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Background: Osteoporosis (OP) is a chronic bone metabolic disease and a
serious global public health problem. Several studies have shown that
mitophagy plays an important role in bone metabolism disorders; however, its
role in osteoporosis remains unclear.

Methods: The Gene Expression Omnibus (GEO) database was used to download
GSE56815, a dataset containing low and high BMD, and differentially expressed
genes (DEGs) were analyzed. Mitochondrial autophagy-related genes (MRG)
were downloaded from the existing literature, and highly correlated MRG
were screened by bioinformatics methods. The results from both were taken
as differentially expressed (DE)-MRG, andGeneOntology (GO) analysis and Kyoto
Encyclopedia of Genes and Genomes (KEGG) enrichment analysis were
performed. Protein-protein interaction network (PPI) analysis, support vector
machine recursive feature elimination (SVM-RFE), and Boruta method were used
to identify DE-MRG. A receiver operating characteristic curve (ROC) was drawn, a
nomogram model was constructed to determine its diagnostic value, and a
variety of bioinformatics methods were used to verify the relationship between
these related genes andOP, including GO and KEGG analysis, IP pathway analysis,
and single-sample Gene Set Enrichment Analysis (ssGSEA). In addition, a hub
gene-related network was constructed and potential drugs for the treatment of
OP were predicted. Finally, the specific genes were verified by real-time
quantitative polymerase chain reaction (RT-qPCR).

Results: In total, 548DEGswere identified in the GSE56815 dataset. Theweighted
gene co-expression network analysis(WGCNA) identified 2291 key module
genes, and 91 DE-MRG were obtained by combining the two. The PPI
network revealed that the target gene for AKT1 interacted with most proteins.
Three MRG (NELFB, SFSWAP, and MAP3K3) were identified as hub genes, with
areas under the curve (AUC) 0.75, 0.71, and 0.70, respectively. The nomogram
model has high diagnostic value. GO and KEGG analysis showed that ribosome
pathway and cellular ribosome pathway may be the pathways regulating the
progression of OP. IPA showed that MAP3K3 was associated with six pathways,
including GNRH Signaling. The ssGSEA indicated that NELFB was highly
correlated with iDCs (cor = −0.390, p < 0.001). The regulatory network
showed a complex relationship between miRNA, transcription factor(TF) and
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hub genes. In addition, 4 drugs such as vinclozolin were predicted to be potential
therapeutic drugs for OP. In RT-qPCR verification, the hub gene NELFB was
consistent with the results of bioinformatics analysis.

Conclusion: Mitophagy plays an important role in the development of
osteoporosis. The identification of three mitophagy-related genes may
contribute to the early diagnosis, mechanism research and treatment of OP.

KEYWORDS

bioinformatics, osteoporosis, mitophagy, differentially expressed genes (DEGs),
biomarker, protein-protein interaction (PPI)

1 Introduction

Osteoporosis (OP) is a systemic bone disease and the most
common metabolic bone disease (Langdahl, 2020; Yan et al., 2023).
They can be divided into two categories: primary and secondary. The
former mainly occurs in children and young adults, considering the
possible influence of genetic factors; however, its specific pathogenesis
remains unknown. The latter is more common, mainly affecting older
men and postmenopausal women, and is related to aging (Sozen et al.,
2017; Guo et al., 2021). The main feature of OP is uncoupled bone
resorption, which leads to decreased bone mass, damage, and
degradation of the bone tissue microstructure, resulting in increased
bone fragility and increased susceptibility to fractures, especially in the
hip, wrist, and spine (Liu et al., 2021). OP is reported to be associated
with fractures inmore than half of white women and one-third of white
men (Golob and Laya, 2015). Age is the most important risk factor of
OP(6). In addition, estrogen deficiency, improper use of
glucocorticoids, diabetes, malnutrition, and heavy drinking have
been identified as important risk factors for OP(6, 7). The
invisibility of bone loss and absence of symptoms at the beginning
of OPmake it a silent disease, as it is usually difficult to detect before the
first fracture; however, damage can be fatal once it occurs
(Unnanuntana et al., 2010; Johnston and Dagar, 2020).

Currently, the diagnostic methods for OP are based on Dual-
Energy X-Ray Absorptiometry (DEXA) evaluation of bone mass
(Chen et al., 2023), double X-ray absorption measurement (Aibar-
Almazan et al., 2022), quantitative computed tomography, and bone
tissue biopsy (Filippiadis et al., 2018). However, owing to its high
detection cost, strong invasiveness, and large amounts of ionizing
radiation, its long-term use is limited. There are three types of
treatment options for OP, which are divided into anti-reabsorption
therapy, anabolic therapy, and dual-acting therapy (Foessl et al.,
2023). Anti-reabsorption therapy involves the use of anti-
reabsorption drugs, including bisphosphonates, denosumab,
selective estrogen receptor modulators (SERMs), and estrogen, to
reduce bone resorption by inhibiting osteoclast function (Chen et al.,
2023; Foessl et al., 2023). Anabolic drugs, such as teriparatide, which
is used in anabolic therapy, is strong bone formation promoter
effective in treating osteoporosis (Che et al., 2023). Romosozumab is
currently the only drug available as dual-acting therapy. The dual
effects of increased bone formation and reduced bone resorption
lead to rapid increases in trabecular and cortical bone mass, which
can improve bone structure and strength (Langdahl, 2020).
However, most drugs have limitations and adverse side effects,
and the current clinical treatments for OP are not ideal.
Osteoclast-mediated bone destruction can occur, resulting in

impaired therapeutic effects (Nogues and Martinez-Laguna,
2018). Therefore, there is an urgent need to develop new
diagnostic methods for OP and provide new targets for the
development of new drugs and immunotherapy by understanding
the biological pathways of the markers.

Autophagy is a membrane-dependent, subcellular component
turnover mechanism in eukaryotic cells. It is a complex dynamic
process that maintains intracellular homeostasis under different
physiological or pathological conditions by controlling protein
degradation and the renewal of damaged organelles (Wang J. et al.,
2023). Mammalian autophagy is divided into three subcategories:
macroautophagy, microautophagy, and chaperone-mediated
autophagy. Macroautophagy is the main autophagic process that
helps effectively transport cytoplasmic cargo to lysosomes for
degradation (Mizushima and Levine, 2020). Autophagy is highly
regulated and an appropriate level of autophagy can protect cells
from pathological or physiological damage. Conversely, excessive or
reduced autophagy trigger apoptosis (Scheibye-Knudsen et al., 2014).
Studies have shown that autophagy is necessary for cell survival.
Dysregulation of autophagy is associated with various human
diseases, including cancer and metabolic, neurodegenerative,
cardiovascular, and age-related diseases (Mattson et al., 2008).

Mitochondrial autophagy is a selective form of autophagy. It is a
autophagy process that occurs in mitochondria. This is a highly specific
quality control process and the only known selective method for
removing entire mitochondria. It maintains mitochondrial
homeostasis by eliminating damaged organelles and redundant
proteins, and reducing cell stress caused by harmful stimuli (Zong
et al., 2016; Wang J. et al., 2023). Mitochondrial autophagy maintains
cellular homeostasis under healthy conditions. However, it can also be
induced under certain pathological or physiological conditions, thereby
degrading healthy mitochondria and ultimately promoting the
development of many diseases (Fang et al., 2019; Xu et al., 2020;
Zhang et al., 2021). In addition, mitophagy has shown excellent medical
application value in many chronic diseases and is considered to be an
important target for the treatment of chronic diseases (Yan et al., 2023).
Increasing evidence shows that abnormal mitochondrial autophagy can
disrupt the balance of bone metabolism and plays a key role in bone
metabolism disorders (Wang et al., 2017; Naik et al., 2019; Wang S.
et al., 2020). Other studies have shown thatmitophagy is involved in the
regulation of OP. For example, phosphoinositide 3-kinase (PI3K) can
treat or affect the progression of OP by interfering with mitophagy in
bone marrow-derived mesenchymal stem/stromal cells (BMSC) (Yang
et al., 2019; Chen et al., 2020). Lee found that the expression of Pten-
induced putative kinase 1 (PINK1) was decreased in OP patients, and
the PINK1/Parkinson‘s disease-related gene (Parkin) pathway is an
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important way of mitophagy (Lee et al., 2021). Maity et al. (2022)
reported that the expression levels of mitophagy-related molecules
PINK1 and Parkin in DPSC were increased, and mitophagy was
induced to promote osteoblast differentiation. It has also been
reported that epigallocatechin-3-gallate (EGCG) is a rich polyphenol
in green tea, which can significantly reduce the expression of
mitochondrial autophagy related PINK1 and Parkin. inhibit
osteoclast differentiation, and regulae the progression of osteoporosis
(Sarkar et al., 2022). All of the above prove that mitophagy may be
related to OP. Therefore, we have reason to suspect that osteoporosis is
associated with mitophagy. However, previous studies have only
explored the effect of a specific gene-mediated mitophagy pathway
on osteoporosis, suggesting that there is a certain correlation between
the two. There is still a lack of research on the clinical significance of
mitophagy-related gene (MRG) in osteoporosis. Therefore we
conducted this study to understand the expression of mitophagy-
related genes in OP, in order to provide an important reference for
the diagnosis, mechanism research and treatment of OP.

2 Methods and materials

2.1 Data sources and downloaded data

The clinical data of all patients were obtained from the Gene
Expression Omnibus (GEO) database (https://www.ncbi.nlm.nih.
gov/geo/). According to the following criteria: (Yan et al., 2023)
Disease name: Osteoporosis (Langdahl, 2020); Organism type:
Homo sapiens (Guo et al., 2021). Sample source: blood sample
(Guo et al., 2021). Dataset including samples with low and high
bone mineral density (BMD) (Sozen et al., 2017). Sample size as
large as possible (The dataset contains more than 3 samples per
group). Hence, GSE56815, including the gene expression data
(Expression profiling by array) of peripheral blood monocytes
from 40 low-BMD samples and 40 high-BMD samples, was
analyzed in this study. Thirty-four mitophagy-related genes
(MRG) were downloaded from previous literature (Xu et al., 2022).

2.2 Identification of differentially
expressed genes

We used the Wilcoxon test method in the R package to analyze
the genetic data and get individual p-values after we completed the
data download and collation (Cheng L. et al., 2022). The false
discovery rate (FDR) was used to test the p-value, and the FDR
value obtained was used to screen the differentially expressed genes
(DEGs), with the following criterion:FDR<0.05 (Hsu and Lee, 2010).
Volcano plots and heat maps were generated to identify the DEGs.

2.3 Screening of module genes related
to mitophagy

In the GSE56815 dataset, the expression matrices of 34 MRG
were extracted, and the MRG scores between OP and control
samples were calculated using the gene set variation analysis
(GSVA) package (version 1.42.0) (Suarez-Farinas et al., 2010).

The weighted gene co-expression network analysis (WGCNA)
package (version 4.0.3) (Langfelder and Horvath, 2008) in R was
used to screen out module genes with high correlation with MRG
score. Specifically, samples were clustered and outliers were
excluded to ensure the accuracy of the analysis, and the
appropriate soft threshold was determined with the following
conventional criterion: 0.8 < R2 < 0.95, and the mean value of
the adjacency function was close to 0. A co-expression matrix was
constructed, and a hybrid dynamic clipping tree method with a
minimum of 30 modules was used to identify co-expressed gene
modules (Reyes et al., 2017), and the huge number of genes was
classified into dozens of gene modules. Finally, the significant
modules correlated with MRG scores were defined with a
relevance |Cor|>0.3, p < 0.05.

2.4 Gene Ontology and Kyoto Encyclopedia
of Genes and Genomes enrichment analysis
of differentially expressed-MRG

The online jvenn website (http://jvenn.toulouse.sra.fr/app/
example.html) was used to intersect the module MRG screened
by DEGs and WGCNA to obtain differentially expressed-MRG,
which were denoted as DE-MRG. The R package “clusterProfiler”
(version 4.4.4) (Yu et al., 2012) was used to perform Gene Ontology
(GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG)
enrichment analysis of DE-MRG. A p-value <0.05 was considered
statistically significant. The R package “ggplot2” (version 3.3.2) (Ito
and Murphy, 2013) was used to visualize the enrichment results.

As part of the GO analysis, three ontologies were identified, namely
molecular function (MF), cellular component (CC), and biological
process (BP), which helped to explore the biological processes of
these DEGs. KEGG analysis was used to identify metabolic or signal
transduction pathways that were significantly enriched in the DEGs.

2.5 Specific protein-protein interaction
network construction

At present, protein-protein interaction (PPI) networks are
among the best-studied biomolecular networks. To explore the
interaction between DE-MRG, we used the STRING (https://
string-db.org) website to construct the PPI network of DE-MRG
and screen the threshold: confidence = 0.4 (Zhao et al., 2015), and
then visualized with Cytoscape (Shannon et al., 2003).

2.6 Signature gene identification

We identified candidate key genes by the intersection of key
module genes and DGEs. Subsequently, three machine learning
algorithms, least absolute shrinkage and selection operator (Lasso),
support vector machine recursive feature elimination (SVM-RFE),
and Boruta were used to analyze the hub genes.

Lasso regression is a new variable selection technique, which is
implemented by using the glmnet package with penalty parameters,
and the feature genes are obtained after 10-fold cross validation.
SVM-RFE is an effective feature selection technique using the
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“e1071” package and “glmnet” package (Friedman et al., 2010) to
obtain the relationship between the prediction accuracy and the
number of features, and the number of hub genes is obtained when
the generalization error is the lowest. The Boruta algorithm is a
wrapper method built around a random forest classifier (Shen et al.,
2021). This algorithm minimizes the error of the random forest
model, which eventually forms a subset of the minimum
optimal features.

Using the online Jveen map-making website (http://jvenn.
toulouse.inra.fr/app/example.html), overlapping genes were
obtained by intersecting the markers derived from the three
algorithms, that is, the key genes obtained by screening.

The receiver operating characteristic (ROC) curve of the hub
genes was drawn using the R pROC package (version 1.12.1)
(Hanley and McNeil, 1982) and the diagnostic efficiency of the
key genes was evaluated using the area under the curve (AUC). An
AUC greater than 0.7 indicated good diagnostic performance.

The nomogram model can evaluate the relationship between
variables in the prediction model (Park, 2018). The nomogram
model of the hub genes was constructed using the R RMS package
(version 6.0-1) (Zhao and Li, 2023), and a calibration curve was
drawn using the calibration function and boot method. The accuracy
of the nomogrammodel for predicting osteoporosis was determined
using the slope of the curve and Hosmer-Lemeshow goodness-of-fit
test (HL test), where the insignificant difference (p > 0.05) between
predicted and actual observed results in HL test indicates that the
prediction model has good calibration ability (Wang et al., 2021).

2.7 Gene Ontology and Kyoto Encyclopedia
of Genes and Genomes enrichment analysis
of hub genes

The Pearson correlation coefficient between the key genes and
the remaining genes was calculated and ranked from highest to
lowest. After the corresponding gene sequence list of each key gene
was obtained, the “clusterProfiler” package (version 4.4.4) (Yu et al.,
2012) was used for GO and KEGG Gene Set Enrichment Analysis
(GSEA), and Benjamini & Hochberg method was used for multiple
test correction. The corrected p-value was p.adjust, and
p.adjust <0.05 was considered as significant enrichment.

2.8 Classical pathways of the DEGs were
analyzed by IPA pathway analysis

IPA Pathway Analysis (IPA) is an integrated analysis software.
We used DEGs to perform IPA functional enrichment analysis to
identify typical pathways, diseases, and functional pathways related
to key genes. A z-score >2 indicates that the pathway is activated,
and a z-score < -2 indicates that the pathway is inhibited. All
pathways containing key OP genes were screened for display.

2.9 Immune microenvironment analysis

Single sample GSEA (ssGSEA) was performed by calculating
the rank value of each gene based on the expression profile. To

explore the composition of immune cells in the
GSE56815 dataset, ssGSEA package (version 1.36.3) (Zuo
et al., 2020) was used to perform immune cell infiltration
analysis, and the differentially expressed immune cells
between the disease group and the control group were
detected using Wilcoxon test (p value less than 0.05 was
considered considerable). The results were presented as
boxplots. Subsequently, the “spearman” algorithm was used to
calculate the correlation between the immune-related gene sets
and the correlation between OP hub genes and the significantly
different immune-related gene sets, respectively. The results were
presented as heat-and-bubble maps.

2.10 Network construction based on
hub gene

2.10.1 Construction of the ceRNA network
For the obtained OP hub genes, we used the miRWalk database

(http://mirwalk.umm.uni-heidelberg.de/search_genes/) and
miRTarBase database (https://mirtarbase.cuhk.edu.cn/
~miRTarBase/miRTarBase_2022/php/search.php) to search for
relevant miRNAs, then took the intersection to obtain the
miRNA of OP hub genes. Based on the obtained miRNAs, the
databases ENCORI (https://starbase.sysu.edu.cn/agoClipRNA.php?
source=mRNA) (the default parameters are set: CLIP-Data ≥ 1,
Degradome-Data ≥ 0, pan-Cancer ≥ 0) and LncBase (https://diana.
e-ce.uth.gr/lncbasev3/interactions) were searched; then, the
corresponding lncRNAs of the miRNA obtained in the two
databases were intersected to obtain the lncRNA of OP hub
genes. Cytoscape (Shannon et al., 2003) was used to draw the
visualized mRNA-miRNA-lncRNA network diagram.

2.10.2 Construction of TF-hub gene network and
predicting potential drugs

Based on the obtained key OP genes, NetworkAnalyst (https://
www.networkanalyst.ca/NetworkAnalyst/uploads/ListUploadView.
xhtml) was used to search for the TF corresponding to the key genes
to obtain the interaction information between them, and parameter
settings are as follows: Specify organism = “H. sapiens (human)”, Set
ID type = “Official Gene Symbol” Cytoscape (Shannon et al., 2003)
was used to visualize the interactions.

2.11 Predicting potential drugs

Potential drugs for the treatment of OP were predicted using the
CTD database (http://ctdbase.org/), and the interactions between
the two were analyzed. Cytoscape (Shannon et al., 2003) was used for
the visual display.

2.12 Validation of key gene expression

From the GSE56815 dataset, the expression levels of key OP
genes were extracted and analyzed using the Wilcoxon test. The
expression of key genes was checked and the results are displayed as
box plots.
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2.13 Experimental validation by RNA
extraction and real-time quantitative
polymerase chain reaction

The study was in accordance with the Declaration of Helsinki (as
revised in 2013) (World Medical Association, 2013). This study was
approved by the Ethics Committee of Honghui Hospital Affiliated to
Medical College of Xi ‘an Jiaotong University (No.202212012). All
participants were informed and signed consent. The study included
patients who met the criteria in the orthopedics department of the
hospital from January 2023 to November 2023.

Inclusion criteria: (Yan et al., 2023) Those who met the
diagnostic criteria of OP, according to “Chinese expert consensus
on the diagnosis of osteoporosis by imaging and bone mineral
density” (Cheng et al., 2020; Langdahl, 2020). All subjects were
informed and voluntarily signed the consent form.

Exclusion criteria (Yan et al., 2023): those who do not meet the
diagnosis of OP; (Langdahl, 2020) patients with severe
cardiovascular disease (Guo et al., 2021); Patients with severe
liver/kidney dysfunction (Sozen et al., 2017); patients with
coagulation dysfunction (Liu et al., 2021); patients with
autoimmune diseases (Golob and Laya, 2015); untreated bone
metabolic diseases other than osteoporosis (Johnston and Dagar,
2020); Long-term use of drugs affecting bone metabolism (such as
glucocorticoids and steroid hormones) (Unnanuntana et al., 2010);
Anti-osteoporosis treatment history (such as bisphosphonates,
teriparatide and calcitonin, etc.).

Grouping criteria: lumbar spine and total hip BMD (DEXA):
normal group T-score≥1.0; T-score ≤ -2.5 in OP group (all BMD
measurements were performed by the same trained professional).

Finally, 8 patients with osteoporosis and 8 patients with normal
bone mineral density were included in the study. There were 4 males
and 4 females in each group. Peripheral venous blood (10 mL) was
collected from all patients after fasting for one night (≥12 h).

The operation of human peripheral blood mononuclear cells
(PBMC) is carried out as described above (Chen et al., 2021). First,
the patient‘s whole blood was placed in a 50 mL centrifuge tube,
diluted with 10 mL PBS and gently mixed. Subsequently, the blood
sample was continuously centrifuged for 20 min at a speed of
2000 rpm. After centrifugation, the white blood cell layer in the
center of the sample containing PBMCwas sucked out with a pipette
and transferred to a new 15 mL centrifuge tube, and 10 mL PBS was
added to it. The centrifuge was used to continuously centrifuge for
10 min at a speed of 1500 rpm, and then the supernatant was taken
out for precipitation, which was the required PBMC. The obtained
PBMC were inoculated in a 6-well plate, and 1 mL of TRIzol
(GENSTAR Inc. Beijing, China) reagent was added to each well

to extract total RNA from the cells. Subsequently, 1 mg total RNA
was reverse transcribed using a cDNA synthesis kit (Thermo Fisher
Scientific Inc. Shanghai, China). The cDNA was detected using a
20 mL SYBR Green qPCR SuperMix (TargetMol Chemicals Inc.
Shanghai, China) and RT-qPCR machine (Bio-Rad, Hercules, CA,
United States). The final thermal cycle conditions for gene
amplification were: 95 C 30 s, 95 C 5 s 40 cycles, and the last step
was 60 C 30 s. Quantitative analysis was performed using the 2△△CT

method to calculate the relative expression of each gene. The hub
gene-related detection primers were prepared by Beijing Tsingke
Biotech Co., Ltd. (China), as shown in Table 1.

2.14 Statistical analysis

All statistical analyses were performed using R software.
Differentially expressed analysis for DEGs, differentially
expressed immune cells, and key OP genes between OP and
control samples in GSE56815 datasets were conducted using
Wilcoxon test. When p < 0.05, all results were considered
statistically significant and all p-values were two-tailed.

The flow chart of this study is shown in Figure 1.

3 Results

3.1 Differential gene analysis

In the GSE56815 dataset, 548 genes were detected between low-
and high-BMD samples, of which 366 genes were upregulated and
182 genes were downregulated (Figures 2A, B;
Supplementary Table S1).

3.2 GSVA and WGCNA screen mitochondrial
autophagy-related genes scoring
related modules

The expression matrix of the 34 MRG was obtained from the
dataset GSE56815. MRG scores were calculated between OP samples
and control samples using the “GSVA” package.

The WGCNA package was used to analyze GSE56815, and the
MRG score was used asWGCNA trait data to screen out module genes
with high correlationwith theMRG score; the samples were clustered to
show the overall correlation of the samples in the data set. The threshold
was set to 42 and outlier samples were eliminated, that is, those above
the red line in the figure (Figure 3A). It was then reclustered, and the

TABLE 1 Sequences of hub gene-specific primers used for RT-qPCR.

Hub genes Sequence (5′->3′)

Forward primer Reverse primer

NELFB GGCTGTACTACGTCCTGCACAT AGGTGGAGGAAGATGTCGCCAA

SFSWAP ACGCTACACTGTCCTGGCAGAA AGGCGGTTACACTTCTTGGAGG

MAP3K3 CCAGTTGAAGGCTTACGGTGCT AGAGTCTCGGAGGATGTTGGCT
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corresponding sample traits were added (Figure 3B). When β = 11, the
co-expression network most closely approximates the scale-free
distribution (Figure 3C). When MEDissThres = 0.3 was set, similar
modules were analyzed, and the number of modules that aggregated
after merging was 16 (Figure 3D). Analysis of the correlation of each
module and the MRG score of red represents MRG scores are related,
green represents is negatively related to theMRG score, color represents
the degree of correlation, in | Cor | > 0.3, p < 0.05, for threshold
selection, obtain results with MRG score high correlation modules with
a total of three, blue (number of genes:1947), pink (number of genes:

278), grey60 (number of genes:66), and the total number of genes was
2291(Figure 3E).

3.3 Identification and functional enrichment
of differentially-expressed mitochondrial
autophagy-related genes

The 2291 hub module genes obtained by WGCNA overlapped
with 548 DEGs obtained by differential analysis between the high-
and low-BMD groups, and a total of 91 overlapping genes were
obtained, namely, DE-MRG (Figure 4A). DE-MRG were subjected
to GO functional enrichment and KEGG pathway analysis and were
enriched in 430 biological processes (BPs), 59 molecular functions
(MFs), 40 cellular components (CCs) (Figure 4B), and 33 pathways
(Figure 4C) (p < 0.05). For BPs, the top 10 enrichment programs
were mainly involved in the positive regulation of response to
external stimuli, I-kappaB kinase/NF-kappaB signaling, cellular
response to biotic stimulus, homeostasis of number of cells,
import into nucleus, and other biological processes. For CC and
MF, the top 10 enriched items are shown in Figures, respectively,
and the enrichment analysis of KEGG pathway showed that DE-
MRG are primarily involved in Salmonella infection, Fc gamma
R-mediated phagocytosis, Epstein-Barr virus infection, and
neurotrophin signaling pathways.

3.4 Protein-protein interaction analysis

The construction of PPI network showed that gene AKT1 was
the central gene of this PPI network, and it interacted with the most
proteins. The results were visualized using the Cytoscape
software (Figure 5).

FIGURE 1
The flow chart of this research.

FIGURE 2
Detection of DEG between low and high BMD samples. (A) Volcano plot of differentially expressed genes identified in GSE56815 dataset. (B) Heat
map of differentially expressed genes identified in GSE56815 dataset.
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3.5 Screening for the best characteristic
genes of osteoporosis and evaluating their
diagnostic value

A total of 18, 7, and 28 genetic biomarkers were identified using
the machine learning algorithms LASSO, SVM-RFE, and Boruta,
respectively (Figures 6A–D). Moreover, the key genes shared by the
three OP were identified by overlapping biomarkers derived from

the three algorithms, including negative elongation factor complex
member B (NELFB), Splicing Factor (SFSWAP), and mitogen-
activated protein kinase kinase 3 (MAP3K3) (Figure 7A).

We determined the reliability of the diagnostic value of our hub
genes by plotting a ROC curve and calculating the area under the
AUC; those of NELFB, SFSWAP, and MAP3K3 were 0.75(95% CI =
0.64-0.86), 0.71(95% CI = 0.59-0.82), and 0.70(95% CI = 0.58-0.81),
respectively, with all greater than 0.7 (Figure 7B). Therefore, our

FIGURE 3
GSVA combined with WGCNA was used to screen MRG score related modules. (A) Sample clustering tree. (B) Data sample re-clustering and
phenotypic information. (C) The soft threshold distribution. (D) The cluster dendregram after module merging. (E) The clustered modules.

FIGURE 4
Identification and functional enrichment of DE-MRGs. (A) The veen plot showed the interaction between DEGs andMRGs. (B) The top 10 functional
enrichment in BP, CC, and MF analysis, respectively.(C) The KEGG of DE-MRGs.
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gene hub can effectively diagnose osteoporosis. After the
construction of the nomogram model of the gene hub(C-index =
0.886, 95% CI = 0.815-0.957), the slope of the calibration curve was
close to 1, and the HL test exhibited satisfactory agreement between

predicted and actual outcomes with p = 0.545 > 0.05, indicating that
the nomogram model had high prediction accuracy for osteoporosis
(Figures 7C, D).

3.6 Functional enrichment analysis of
hub genes

GSEA enrichment analysis of GO and KEGG was performed on
the three hub genes, and p.adjust <0.05 was considered a significant
enrichment result (Supplementary Table S2). According to the
significance ranking, GO and KEGG TOP5 Descriptions were
selected for visual display (Figures 8A–C).

We evaluated the signaling pathways associated with the key
genes using GSEA. The first five signaling pathways are shown in the
figure. GO analysis showed that NELFB was significantly associated
with cytoplasmic translation, cytosolic, large ribosomal subunit,
cytosolic ribosome, ribosome, and structural constituents of the
ribosomes. SFSWAP expression was significantly correlated with
cytoplasmic translation, cytosolic ribosomes, ribosomal subunits,
ribosomes, and the structural constituents of ribosomes.
MAP3K3 expression significantly correlated with cytoplasmic
translation, cytosolic ribosomes, ribosomal subunits, ribosomes,
and structural constituents of ribosomes.

KEGG results showed that NELFB was significantly correlated
with the B cell receptor signaling pathway, chemokine signaling

FIGURE 5
OP-specific protein-protein interaction network.

FIGURE 6
Screening hub genes and evaluating their diagnostic value. (A) LASSO logic coefficient penalty diagram. (B) LASSO plot showed the variations in the
size of coefficients for parameters shrank as the value of k penalty increased. (C) The relationship between the prediction accuracy of SVM-RFE and the
number of features. (D) Boxplot of importance distribution of each gene in Boruta algorithm.
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pathway, Fc gamma R-mediated phagocytosis, human
cytomegalovirus infection, and ribosomes. Sfswap expression was
significantly associated with Fc gamma R-mediated phagocytosis,
oxidative phosphorylation, Parkinson’s disease, ribosomes, and
spliceosomes. The expression of MAP3K3 was significantly
associated with Fc gamma R-mediated phagocytosis, osteoclast
differentiation, oxidative phosphorylation, Parkinson’s disease,
and ribosomes.

In summary, GO analysis showed that the molecular functions
of these genes were mainly enriched with cytoplasmic translation,
cytosolic ribosome, ribosome and structural constituent of
ribosome; KEGG pathway analysis showed that it was mainly
enriched in Fc gamma R-mediated phagocytosis and Ribosome.

3.7 IPA pathway analysis

The results of the IPA functional enrichment analysis showed
20 inhibition pathways (blue) and activation pathways (range)
(Figure 9A). The hub gene, MAP3K3, was included in these
40 pathways. The genes were involved in six pathways, and three
activation pathways were GNRH Signaling, Natural Killer Cell
Signaling and G-Protein Coupled Receptor Signaling. The three

inhibited pathways were Cardiac Hypertrophy Signaling
(enhanced), RANK Signaling in Osteoclasts, and Cardiac
Hypertrophy Signaling. The strongest activation intensity of
MAP3K3 (GNRH Signaling) and strongest inhibition intensity of
the pathway (cardiac hypertrophy Signaling) are shown
in Figure 9B.

3.8 Immune infiltration analysis of
the dataset

Immune infiltration analysis was performed on the integrated
GSE56815dataset. The scores of the 29 immune cell types evaluated
using ssGSEA showed significant differences in the expression of
four immune-related gene sets: APC_co_stimulation, iDCs, Tfh, and
Th1_cells (Figures 10A, B) (Supplementary Table S3). The
correlations results between immune-related gene sets are shown
in Figure 10B. (Supplementary Table S4). Further, the heatmap for
the correlation of hub genes and immune-related gene sets suggested
that there was a significant negative correlation between NELFB and
iDCs in hub genes with significant differences (cor = −0.390, p <
0.001). There was a positive correlation with Tfh levels (cor = 0.233,
p < 0.05) (Figure 10C).

FIGURE 7
Evaluating the diagnostic value of hub genes (A) The veen plot showed the interaction of the LASSO, SVM-RFE and Boruta. (B) Receiver operating
characteristic curve of three hub genes between OP group and control group. (C) nomogram model. (D) Calibration curve to evaluate the predictive
ability of nomogram model.
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3.9 Network construction based on
hub genes

We identified eight miRNAs, of which seven corresponded to
MAP3K3 and one to NELFB (Figure 11A). Simultaneously,
81 lncRNAs were obtained, corresponding to four miRNAs
(hsa-miR-132-3phsa-miR-182-5p, hsa-miR-212-3p, and hsa-
miR-324-5p), which correspond to the key genes
MAP3K3 and NELFB (Figure 11B). Based on the above two

intersection pairs, 79 pairs of lncRNA-miRNA-mRNA
relationships regulated by the same miRNA were screened,
including 68 lncRNAs, four miRNAs, and two mRNAs, and a
ceRNA network was constructed, that is, ceRNA
network (Figure 11C).

In addition, 72 TF–mRNA interaction pairs were retrieved, and
only the key genes, SFSWAP and MAP3K3, provided TF interaction
information. Visual expression was performed using Cytoscape
software (Figure 11D).

FIGURE 8
The GESA of OP hub genes. (A) The GSEA of NELFB in OP. (B) The GSEA of SFSWAP in OP. (C) The GSEA of MAP3K3 in OP.
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3.10 Potential drugs prediction

By predicting potential drugs for the treatment of OP in the
CTD database, 17 drug-gene pairs were obtained. Both vinclozolin
and bisphenol A are associated with SFSWAP and MAP3K3. Benzo
(a) pyrene and valproic acid were associated with both SFSWAP and
NELFB. The results were visualized using Cytoscape
software (Figure 12A).

3.11 Dataset validation

The box plot shows that in the dataset GSE56815, compared
with the control group, the genes MAP3K3 and SFSWAP were
significantly expressed (p < 0.01), whereas the expression of NELFB
was lower (Figure 12B).

3.12 RT-qPCR verification of hub genes

The results of RT-qPCR showed that the mRNA expression level
of NELFB in OP group was lower than that in normal group. There
was no difference in the mRNA expression levels of SFSWAP and
MAP3K3 between the OP group and the normal group. The
expression level of hub gene NELFB was consistent with
bioinformatics (Figures 13A–C).

Generally speaking, Wilcoxon test combined with WGCNA
methods were used to screen 91 DE-MRG related to the MRG

score, in which AKT1 interacted with the most proteins in the PPI
network. Next, NELFB, SFSWAP, and MAP3K3 were selected as the
key genes with excellent diagnostic value for OP. These key genes
was mainly enriched in the biological terms of cytoplasmic
translation and Fc gamma R-mediated phagocytosis, especially,
MAP3K3 involved in the activation and inhibition of various IPA
Pathway, such as Cardiac Hypertrophy Signaling and GNRH
Signaling. Moreover, there were considerable correlations
between NELFB and iDCs (cor = −0.39), and Tfh levels (cor = 0.
23). It is worth noting that the expression level of NELFB detected by
RT-qPCR was consistent with the results of bioinformatics. Finally,
the potential ceRNA network, TF binding sites, drugs targeting three
key genes was predicted. For the clinical utilize, the nomogram
constructed by converting the expression of three hub genes into a
total score had a high prediction accuracy for osteoporosis
(C-index = 0.886, 95% CI = 0.815-0.957; HL test p > 0.05).

4 Discussion

Basic research on mitophagy and osteoporosis has received
considerable attention. This study evaluated the DEG between
patients with OP and healthy cohorts and explored the key
modules of MRG based on GSVA-WGCNA. The intersection of
the 91 DE-MRG was analyzed using KEGG and GO. A PPI network
was constructed, and the core target gene was AKT1. Three hub
genes related to OP and mitophagy genes were identified by three
machine learning methods, including NELFB, SFSWAP, and

FIGURE 9
The IPA Pathway Analysis of OP hub genes. (A) Hub gene-related diseases and functional enrichment results. (B) MAP3K3 activation inhibition
pathway diagram (left is the activation pathway, right is the inhibition pathway).
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MAP3K3. ROC and nomogram models proved their diagnostic
value. GO and KEGG analyses showed that the three hub genes were
involved in the ribosome and cytoplasmic ribosome pathways. IPA
showed that MAP3K3 was associated with six pathways, including
GNRH Signaling. The ssGESA indicated that NELFB was highly
correlated with iDCs (cor = −0.390, p < 0.001). The network based
on hub genes showed that 3 TFs (TRIM22, CEBPG, and CEBPZ),
4 miRNAs (hsa-miR-132-3p, hsa-miR-182-5p, hsa-miR-212-3p,
and hsa-miR-324-5p), and 4 drugs were involved in osteoporosis.
Finally, the expression level of NELFB detected by RT-qPCR was
basically consistent with bioinformatics.

We performed DE-MRG enrichment analysis on the selected
samples, and the results showed that they were involved in many
biological processes, including “I−kappaB kinase/NF−kappaB signal”,
“regulation of podosome assembly”, and “podosome assembly”. The
inhibition of NF−kappaB signal can affect the formation of osteoclasts
and has a high correlation with osteoporosis. In addition, the most
common molecular functions include ‘heterochromatin’ and ‘secretory
granule lumen’. Aging of BMSC is the main cause of osteoporosis.
Several studies have reported that related genes can promote or inhibit
the occurrence of osteoporosis by regulating heterochromatin to
interfere with MSC(51). For example, KDM4B inhibits the
formation of H3K9me3 (heterochromatin) lesions to reduce MSC
self-renewal and affect osteoporosis (Deng et al., 2021), whereas

sIRT3 inhibits the generation of heterochromatin through the
vulcanization of hydrogen sulfide, thereby inhibiting the senescence
of BMSC and providing a new target for the treatment of osteoporosis
(Liu et al., 2023). Secretory granules indirectly affect blood glucose levels
by regulating insulin secretion, and diabetes is a clinical risk
factor for OP.

The central node of the PPI molecular network is AKT1, which
interacts with and performs molecular docking between small
molecules and encoded proteins. AKT1 is a serine/threonine protein
kinase known as Akt kinase (Akt1, Akt2 and Akt3) (Xia et al., 2020).
Previous studies have shown that induced AKT1 expression promotes
the proliferation ofmesenchymal stem cells and ultimately inhibits their
apoptosis, thereby alleviating osteoporosis (Wang et al., 2022). In
addition, AKT1, as a core target gene, can regulate OP through the
PI3K-Akt signaling pathway, which is manifested in the
phosphorylation of AKT1 and the expression of PI3K to promote
osteogenesis and regulate the progression of OP (Yang et al., 2019; Zhao
et al., 2021; Liang et al., 2022). AKT has also been reported to affect
osteoporosis by upregulating FOXO1 and enhancing the expression of
bone turnovermarkers (ALP, OCN, Runx2, and Col1) and extracellular
matrix mineralization (Cai et al., 2021). AKT1 plays a key role in OP by
participating in multiple signaling pathways.

NELFB is a negative elongation factor B, also known as
COBRA1, which is one of the four subunits of the NELF

FIGURE 10
The immune cell infiltration association with hub genes. (A) Abundance box plots of 29 immune gene sets in OP group and Control group. (B) Heat
map of the relationship between immune-related gene sets. (C) Bubble plot of correlation between OP hub genes and significantly different immune-
related gene sets.**p < 0.01,***p < 0.001.
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complex that controls the participation of RNA polymerase II (Pol
II) in gene transcription and is essential for multiple biological
processes. Osteoporosis is caused by an imbalance between
osteoclasts and osteoblasts and occurs near hematopoietic cells in
the bone marrow. Osteoblasts are the primary cells involved in bone
formation and play a central role in hematopoiesis (Salamanna et al.,
2020; Kim et al., 2021). Researchers have found that the absence of
NELFB can induce excessive progenitor cell development during
primitive and final hematopoiesis. Hematopoietic progenitor cells
can bind hematopoietic growth factors to promote interactions
between osteoblasts and hematopoietic stem cells (HSC), thereby
affecting the number and activity of osteoblasts (Huang et al., 2022).
Therefore, NELFB and osteoblasts appear to be associated with
osteoporosis via hematopoietic progenitor cells (Calvi et al., 2003;
Kim et al., 2011). It has been reported that NELFB has a synergistic
effect with TCF1 in T cell response to cancer, while a non-coding
RNA AK045490 inhibits osteogenic differentiation by down-
regulating the expression of TCF1, LEF1 and Runx2. NELFB may
affect osteogenic differentiation and bone formation by interfering
with TCF1, thus providing a potential new drug target for
osteoporosis (Li et al., 2019). In addition, NELFB can inhibit the
transcription of estrogen receptor (ER) receptor gene, interfere with
its binding to estrogen, inhibit the expression of osteoprotegerin

(OPG), and promote the role of nuclear factor (NF)-κB ligand
(RANKL), thereby promoting osteoclast formation and bone
resorption activity, which is closely related to the pathogenesis of
osteoporosis (Cheng CH. et al., 2022).

SFSWAP is a hypothetical splicing factor that encodes a protein
containing an RS domain (SR-like). Proteins containing RS domains
regulate RNA processing, including splicing, transcript extension,
transcript stability, nuclear export, miRNA cleavage, and genomic
stability (Moayedi et al., 2014). By studying the mutation process of
the Notch signaling pathway, Moayedi et al. found that the SfSWAP
gene has a synergistic relationship with the sub-allele of the Notch
ligand Jagged1 (Jag1), which can play the same role in the same
genetic pathway and interfere with other genes of Notch signaling
(Moayedi et al., 2014). We speculate that SfSWAP is associated with
Notch signaling pathway and Jag1 gene.

JAG1 is a traditional osteoporosis gene, which was confirmed
using the cFDR method in a study by Hu et al. (2018). Through a
large genome-wide association study and a follow-up replication
study, Gong et al. identified JAG1 as a candidate gene for BMD
regulation in different races and as a potential key factor in the
pathogenesis of fractures (Kung et al., 2010). Researchers signaling
has been reported to strictly control mammalian cell fate
determination during embryogenesis and adulthood, which is

FIGURE 11
Network construction based on hub gene. (A) The veen plot of miRNA intersection predicted by miRwalk database and miRTarBase database. (B)
The veen plot of lncRNA intersection predicted by ENCORI database and lncBase database. (C)CeRNA network diagram. (D) TF-mRNA network diagram.
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essential for skeletal development and activity of skeletal cells
(Zanotti and Canalis, 2013). Disorders in Notch signaling are
related to human diseases that affect bones. Wang et al.
identified JAG1 and NOTCH1 as L-R genes with ossification-
related functions using single-cell RNA sequencing, which further
confirmed the inevitable relationship between the two and
osteoporosis (Wang S. et al., 2023). Through animal experiments,
Hui et al. found that the targeted inhibition of JAG1/
NOTCH1 signal transduction can promote poor osteogenic
differentiation of bone marrow mesenchymal stem cells (Han
et al., 2022). These studies reflect the inevitable connection
between these two factors and osteoporosis. In addition,
considering that both Notch pathway and Jagged1 gene are
associated with SfSWAP, this may indicate the potential role of
SFSWAP in the development of osteoporosis.

MAP3K3, also known as mitogen-activated protein kinase
kinase kinase kinase kinase kinase 3, is a member of the serine/
threonine protein kinase family that is generally expressed and acts
as an oncogene (Zhang Y. et al., 2019). Many studies have reported

that MAP3K3 is highly correlated with the progression and
treatment of nasopharyngeal carcinoma (Yin et al., 2019),
ovarian cancer (Zhang Y. et al., 2019), lung cancer (He et al.,
2015), and breast cancer (Fan et al., 2014). This is a universally
expressed cancer-related gene. Another study has reported that
MAP3K3 may be associated with cerebral cavernous
malformations. It are believed that the mutation of MAP3K3 can
define a subclass of cerebral cavernous malformations (Weng et al.,
2021). In addition, He et al. found that six genes, including
MAP3K3, may play an important role in the regulation of BMD
in women by analyzing the association between multiple gene
expression profiles and bone mineral density variation. This
study also provides new therapeutic targets for the treatment of
osteoporosis (He et al., 2016). However, there is no direct evidence of
a link between MAP3K3 and OP. Perhaps it can be used as an object
to study the molecular mechanism of OP in the future.

In addition, GSEA enrichment of the hub genes revealed that all
three genes were involved in the ribosome and cytoplasmic
ribosome pathways. Studies have found that endoplasmic

FIGURE 12
Drug prediction and gene expression levels. (A) Interaction network diagram of hub genes and potential drugs. (B) Hub genes in the data set
GSE56815 expression box plot.

FIGURE 13
RT-qPCR verification of hub genes. (A) NELFB. (B) SFSWAP. (C)MAP3K3. All results were expressed as mean ± standard deviation.(*p < 0.05; ns, not
significant).
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reticulum stress is significantly correlated with osteoblast and
osteoclast differentiation and osteoclast formation during
osteoporosis progression. During this process, the number of
ribosomes in the endoplasmic reticulum membrane decreases
significantly (Li et al., 2017). This indicates that ribosomes are
associated with the progression of osteoporosis. In addition, it
has been reported that the pathogenesis of osteoporosis in the
elderly may be related to ribosome-related genes and pathways
(Wang C. et al., 2023). These results suggest that ribosomes and
cytoplasmic ribosomes play key roles in osteoporosis.

The use of multiple drugs, including gonadotropin-releasing
hormone (GnRH) agonists and aromatase inhibitors, increases the
risk of fractures (Krishnan and Muthusami, 2017). Studies have
reported that long-term treatment with gonadotropin-releasing
hormone (GnRH) agonists induces competitive and reversible
GnRH receptor blockade, thereby inhibiting the release of
gonadotropins and sex hormones. A reduction in sex hormones
can lead to a variety of adverse reactions, including accelerated bone
loss, which positively promotes the occurrence of OP (Mohamad
et al., 2021). This suggests that GnRH Signaling may be associated
with osteoporosis. Natural Killer Cell Signaling has also been
speculated to be related to OP. Osteoporosis is the result of a
‘bone remodeling’ imbalance, and there is a close relationship
between the immune system, bone physiology, and pathology.
Srivastava et al. developed the term ‘immune osteoporosis’ to
emphasize the role of immune cells in osteoporosis pathology
(Srivastava et al., 2018). Saxena et al. have reported that natural
killer cells belonging to the lymphoid lineage have congenital
characteristics and play a role in osteoporosis. There are also
literatures that have concluded through bioinformatics methods
that there are significant differences in natural killer cells between
osteoporosis patients and non-OP patients (Saxena et al., 2021). This
is consistent with our findings. GPR48, a member of the G protein-
coupled receptor (GPCR) superfamily, has been reported to inhibit
osteoclast differentiation by antagonizing the interaction between
RANK and its ligand-RANKL, thereby interfering with the OP
process (Filipowska et al., 2022). In addition, GPR125 positively
regulates osteoclasts through RANKL-stimulated MAPK and AKT-
NF-κB signaling pathways to participate in the treatment of
osteoporosis (Tang et al., 2022). In conclusion, G-Protein
Coupled receptor Signaling is highly correlated with the
development, diagnosis, and treatment of OP. There are few
reports on the relationship between the other three inhibited
pathways and OP, and further research is required.

iDCs showed the highest correlation with key genes among the
four immune-related genes based on ssGSEA. Studies have shown
that dendritic cells (DCs) are effective antigen-presenting cells that
are widely distributed in the bone immune and/or mucosal
mesenchymal interface and can affect OP by activating RANKL-
nuclear factor kB receptor activator or RANK-osteoprotegerin (Liu
and Teng, 2023). In addition, we found a positive correlation
between NELFB and Tfh levels (p < 0.05). However, there are
few reports in this field, and further studies are required to
confirm this.

Both mRNA and miRNAs are indispensable components of
ceRNA regulatory networks. It is undeniable that the associated
miRNAs are equally important (Xu et al., 2016). Identifying the
relationship between miRNAs and diseases not only improves the

understanding of molecular mechanisms and disease pathogenesis,
but also facilitates clinical diagnosis and treatment (Zhang L. et al.,
2019). In our study, four miRNAs, namely hsa-miR-132-3p, hsa-
miR-182-5p, hsa-miR-212-3p, and hsa-miR-324-5p, were identified
in the circRNA-miRNA-TF mRNA regulatory network. To date, no
study has directly explored the roles of these four miRNAs in
osteoporosis. However, our data further support the possibility
that these four miRNAs are important regulators of osteoporosis
development. Nevertheless, this conjecture and its precise
mechanism need to be further studied.

A transcription factor (TF), also known as gene promoter, is a
protein that can bind to gene-specific sequences to mediate gene
transcription and expression (Sebastian and Contreras-Moreira,
2013). Various transcription factors play regulatory roles in OP
pathogenesis (Liu et al., 2019). In this study, TF-mRNA
relationship pairs, including SFSWAP and MAP3K3, were
obtained. The transcription factor TRIM22 is related to both
genes. Many studies have shown that the absence of TRIM22 can
affect the PI3K/Akt/mTOR pathway, and studies have reported
that the latter has a potential relationship with OP progression
(Li et al., 2018). In addition, Jiang et al. reported that the
expression of the CCAAT/enhancer-binding protein (CEBP)
homologous protein can promote BMP4-induced osteogenesis
of MSCs in vitro and in vivo. Transcription factors CEBPG
and CEBPZ may have the same effect (Jiang et al., 2018). The
TF-mRNA relationship that we studied may provide strong
evidence for verifying the potential relationship between hub
genes and OP.

CTD is a powerful public database and its significance lies in
increasing our understanding of how environmental exposure
affects human health (Davis et al., 2021). We used key genes
combined with the CTD database to predict potential drugs for
OP treatment. The results showed that vinclozolin and bisphenol
A were simultaneously associated with SFSWAP and MAP3K3,
and benzo (a) pyrene and Valproic Acid were associated with
both SFSWAP and NELFB. Studies have reported that some
drugs may lead to osteoporosis. For example, bisphenol A
inhibits osteoblast differentiation and bone formation by
activating RORα, leading to the formation of osteoporosis
(Maduranga et al., 2022). Previous studies have shown that
bisphenol A is associated with a high prevalence of lumbar
osteopenia and osteoporosis in postmenopausal women (Wang
N. et al., 2020). Valproic Acid activates the Notch signaling
pathway and has a positive effect on bone defect repair. A
previous study reported that the Notch signaling pathway is
closely related to osteoporosis (Tao et al., 2021). There is no
evidence in previous reports that other drugs, such as vinclozolin
and benzo (a) pyrene, play a role in OP; therefore, our study first
speculated that vinclozolin and benzo (a) pyrene may have a
therapeutic effect on OP, which needs to be verified by further
related experiments.

We note that two recent articles are similar to our research,
and we analyze the similarities and differences between them.
These articles are roughly the same as our research in the overall
research method, and the subjects of the study are osteoporosis.
But the biggest difference is the choice of genes. Song Hao
et al.selected immune-related genes. Because bone and
immune system have a common developmental niche, the

Frontiers in Physiology frontiersin.org15

Su et al. 10.3389/fphys.2023.1289976

https://www.frontiersin.org/journals/physiology
https://www.frontiersin.org
https://doi.org/10.3389/fphys.2023.1289976


development and remodeling of bone are affected by the immune
system. Immune cells can participate in the pathogenesis of OP
by producing pro-inflammatory mediators. Huang Xinzhou
directly selected differentially expressed genes in osteoporosis
as the research object. We selected mitophagy-related genes for
analysis. Secondly, both articles use machine learning methods to
identify genes. In the former study, LASSO and mSVM-RFE
methods are selected. The latter was analyzed by LASSO and the
Gaussian mixture model. In this study, three machine methods,
Lasso, SVM-RFE and Boruta, were selected for screening.
Therefore, although these two studies are similar to our
research, the final screening genes and results are not the
same. In summary, our study does not repeat the previous
steps, and there is a lot of innovation.

The data in this study were all from the selected data set
GSE56815, which was only produced by human peripheral blood
monocytes (PBMC). A number of studies have found that PBMC
are involved in the occurrence of OP (Liu et al., 2015; Xie et al.,
2023). It can produce a variety of cytokines and growth factors
that affect bone metabolism, such as macrophage colony
stimulating factor, interleukin 1, IL-6 and transforming
growth factor β (Fischer and Haffner-Luntzer, 2022; Xie et al.,
2023). In addition, monocytes are also precursors of osteoclasts
with bone resorption activity. Under certain conditions,
osteoclasts are produced by monocytes in vitro (Sprangers
et al., 2016). However, although monocytes are the premise of
osteoclasts, bone marrow can include osteoblasts, osteoclasts and
osteocytes. Studies have found that almost all pathways in PBMC
overlap with pathways in bone marrow tissue (Xie et al., 2023).
Therefore, peripheral blood mononuclear cells can only reflect
the situation in the bone marrow to a certain extent, and the study
of OP through PBMC is limited. This is one of the limitations of
this study. In addition, other limitations that should be
recognized include: the sample size of data from public
databases is relatively small, which can easily lead to selection
bias; the verification step only selected clinical trial verification,
and the corresponding database was not selected for further
verification, which reduced the credibility of the results.

Although several mitophagy-related genes were screened in
this study, and the reliability of our analysis was verified from
the side by biological analysis, several conclusions were also
speculated, including that SfSWAP affected the progress of OP
by association with Notch signaling pathway and Jag1 gene.
The 4 miRNAs may be important regulators in the
development of osteoporosis. Vinclozolin and Benzo (a)
pyrene may have therapeutic effects on OP. However, the
potential regulatory mechanism of mitophagy in the
progression of OP has not been fully elucidated, and the
conclusions we speculate have not been determined. In the
future, more in vivo and in vitro experiments and biological
analysis are needed to further verify.

5 Conclusion

In general, this study studied the association between
mitophagy-related genes and OP through a number of machine
learning and biological analysis, and screened three hub genes,

NELFB, SFSWAP and MAP3K3, which can be used as potential
biomarkers for the diagnosis, mechanism research and treatment of
osteoporosis. In addition, our study supports a more in-depth study
of the mechanism of action of these three mitophagy-related
genes in OP.
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