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Colorectal cancer is a common malignant tumor in the gastrointestinal tract,
which usually evolves from adenomatous polyps. However, due to the similarity in
color between polyps and their surrounding tissues in colonoscopy images, and
their diversity in size, shape, and texture, intelligent diagnosis still remains great
challenges. For this reason, we present a novel dense residual-inception network
(DRI-Net) which utilizes U-Net as the backbone. Firstly, in order to increase the
width of the network, a modified residual-inception block is designed to replace
the traditional convolutional, thereby improving its capacity and expressiveness.
Moreover, the dense connection scheme is adopted to increase the network
depth so that more complex feature inputs can be fitted. Finally, an improved
down-sampling module is built to reduce the loss of image feature information.
For fair comparison, we validated all method on the Kvasir-SEG dataset using three
popular evaluation metrics. Experimental results consistently illustrates that the
values of DRI-Net on IoU, Mcc and Dice attain 77.72%, 85.94% and 86.51%, which
were 1.41%, 0.66% and 0.75% higher than the suboptimal model. Similarly, through
ablation studies, it also demonstrated the effectiveness of our approach in
colorectal semantic segmentation.
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1 Introduction

In today’s world, cancer has become the most important disease threatening human
health. Due to genetic, environmental, diet and other factors, there are more and more
patients with colorectal cancer, and the death rate is also the second highest. Research shows
that colorectal cancer lesions are closely related to colorectal polyps. Therefore, early
detection and treatment can effectively control the occurrence of diseases and reduce the
mortality rate. By far, colonoscopy is an effective diagnostic method for detecting polyps in
the intestine, and it has become the gold standard for early screening of colorectal cancer.
Although the size, shape and lesions of tumors can be visually observed through
colonoscopy, the characteristic analysis of the pathological images is entirely dependent
on the professional doctor. This method not only has a long detection cycle and high labor
intensity, but also relies heavily on the subjective judgment and cognition of doctors. Besides,
with the increase in the number of disease patients, the demand for professional experts is
also increasing, which poses a huge challenge to the medical talent industry. For this reason,
the combination of computer vision technology and pathological image diagnosis has
become extremely important in the medical field.

At present, deep-learning performs very well in computer vision, especially in medical
image-assisted diagnosis (Dang et al., 2023; Maria et al., 2023; Morita et al., 2023; Yang et al.,
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2023; Zhang et al., 2023). Compared with traditional segmentation
frameworks (Srikanth and Bikshalu, 2022; Chen et al., 2023), the
core advantage of deep learning is that it can independently
discover and learn higher-level image features directly from
training data, thus significantly reducing the refinement of
feature extraction and facilitating end-to-end image processing
in deep architectures. At present, convolutional neural network
(CNN) (Lecun et al., 1998) is one of the most popular models in
deep learning networks. By introducing local receptive fields,
weight sharing, and pooling operations, the generalization ability
of the model is greatly improved. However, this network needs to
assign labels to each pixel, and medical images often contain
millions of pixels, so it takes a lot of time to process millions of
forward channels. In addition, all pixels are calculated
independently, resulting in spatial inconsistencies in the
segmentation results. To solve the above problems, Long et al.
(2015) proposed a full convolutional network (FCN). By
replacing the fully-connected layer in CNN with a
convolutional layer, the spatial information of images can be
preserved by using the features and up-sampling strategies of
different layers. At the same time, this method can accept any size
of input image, and is easier to implement than the traditional
image block classification method.

Inspired by FCN, similar network structure models have
emerged in an endless stream, mainly improved from
extended convolutions (Liu et al., 2020; Karthika and
Senthilselvi, 2023), recurrent neural networks (Tan et al.,
2021; Chen J et al., 2022), multi-scale features (Dourthe et al.,
2022; Goyal et al., 2022), residual connections (Anil and
Dayananda, 2023; Selvaraj and Nithiyaraj, 2023) and attention
mechanisms (Kanimozhi and Franklin, 2023; Rasti et al., 2023).
Among them, Tang et al. (2022) proposed a guidance network for
segmentation of medical images that can learn and cope with
uncertainty end-to-end. Specifically, this method contains of
three parts: firstly, the rough segmentation module is used to
obtain the rough segmentation and uncertainty graph. Secondly,
the feature refinement module is used to embed multiple double
attention blocks to generate the final segmentation. Finally, to
extract richer context information, a multi-scale feature extractor
is inserted between the encoder and decoder of the coarsely
segmented module. Sun et al. (2022) proposed a dual-path
CNN with DeepLabV3+ as the backbone. In this method, soft
shape monitoring blocks were inserted between the regional path
and the shape path to realize the cross-path attention mechanism,
so as to accurately detect and segment thyroid nodules. Zhang
et al. (2022) proposed a retinal vessel segmentation algorithm
based on M-Net. Firstly, to reduce the influence of noise, a
double-attention mechanism based on channel and space was
designed. Then, the self-attention mechanism in Transformer is
introduced into skip connections to recode features and explicitly
model remote relationships. Fu et al. (2022) proposed an
automatic segmentation method for cardiac MRI images. On
the one hand, CNNs were used for feature extraction and spatial
encoding of inputs. On the other hand, by using Transformer to
add remote dependencies to advanced features, the model’s
ability to capture details can be fully utilized.

In this research, we proposed a new dense residual-inception
network (called DRI-Net) for the segmentation of colorectal polyps

and performed comparative experiments on a public dataset.
Compared to other networks, our contributions are the
following:

1) Using standard U-Net architecture, the DRI-Net was presented
to provide guidance for the accurate segmentation of polyps.

2) In DRI-Net, to make the network structure wider without
gradient disappearing, simple convolutional blocks were
replaced with dense residual-inception blocks.

3) The down-sampling was carefully redesigned using average-
pooling to reduce the loss of image feature information.

4) We do ablation studies on residual-inception, dense and down-
sampling. Compared with several classical algorithms, our
approach has better performance.

2 Methods

DRI-Net is a classic encoder-decoder structure, and its overall
network is shown in Figure 1. The left encoder includes four dense
residual-inception modules, and each of which is followed by a
pooling layers to down-sample the image. The right decoder also
contains four dense residual-inception modules and the resolution is
successively increased by the up-sampling operation until it is
consistent with the resolution of the input image. Skip
connections are used in the network to connect the up-sampled
result to the output of a module with the same resolution in the
encoder as the input to the next module in the decoder. Finally, the
activation function used in the last layer is a Sigmoid function to
generate binary segmentation results, and the rest of the activation
functions are linear activation functions. In the following, we will
explain each block in detail.

2.1 Residual-inception

In deep learning, many algorithms achieve better results by
simply deepening or broadening neural networks. However, it not
only greatly increases the number of parameters and the amount of
computation, but also causes problems such as generator over-
fitting, gradient disappearing and insufficient diversity of
generated samples. To overcome the above difficulties, we
propose an improved inception module with multiple
convolution kernels of 1 × 1, 1 × 3, 3 × 1 and 3 × 3, as shown
in Figure 2. By using parallel structure, the weight of each
convolution kernel is adjusted adaptively during the training
process, so that the network can adapt to images of different
scales. At the same time, three sets of convolution kernels can
convert full connection-layer connections to sparse connections,
thus improving computational efficiency and extracting more
features. However, it is important to note that with the number
of convolution cores increases, the number of parameters will
increase. Therefore, each group of parallel branches will first
undergo 1 × 1 convolution operations to reduce channel
dimensions to achieve the purpose of dimensionality reduction of
images.

To further improve the feature extraction capability of the
network, residual-inception block is designed, as shown in
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Figure 3. Firstly, the proposed residual-inception structure connects
the input and output of inception layer and 1 × 1 convolution layer
respectively. This approach presents an overall sequential
connection, and the distance between the two connected network
layers is short and there is only one network layer. Firstly, the
residual-inception structure is proposed to connect the input and
output of inception layer and 1 × 1 convolution layer respectively.
This approach presents an overall sequential connection, and the

distance between the two connected network layers is short and
there is only one network layer. Then, the input features of the image
are connected with the output of the second connection layer. In this
structure, the features of short jump connections include both
adjacent outputs and distant ones.

FIGURE 1
Proposed DRI-Net architecture.

FIGURE 2
The inception block.

FIGURE 3
The residual-inception block.

FIGURE 4
The dense connections block.
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2.2 Dense connections

As shown in Figure 4, the DRI-Net network adopts a dense
structure, and the top convolutional layer is directly connected
to the subsequent convolutional layer. After each convolution
layer there is a Batch Normalization (BN) layer and a Rectified
Linear Unit (ReLU) layer. This connection integrates the larger
eigenvalues of the bottom layer into the smaller eigenvalues of
the top layer, which can effectively alleviate the problems of
over-fitting and gradient disappearance. In addition, the
number of existing colon image datasets is small, which will
make deep neural network training difficult. At the same time,
the disappearance of gradients during training will seriously
limit the improvement of the accuracy of neural networks,
and dense structures can alleviate these problems to some
extent.

2.3 Down-sampling layer

The traditional U-Net (Ronneberger et al., 2015) uses Max-
pooling to reduce and compress features in the shrink path.
However, this will cause a lot of useful information in the image
to be lost. In order to store more fine-grained feature information
and reduce information loss caused by pooling process, this paper
adopts two 1 × 1 convolution steps, one 3 × 3 convolution, one 5 ×
5 convolution and average-pooling layers for parallel processing, as
shown in Figure 5.

3 Experiments and results

The colorectal polyp images from Kvasir-SEG (Jha et al.,
2020) dataset were used to evaluate the performance of DRI-Net.
The database has 1,196 images, of which 700 are training sets,
300 are verification sets, and 196 are test sets. The programming
language used in the experiment is Python 3.6, the operating

system is Windows 10. The system memory is 24 GB, and the
GPU is NVIDIA Quadro RTX 6000. According to the effect of
the network, we select the Adam optimizer, the initial learning-
rate was 0.001 (Badshah and Ahmad, 2021), the batch size was
16, the number of iterations was 200, the learning rate was 0.001,
and the loss function was Dice loss.

3.1 Evaluation metrics

Several quantitative metrics, including Intersection over Union
(IoU) (Ahmed et al., 2021), Matthews correlation coefficient (Mcc)
(Jiang et al., 2021), and Dice (Yang et al., 2020) were adopted to
evaluate the performance of each algorithm. The above indicators
can calculate as:

IoU � TP

TP + FN + FP
(1)

Mcc � TP × TN − FP × FN
�������������������������������������
TP + FN( ) TP + FP( ) TN + FN( ) TN + FP( )√ (2)

DIC � 2TP
2TP + FN + FP

(3)

where TP indicates that the actual target is a positive sample,
and the algorithm also judges the target as a positive sample.
TN is represented as a negative sample, and the algorithm also
judges this negative sample as a negative sample. FP means a
negative sample, but the algorithm incorrectly judges it as a
positive sample, FN means a positive sample, but the algorithm
incorrectly judges it as a negative sample.

3.2 Comparison with other methods

To quantitatively analyze the performance of the models,
IoU, Mcc and Dice were calculated for automatic segmentation
compared with manual specificity, as shown in Table 1. By adding
the gate attention mechanism to the UNet structure, AttUNet,
Connected-AttUNet and FF-UNet can effectively improve the
precision to segment the colonoscopy images and achieve good
results. Among them, the results of DenseUnet, ASF-Net and
DRI-Net network are very close, and the comparison between
them can objectively reflect the advantages of dense connections.
Although the dense mechanism can increase the size of the
network and reduce the over-fitting of without using a pre-
trained model, its ability to increase the size of the network is
limited. Obviously, our approach is superior to other methods in
depth feature characterization and can obtain more accurate
segmentation results. As you can see from the last two
columns, although DRI-Net achieves better segmentation
results, it requires more parameters and runtimes due to the
introduction of many modules.

Figure 6 shows the comparison of the visualization
segmentation results on the Kvasir-SEG dataset between the
DRI-Net and the models proposed by some researchers in
recent years. It can be seen from the segmentation example
that in the structure of U-net, due to the lack of support for
convolutional low-level information, the segmentation details are
poor and there are many false negatives. Compared with U-Net,

FIGURE 5
The down-sampling layer.
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the results of other models are better, and the false negative is
reduced. However, due to the loss of global association, the
phenomenon of over-segmentation appeared, and the false
positives of polyp segmentation were relatively high. As can be
seen from the comparison between the visual segmentation
results and Ground-truth, compared with other methods, our
method can well distinguish polyp boundaries, and is better in
maintaining the consistency of polyp morphological features,
with lower FP and FN.

In order to prove that eachmodule added to the proposed DRI-Net
network plays a role in colorectal polyp images, ablation experiments
are conducted for each module. Experimental comparisons were
conducted on the Kvasir-SEG dataset using U-Net, U-Net with only
residual-inception module, U-Net with only dense module, U-Net with
only down-sampling module, U-Net with residual-inception+dense
module, U-Net with residual-inception+down-sampling module,

U-Net model with dense+down-sampling module, and DRI-Net. As
can be seen from Table 2, when the network is added with the
combination of residual-inception, dense and down-sampling
modules, compared with a single U-Net, all evaluation indicators are
better than those obtained by the latter, it demonstrate the effectiveness
of the these modules.

For further analysis of ablation performance, the partial
segmentation results are shown in Figure 7. Visually, it can be
seen that before module fusion, there was still under
segmentation at the boundaries of some lesions, and the
complete tumor region could not be segmented well. After
adding residual-inception, dense and improved down-
sampling modules, the segmentation accuracy of the whole
network is greatly contributed. Therefore, the results of
ablation experiments further verify the validity of these
modules.

TABLE 1 The results of comparison with other methods.

IoU (%) Mcc (%) Dice (%) Parameter (M) Time (ms/step)

U-Net Ronneberger et al. (2015) 69.09 80.09 81.36 2.06 13

AttUNet Oktay et al. (2018) 73.72 83.13 83.53 8.49 21

DenseUnet Huang et al. (2017) 76.31 85.28 85.76 2.29 17

NestedUNet Zhou et al. (2018) 72.02 82.17 83.13 8.74 33

Connected-AttUNet Baccouche et al. (2021) 0.728825 0.828933 0.836375 5.60 29

ASF-Net Chen P et al. (2022) 0.766183 0.853072 0.862914 5.63 18

FF-UNet Iqbal et al. (2022) 0.7488 0.843762 0.851601 3.97 27

DRI-Net 77.72 85.94 86.51 29.42 102

FIGURE 6
Comparison experiment with other methods on Kvasir-SEG dataset. (A) original images; (B) Ground-truth; (C–J) are the results of U-Net, AttUNet,
DenseUnet, NestedUNet, Connected-AttUNet, ASF-Net, FF-UNet and DRI-Net.
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4 Conclusion

Based on the color similarity between colon polyps and
surrounding tissues and the diversity of size, shape and texture
of colon polyps, a dense residual initialization network
structure is proposed, which is an effective extension of
encoder-decoder U-Net network. Firstly, we integrate the
reside-inception module and dense connection into U-Net to
effectively extract more discernible features in colon cancer
tissue from a large amount of information. Then, the re-
designed down-sampling module aim to suppress useless
information and improve the recognition accuracy of the
network. We assessed all methods on the Kvasir-SEG dataset
using three popular evaluation metrics. Experimental results
consistently illustrates that DRI-Net has better results than
other typical networks. In the future, we will investigate the

lightweight and over-fitting problems of these methods and apply
them to more medical image segmentation tasks.
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