
EVs were resuspended in 1x PBS following ultracentrifugation. Only
1–2 µL of EVs suspension is used to perform NTA. The EVs are
diluted to 1:300, 1:400, or 1:500 in distilled sterile water. Initial trials
involved more concentrated dilutions, with adjustments made to
maintain particle concentrations within the desired range of 5.5 ×
10̂7 to 9.0 × 10̂8 particles per ml. The 1:300 dilution proved
consistently efficacious for us. The diluted sample volume
typically ranged from 600 to 1,000 µL.

Electron microscopy_ negative staining

Isolated EVs were settled on Formvar carbonated copper grid
(glow-discharged). Following fixation with 1% glutaraldehyde, the
grid was washed with distilled water and stained with neutral 2%UA
(Uranyl acetate). The grid was subsequently coated with 2%
methylcellulose-UA solution and, following 10 min incubation,
the excess fluid was carefully removed, and grids were air dried.
EVs were visualized using a Tecnai Spirit G2 transmission electron
microscope and images were taken with a Veleta CCD camera and
Item software (Olympus Soft Imaging Solutions GMBH, Munster,
Germany).

Statistical analysis

To assess the association between the concentration of sweat
EVs isolated from patches during exercise and the following
parameters, such as fasting blood glucose, BMI, resting heart
rate, resting blood pressure, and resting respiration frequency, a
Spearman’s rank correlation was applied. All analyses were
performed with R software version 4.2.0. GraphPad Prism

software, version 7, was used for statistical analyses. The two-
tailed Student t-test was employed and *p-values less than
0.05 were considered significant.

Results

Characterization of sweat EVs enriched in
clinical patches during the exercise test

We recently reported, for the first time, a new methodology for
isolating and characterizing EVs from sweat collected in clinical
patches, following heat exposure, under resting conditions. Using
the same protocol, we aimed to examine the presence of EVs in
sweat-enriched patches during exercise tests and to investigate their
metabolic signatures. For this purpose, we recruited twenty healthy
subjects to take part in this study. The selection criteria of the
participants were: age, sex, blood glucose, and BMI (Table 1).

The experimental design is described in Figure 1. Prior to the
exercise tests, prepared patches were attached to participants’ skin,
on their back, and then participants were invited to start cycling.
Following the exercise test, the patches were carefully removed and
stored for further investigation.

To explore the presence of EVs in the sweat-enriched patches, a
series of filtrations was employed as previously described (Rahat
et al., 2023). Following isolation, sweat EVs were then characterized
using Nano-particle Tracking Assay (NTA), electron microscopy
(EM), and Western blot methodologies.

The NTA data revealed that sweat EVs were 100–700 nm in
diameter, with EVs that were 100–250 nm in diameter being the
most predominant (Figure 2A). NTA analysis also enabled the
estimation of the overall quantity of enriched EVs in the patches
from the different participants, with an average number being
2.94×1010 ± 2.9×1010 particles/mL (Supplementary Table S1).

In line with the NTA data, subjecting sweat EVs to EM based
analysis confirmed that the EVs differed in size (Figure 2B). Given our
recent report (Rahat et al., 2023) demonstrating that the sweat EVs
dominantly express the CD63 when compared to other EVs markers
such as CD9 and CD81, we performedWestern blot analysis to evaluate
the CD63 expression levels. Our finding using sweat EVs samples
isolated from two subjects showed the presence of a band at 54 kDa,
which corresponded to CD63 (lanes 1 and 2) and confirmed using a
positive control (lane 5: EVs extracted from human keratinocytes).
However, no band was observed in control samples (lane 3: 1x PBS;
lane 4: non-enriched sweat patch, which had not been attached to a
participant, the contents of which were extracted and isolated following
the same protocol of the sweat-enriched patches) (Figure 2C)

To conclude, our study demonstrates the successful enrichment
and isolation of EVs from sweat collected with the aid of clinically
approved skin patches during exercise tests, thus substantiating our
previously reported methodology.

Metabolic composition of extracellular
vesicles from sweat during exercise tests

Given our recent report, demonstrating that sweat EVs isolated
from healthy participants after exposure to heat produce particular
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“cargo”metabolites (Rahat et al., 2023), we aimed to characterise the
metabolic constitution of sweat EVs collected from healthy
participants during an exercise test. To address this, a targeted
metabolomics profiling of 41 metabolites we conducted.

Of the 41 metabolites analyzed, only 17 metabolites were
identifiable using a chromatography approach (Supplementary
Table S2). On closer examination of the values of metabolite
abundances in sweat EVs, an important difference in their
intensity levels between healthy individuals was noted (heatmap,
Supplementary Figure S1).

To quantitively compare the differences in the metabolite
intensities of sweat EVs between healthy individuals during

exercise, the metabolite peak area fold changes were calculated.
Based on this, and the relation of each metabolite to well defined
metabolic signaling profiles, the identified metabolites were
subsequently categorized into subgroups, such as those related to
amino acids, glutathione, glutamate, fatty acids, glycolysis, and
creatine metabolism pathways.

Metabolites from the amino acid metabolism pathway contained
alanine, arginine, lysine, proline, serine glycine, threonine, and tyrosine
(Figure 3A). Those metabolites identified from glutathione and
glutamate metabolism pathways included pyroglutamate, glutamate,
and glutamine (Figure 3B), while those arising from the fatty acid
pathway included myristate, and palmitate (Figure 3C). Metabolites

FIGURE 1
Experimental design. Detailed description of the study design and the sweat EVs isolation and characterization steps. PBS: phosphate buffered saline.
min: minutes. hrs: hours.
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from the creatine pathway included creatine, creatinine, and carnitine
(Figure 3D). Finally, a notable component from the glycolysis pathway
was lactate, which is a well-established metabolite for monitoring
physical activity during sport (Figure 3E).

Metabolic profiling of sweat EVs during
exercise test in comparison to at recovery
condition

To investigate whether exercise may influence the metabolic
patterns of sweat EVs collected from healthy participants in
comparison with samples collected during a rest period of 30 min
and referred to as a recovery condition, the 17metabolites previously
identified (Figure 3), were analyzed from the clinical patches
collected from healthy individuals following recovery condition.

Via performingNTA analysis, our findings revealed no difference in
the concentration of sweat EVs isolated from healthy participants at
recovery condition, with an average number being 2.69×1010 ± 2.25×1010

particles/mL, when compared with the average concentration that was
observed in sweat EVs isolated during exercise tests (Supplementary
Table S1). Moreover, no differences in the size of the sweat EVs isolated
at recovery condition when compared to these isolated during exercise
tests.

Of the 17 analyzed metabolites, only 16 metabolites were identified
in sweat EVs collected from healthy participants during recovery from
exercise. Closer analysis of the raw data obtained using chromatography
revealed that lysine was not detected in any of the ten sweat EVs samples
collected from healthy participants in the recovery condition, however,
this metabolite was identified in sweat EVs collected during the exercise
test (Supplementary Table S2).

We next aimed to quantitively compare the differences in the
metabolite levels of sweat EVs collected during the exercise test with
those collected following recovery conditions. To this end, themetabolite
intensity (peak area) fold changes of sweat EVs collected from healthy
participants during exercise test in reference to their levels in sweat EVs
collected following the recovery condition, were calculated.

Of the metabolites analyzed, the level of nine metabolites was
significantly increased in sweat EVs isolated from healthy
participants during the exercise test compared to their levels in
sweat EVs isolated following the recovery condition. The
metabolites were glutamate, glutamine (glutamate metabolism
pathway) (Figures 4A, B); alanine, arginine, glycine, proline,
threonine, and serine (amino acid pathway) (Figures 4C–E;
Figures 5A,B); and lactate (glycolysis pathway) (Figure 5C).

Furthermore, the intensity of pyroglutamate (glutathione pathway),
tyrosine (amino acid pathway), carnitine and creatinine (creatine
pathway) were elevated, although not statistically significant, in sweat
EVs isolated from healthy participants during exercise test compared to
their levels in sweat EVs isolated following recovery condition
(Figure 5D; Supplementary Figure S1B, C: Supplementary Figure
S2A-C; respectively).

No changes were observed in the metabolite levels of creatine
(creatine metabolism), and palmitate (fatty acids pathway)
(Supplementary Figure S2B, C). However, a decrease of myristate
was observed (fatty acid pathway) in sweat EVs isolated from
healthy participants during the exercise test compared with their
levels in sweat EVs isolated following the recovery condition
(Supplementary Figure S2D).

Our data illustrate that the metabolic profiling of sweat EVs may
provide a useful means for recording the individualized recovery
responses following a physical activity and hence may facilitate the
development of protocols for monitoring sport performance for
athletes. However, a larger number of participants would be required
for further validation.

Association of the metabolite levels in sweat
EVs with blood glucose and BMI

To assess a possible correlation between blood glucose and the
levels of metabolites in sweat EVs that had accumulated into the skin
patches during the exercise test, a Spearman’s rank association was
performed.

FIGURE 2
Characterization of sweat EVs. (A). NTA analysis of sweat EVs
isolated from healthy participants during the exercise test. (B).
Electron microscopy analysis. Negative staining of sweat EVs isolated
from patches, control refers to the negative patch (has not been
attached to the patient) but processed in the same way as the positive
patches. Scale bar = 200 nm. (C). Western blot analysis of CD63 in
sweat EVs isolated from two healthy participants during exercise test
(lanes 1 and 2). Control lanes (Ctrl) refer to: 1- negative controls (lane 3:
1x PBS and lane 4: non-enriched sweat patch, that has not been
attached to a participant, and 2- positive control that refer to EVs
extracted from human keratinocytes (lane 5).
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Our data established that the levels of myristate (fatty acid pathway)
showed a significant indirect correlation with blood glucose levels.While
no evidence of association between the remaining metabolite levels and
blood glucose levels was observed (Table 2).

When investigating the correlation between the level of
metabolites in sweat EVs during the exercise test and BMI, our
results revealed no relationship between these two variables.
However, glutamate levels showed a trend of inverse association
with BMI, which was supported by the p-value (Table 3).

Together, our results reveal a trend of correlation between few
metabolic markers in sweat EVs during exercise and blood glucose

levels but not with BMI. However, further investigations are
required to confirm this observation.

Changes in the metabolites contained in
sweat EVs in relation to cardiovascular
system function

Systematic physical activity and exercise are known to
impact health and wellbeing, leading to an increase in life
expectancy. This might be explained through the negative

FIGURE 3
Sweat EVs exhibit specific metabolic qualities. (A). Metabolite signatures of the amino acid pathway including (alanine, arginine, glycine, lysine,
proline, serine, threonine, and tyrosine). (B). Metabolite signatures of glutathione and glutamate pathways. Themetabolites are pyroglutamate, glutamate,
and glutamine. (C). Metabolite signatures of the fatty acid pathway. Themetabolites are palmitate andmyristate. (D). Metabolite signatures of the creatine
pathway. The metabolites are creatine, creatinine, and carnitine. (E). Metabolite signatures of glycolysis pathway including lactate. Data are
metabolite peak area fold changes ±SEM after normalization to the total EVs concentrations (particles/mL) and to the negative control (patch without
sweat sample). N = 10; three women and seven men.

Frontiers in Physiology frontiersin.org07

Ali et al. 10.3389/fphys.2023.1295852

https://www.frontiersin.org/journals/physiology
https://www.frontiersin.org
https://doi.org/10.3389/fphys.2023.1295852


association between sport or physical activity and heart rate
(HR), commonly referred to as resting heart rate (RHR)
(Reimers et al., 2018). In addition, an inverse association
between exercise or physical activity and blood pressure levels
was reported (Schweiger et al., 2021). Consequently, we
questioned whether the concentration of metabolites in sweat
EVs isolated from healthy participants during exercise may be
linked to cardiovascular system functions while resting. To
address these relationships, Spearman’s rank association was
employed. To note, the different correlations were conducted
using data collected from nine healthy participants.

Resting heart rate levels

We first challenge the association between the level of
metabolites in sweat EVs during the exercise test and resting
heart rate levels. Our findings showed that the level of
pyroglutamate and serine metabolites (glutathione and serine
pathways) were significantly directly associated with resting heart
rate levels. Judged by the p-value, a trend of direct relationship
between the level of alanine metabolite (amino acids) with resting
heart rate levels was demonstrated (Table 4). Moreover, the level of
myristate and palmitate metabolites (fatty acid pathway) showed an

FIGURE 4
Metabolites from sweat EVs may mirror metabolic variances during the exercise test when compared to recovery state in healthy individuals.
Metabolite levels of glutamate (A), glutamine (B), alanine (C), arginine (D), glycine (E), and proline (F). Data are metabolite peak area fold changes ±SEM
after normalization to the total EVs concentrations and to the negative control. Two-tailed Student’s t-test was used in A (*p=0.017), in B (*p=0.013), in C
(**p = 0.006), in D (**p = 0.002), in E (*p = 0.043), and in F (*p = 0.05). N = 10; three women and seven men.
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indirect relationship with resting heart rate levels, which was
significant (Table 4).

Resting mean blood pressure levels

We next examined the association between the metabolic
composition of sweat EVs isolated from nine healthy
participants, during the exercise test, and resting mean blood
pressure levels. Our data highlighted that the level of glutamate
showed a trend of direct correlation with resting mean blood
pressure levels (Table 5). While the level of myristate (fatty acid
pathway) showed a trend of inverse relationship with resting mean
blood pressure levels (Table 5).

To gain insight into the relationship between metabolite levels in
sweat EVs isolated from nine healthy participants during exercise
and the different measures related to heart function such as systolic
blood pressure, diastolic blood pressure, and low frequency of
systolic blood pressure levels, a Spearman’s rank test was performed.

Our data indicated that the level of the majority of metabolites in
sweat EVs isolated from healthy participants, during exercise,
showed no relationship with systolic, diastolic, and low frequency
resting blood pressure (Supplementary Table S3-5).

In line to its correlation with the mean blood pressure levels,
importantly, the level of metabolite myristate was the only to
demonstrate a significant inverse correlation with systolic, diastolic,
and low frequency resting blood pressure (Supplementary Table S3-5).

Resting respiration rate levels

Respiration rate is an essential physiological parameter for
health monitoring and can be indirectly measured by
electrocardiogram. Any sign of altered respiratory rate may serve
as an early warning in disease diagnosis (Cretikos et al., 2008;
Fleming et al., 2011). Given this, we addressed the relationship
between the levels of resting respiration and the level of metabolites
in sweat EVs isolated from nine healthy participants during exercise.

Of the 16 metabolites analyzed, the level of the glutamate
metabolite in sweat EVs isolated from healthy participants
showed a negative correlation with resting respiration rate levels,
which was statistically significant (Table 6). While the myristate and
palmitate metabolites demonstrated a significant positive
correlation with resting respiration rate levels (Table 6).

Overall, our results suggest that metabolites present in sweat EVs
appear to correlate with cardiovascular system functions, however, given
the limited number of participants, further validations are needed.

Discussion

In this work, with the aid of clinically approved patches, we
describe the metabolic profiling of sweat EVs isolated from healthy
participants during exercise tests and following a recovery period,
referred to as the recovery condition. Comparison of metabolite
abundances between the two conditions reveals distinct metabolic

FIGURE 5
Metabolites from sweat EVs may mirror metabolic variances during the exercise test when compared to recovery state in healthy individuals.
Metabolite levels of threonine (A), serine (B), lactate (C), and pyroglutamate (D). Data are metabolite peak area fold changes ±SEM after normalization to
the total EVs concentrations and to the negative control. Two-tailed Student’s t-test was used in A (**p=0.046), in B (*p=0.013), and inC (**p=0.002), in
C (ns. not significant, p = 0.07). N = 10; three women and seven men.
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patterns of sweat EVs in response to exercise. Furthermore, the
correlation of metabolite levels in sweat EVs with blood glucose,
BMI, and cardiovascular system functions suggests that metabolites
can be used as potential biomarkers to non-invasively assess
individualized sport performance in healthy participants.

Recently, we were the first to report a novel methodology
allowing the enrichment, isolation, and characterization of sweat
EVs from clinically approved patches, following heat exposure
(Rahat et al., 2023). In this report, by performing a targeted
metabolomics analysis, we have identified 24 metabolites.
However, in the current report, and using the same patches and
similar protocol for extraction of EVs, we were able to identify only
sixteen metabolites.

The majority of the identified metabolites are similar to those
previously described in Rahat et al., 2023 (Rahat et al., 2023), with
few exceptions, such as the presence of metabolites involved in
creatine metabolism pathway and the absence of metabolites
belonging to TCA cycle pathway. This difference between the
two studies indicates that heat exposure or exercise may
influence the metabolic composition of sweat EVs, which may
represent a powerful strategy to evaluate other stressors and
expand the work to larger scale clinical studies.

Our current data identified lactate as one of the most abundant
metabolites in sweat EVs in healthy participants during the exercise test
and in the subsequent period of recovery. A significant upregulation of
the lactate in sweat EVs during exercise was observed compared to its
level in sweat EVs obtained after the recovery period. Furthermore, we

TABLE 2 Spearman’s rank association between blood glucose and the
metabolite levels in the sweat EVs isolated from healthy participants (N = 10;
three women and seven men) during exercise. *p < 0.05 is significant indicated
as bold numbers.

Variable Correlation with blood glucose P. Value

Pyroglutamate 0.30 0.42

Creatine −0.30 0.42

Creatinine −0.36 0.34

Glycine −0.18 0.76

Alanine 0.27 0.48

Arginine −0.20 0.59

Carnitine −0.11 0.78

Glutamate 0.20 0.50

Glutamine −0.47 0.2

Lactate 0.07 0.86

Proline 0.37 0.32

Serine 0.35 0.35

Threonine 0.21 0.58

Tyrosine −0.02 0.96

Myristate −0.71 0.03 *

Palmitate −0.48 0.19

TABLE 3 Spearman’s rank correlation between BMI and themetabolite levels in
the sweat EVs isolated from healthy participants (N = 10; three women and
seven men) during the exercise test. BMI. Body mass index.

Variable Correlation with BMI P. Value

Pyroglutamate −0.48 0.19

Creatine −0.08 0.84

Creatinine −0.33 0.38

Glycine −0.44 0.23

Alanine −0.3 0.43

Arginine −0.27 0.48

Carnitine 0.25 0.52

Glutamate −0.61 0.08

Glutamine −0.07 0.86

Lactate −0.47 0.19

Proline −0.35 0.36

Serine −0.58 0.10

Threonine −0.44 0.24

Tyrosine −0.13 0.74

Myristate −0.1 0.81

Palmitate 0.35 0.36

TABLE 4 Spearman’s rank correlation between resting heart rate and the
metabolite levels in sweat EVs isolated from healthy participants (N = 9; three
women and six men) during exercise. *p < 0.05 is significant indicated as bold
numbers.

Variable Correlation with resting heart rate P. Value

Pyroglutamate 0.73 0.031 *

Creatine 0.28 0.46

Creatinine 0.1 0.81

Glycine 0.35 0.35

Alanine 0.633 0.07

Arginine −0.22 0.57

Carnitine −0.05 0.91

Glutamate 0.46 0.20

Glutamine −0.31 0.41

Lactate 0.16 0.68

Proline 0.42 0.27

Serine 0.75 0.02 *

Threonine 0.34 0.36

Tyrosine −0.05 0.91

Myristate −0.76 0.02 *

Palmitate −0.81 0.01 *
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found that lactate abundance in sweat EVs during exercise was positively
associated with the mean resting blood pressure levels and negatively
correlated with respiration rate levels. These results are in line with the
literature demonstrating that a lactate shuttle is crucial for regulating the
metabolic signaling associated with cardiovascular functions (Brooks,
2021; Li et al., 2022). In this phenomenon, lactate production is increased
during exercise to fulfill the oxygen and ATP requirements of the cells
and can be detected in the sweat (Harmer et al., 2008). Consequently,
numerous studies propose lactate as a characteristic metabolite for
monitoring physical activities (Durand et al., 2021; Seki et al., 2021;
Torres-Torrelo et al., 2021; Okawara et al., 2022), and recently, wearable
devices have been developed to monitor lactate (Garcia et al., 2016; Luo
et al., 2018; Xuan et al., 2021; Kim et al., 2022). Considering our current
data and the literature, we suggest that, once our preliminary
observations are confirmed using a larger number of participants,
monitoring lactate abundance in sweat EVs may be considered as a
groundbreaking strategy to assess individualized sport performance
during training in reference to the recovery state, namely, for athletes.

This study demonstrates that amino acids are significantly
increased during exercise compared to recovery. Our data agree
with previous investigations showing that during acute exercise,
several amino acids such as alanine, glutamine, glutamate and the
branched-chain amino acids are crucial for ensuring ATP
production in muscle cells (Egan and Zierath, 2013; Hargreaves
and Spriet, 2020; Smith et al., 2023). Furthermore, among these
amino acids, glutamate shows a significant positive correlation with
the mean resting blood glucose and negative association with the
respiration rate levels in sweat EVs isolated during exercise. This
pattern of association is similar to that observed with lactate.

TABLE 5 Spearman’s rank correlation between resting mean blood pressure and the metabolite levels in the sweat EVs isolated from healthy participants (N = 9;
three women and six men) during exercise.

Variable Correlation with resting mean blood pressure P. Value

Pyroglutamate 0.33 0.39

Creatine 0.55 0.12

Creatinine 0.09 0.81

Glycine −0.11 0.77

Alanine 0.31 0.42

Arginine −0.09 0.81

Carnitine 0.16 0.68

Glutamate 0.60 0.08

Glutamine −0.35 0.35

Lactate 0.48 0.18

Proline 0.27 0.48

Serine 0.42 0.26

Threonine −0.12 0.75

Tyrosine 0.18 0.65

Myristate −0.62 0.07

Palmitate −0.48 0.19

TABLE 6 Spearman’s rank correlation between resting respiration rate levels
and the metabolite levels in the sweat EVs isolated from healthy participants
(N = 9; three women and six men) during exercise. *p < 0.05 is significant
indicated as bold numbers.

Variable Correlation with resting respiration
rate

P. Value

Pyroglutamate −0.35 0.359

Creatine −0.17 0.68

Creatinine −0.02 0.98

Glycine −0.17 0.65

Alanine −0.33 0.38

Arginine 0.18 0.64

Carnitine 0.07 0.88

Glutamate −0.721 0.028 *

Glutamine 0.26 0.49

Lactate −0.63 0.07

Proline −0.12 0.78

Serine −0.48 0.19

Threonine −0.15 0.70

Tyrosine 0.1 0.81

Myristate −0.77 0.02*

Palmitate −0.72 0.03*
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Previous studies have revealed that pyroglutamate levels are
biomarker for the diagnosis of heart failure (van der Pol et al., 2017;
van der Pol et al., 2018; Bachhawat et al., 2020). Our data
demonstrate that pyroglutamate is significantly upregulated in
sweat EVs isolated during exercise test when comparing to its
level in sweat EVs isolated at recovery. Moreover, a significant
correlation is observed with pyroglutamate levels with heart rate
at resting. Considering these studies and our data, we may speculate
that pyroglutamate levels in sweat EVs can be used as an indirect
indicator of cardiovascular system functions.

Our results reveal a decreased trend of both myristate and palmitate
levels in sweat EVs isolated from healthy individuals during exercise
compared with recovery periods. During exercise, fatty acidsmetabolism
represents the main source of energy to supply the skeletal muscles
(Hargreaves and Spriet, 2020), which may explain their decreased levels.
However, depending on the duration of exercise, acute or chronic, the
concentration of fatty acids in blood and adipose tissues could be
influenced differently as previously reported (Nikolaidis and
Mougios, 2004; Mika et al., 2019; Esmaili et al., 2023). Considering
these reports and our data, we may propose that once our preliminary
observation are confirmed using a larger number of participants,
monitoring fatty acids in sweat EVs may be considered as a
groundbreaking to gain insight for the function of skeletal muscles
during training and recovery.

In our current study, the intensity of the two metabolites is
associated negatively with the resting heart rate, the mean blood
pressure levels including systolic and low frequency. In line with our
observation, two epidemiological studies were conducted, one in Africa
and one in China, to test the association between the concentration of
fatty acids in blood serum with resting blood pressure levels. Findings
from those studies highlighted that fatty acids were negatively associated
with blood pressure (Yang et al., 2016; Zec et al., 2019). These data
suggest protective effects of fatty acids against the risk of cardiac death via
reducing resting heart rate ((Hidayat et al., 2018) and cytosolic and
diastolic blood pressure in human (Mozaffarian and Wu, 2011). This
was also underlined in animal study, in which a reduction of myocytes
contraction and resting heart rate were observed following fatty acids
exposure (Kang, 2012).

Given that those reports were performed to evaluate the fatty
acids concentration in serum and no prior evidence showing the
correlation between fatty acids in sweat or sweat EVs with
cardiovascular system functions, our strategy may offer a novel
non-invasive to test such association, However, further validation
are required to draw conclusion. ion.

Overall, to our knowledge, our study is the first to show a distinct
metabolic signature of sweat EVs enriched in sweat patches that have
been isolated from healthy participants during exercise and recovery.
The association of the identifiedmetabolites with health parameters such
as blood glucose, heart rate, and blood pressure may be useful for
assessing and monitoring abnormal health related manifestations,
namely, those associated with cardiovascular system functions,
through a non-invasive approach.

Study strengths and limitations

The strengths of the current study are the methodology allowing
the enrichments and isolation of sweat EVs non-invasively during

sport tests, the identification of metabolic composition in sweat EVs
that represent potential biomarkers, and the proof-of-concept of a
plausible correlation between the level of metabolite in sweat EVs
with different physiological health parameters.

One notable limitation of the present study is the population size
owing to the limited number of participants during exercise and at
resting condition. Owing to this, and the high variation of metabolite
concentrations in sweat EVs between individuals, the statistical power is
small, hence, it becomes challenging to distinguish whether the alteration
of metabolite levels derives from the exercise. Given these facts,
performing extensive studies using large number of participants is
therefore required to, first assess the metabolite levels in sweat EVs
with regards to dissimilar conditions such as heat, glucose intervention,
or others. Additionally, to investigate the association between exercise
and the different set of physiological parameters. In the case of feasible
correlation, subsequently, the metabolite can be used as possible
biomarkers to predict any risk factors linked to heart function and
cardiac performance during exercise. Additionally, in the current study,
the only normalization approach used is the particle number/mL,
although, more qualified methodologies are desired to better
investigate the metabolic pattern of sweat before, during and after
exercise and find the best normalization protocol.

When the obstacles mentioned above are clarified, we believe
that the findings from this report may herald a strategy towards
advancing individualized solutions for evaluating and surveilling
health parameters and wellbeing in healthy and diseased individuals.

Conclusion

Overall, the current study proposes a non-invasive approach to
collect and isolate EVs from sweat with the aid of clinically approved
patches worn during exercise. A targeted metabolomics analysis
reveals the presence of a distinct composition of metabolites in sweat
EVs. Furthermore, metabolite concentrations, mainly myristate, are
correlated with a variety of physiological parameters, including
blood glucose, heart rate, blood pressure, and respiration rate
levels. Owing to the restricted number of participants and the
high variation between individuals, the authors suggest
expanding the study to large-scale cohorts to further confirm
these observations.

In summary, we believe that sweat EVs, enriched using our
methodology, are valuable tools to assess physiological actions of the
human body during exercise and the methodology may be extended
for a diverse range of clinical studies.
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