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Skeletal muscles underpin myriad human activities, maintaining an intricate
balance between protein synthesis and degradation crucial to muscle mass
preservation. Historically, disruptions in this balance—where degradation
overshadows synthesis—have marked the onset of muscle atrophy, a condition
diminishing life quality and, in grave instances, imperiling life itself. While multiple
protein degradation pathways exist—including the autophagy-lysosome,
calcium-dependent calpain, and cysteine aspartate protease systems—the
ubiquitin-proteasome pathway emerges as an especially cardinal avenue for
intracellular protein degradation, wielding pronounced influence over the
muscle atrophy trajectory. This paper ventures a panoramic view of
predominant muscle atrophy types, accentuating the ubiquitin-proteasome
pathway’s role therein. Furthermore, by drawing from recent scholarly
advancements, we draw associations between the ubiquitin-proteasome
pathway and specific pathological conditions linked to muscle atrophy. Our
exploration seeks to shed light on the ubiquitin-proteasome pathway’s
significance in skeletal muscle dynamics, aiming to pave the way for innovative
therapeutic strategies against muscle atrophy and affiliated muscle disorders.

KEYWORDS

skeletal muscle atrophy, ubiquitin-proteasom, muscle disuse, sarcopenia, cachexia

1 Introduction

Skeletal muscles, constituting over 40% of body weight in healthy adults, stand as the
body’s most prolific tissue. Beyond facilitating movement, these muscles function as pivotal
protein stores, orchestrating metabolic processes and ensuring glucose equilibrium.
Intrinsically designed to swiftly adjust to both external and internal shifts, skeletal
muscle’s adaptability becomes fundamental to tissue vitality and overall survival. Central
to this functionality is the preservation of muscle mass, critically underpinned by the
equilibrium between protein synthesis and degradation. Historically, factors like age,
physical activity, and prevailing diseases have swayed protein dynamics. When this
balance falters, with protein degradation gaining an upper hand, muscle atrophy,
characterized by amplified protein degradation and subdued synthesis, ensues. The
ubiquitin-proteasome pathway, a principal conduit for intracellular protein degradation,
emerges as a common player in diverse skeletal muscle atrophy types. This article embarks
on an exploration of the diverse manifestations of skeletal muscle atrophy. Grounded in this
overview, we endeavor to decode and forecast the research trajectories surrounding the
ubiquitin-proteasome pathway’s role in muscle atrophy processes, aiming to underpin future
interventions and treatments in the realm of muscle disorders.
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2 Protein synthesis and proteolysis in
skeletal muscle atrophy

Skeletal muscle atrophy is characterized by a disrupted balance
between protein synthesis and degradation, typically manifested by
suppressed protein synthesis and/or enhanced protein degradation
levels [1, 2]. Factors such as exercise and diseases commonly
influence protein synthesis and degradation. Resistance training or
anabolic hormonal stimuli can enhance protein synthesis, resulting in
an increase in skeletal muscle cell protein synthesis, leading to an
increase in muscle fiber size, a process known as skeletal muscle
hypertrophy [3]. Under catabolic conditions, protein degradation
surpasses synthesis, leading to muscle weakness and atrophy.
Conditions such as disuse, sarcopenia, cancer-associated cachexia,
malnutrition or starvation, and various other pathological states
present with skeletal muscle atrophy [4].

Insulin-like growth factor-1 (IGF-1) is a pivotal growth factor in
regulating the anabolic and catabolic pathways in skeletal muscles, with
the phosphoinositide 3-kinase (PI3K)-AKT pathway considered the
primary signaling protein cascade controlling muscle protein content
[5]. Within skeletal muscle, the IGF-1-mediated PI3K/AKT pathway
can enhance muscle protein synthesis by activating GSK3β and mTOR.
The IGF-1/PI3K/AKT pathway suppresses protein degradation,
especially of myofibrillar proteins, and inhibits the expression of the
key atrophy gene Atrogin-1, thus increasing protein synthesis [3, 5].
One of the downstream targets of the protein synthesis pathway PI3K/
AKT is the Forkhead boxO (FOXO) transcription factor class. FOXO is
a subfamily of the forkhead transcription factors. Mammalian cells
contain three members of this family: Foxo1 (FKHR), Foxo3
(FKHRL1), and FOXO4 (AFX) [6]. Various studies suggest that the
gene expression of Atrogin-1 and MuRF1 is differentially regulated by
FOXO and NF-κB pathways [4, 7-9]. The IGF-1/PI3K/AKT pathway,
by inhibiting FOXO, prevents the upregulation of Atrogin-1 and
suppresses muscle atrophy, while FOXO activation alone can induce
acute atrophy ofmyotubes andmaturemuscle fibers. FOXO3 activation
is both a sufficient and necessary condition for rapid atrophy. FOXO3 is
the primary transcription factor driving the expression of most atrophy
genes, promoting overall protein hydrolysis [6, 10]. Atrogin-1 and
MuRF1 are significantly upregulated by FOXO3 in all muscle atrophy
scenarios [11-13].

During the atrophy process, the degradation of myofibrillar and
soluble proteins accelerates, and protein synthesis also diminishes,
resulting in a rapid decline in muscle mass and weight, escalating
frailty and disability levels. This situation reduces the quality of life
and can even lead to increased mortality [14]. With the rise in
chronic disease patients and extended life expectancy, healthy aging
and independent living require maintaining muscle mass [15].
Therefore, there is now a more pressing need than ever to deeply
understand the molecular mechanisms governing muscle mass and
function.

3 Effect of ubiquitin-proteasome
pathway on skeletal muscle atrophy

Currently, four protein degradation pathways have been
identified in skeletal muscle atrophy: the Ubiquitin-Proteasome
Pathway (UPS), the autophagy-lysosome system, the

calcium-dependent calpain system, and the cysteine aspartate
protease system [16-20]. The UPS is responsible for the specific
degradation of most intracellular proteins and serves as an efficient
protein degradation route. In cells, the vast majority of proteins are
degraded through the ubiquitin-proteasome system, hence it plays a
crucial role in the skeletal muscle atrophy process [20].

The Ubiquitin-Proteasome Pathway consists of ubiquitin and a
series of related enzymes that degrade intracellular proteins. It is
mainly composed of three parts: ubiquitin, ubiquitin-related
enzymes, and the proteasome [21]. Ubiquitin (Ub) is present in
all eukaryotes (most eukaryotic cells) and is a small protein
composed of 76 amino acids with a molecular weight of
approximately 8,500. Its primary function is to tag proteins
requiring degradation, allowing them to be degraded by the 26S
proteasome [22]. Ubiquitin can be reused and ubiquitination can be
reversed by removing ubiquitin from target proteins through
deubiquitinating enzymes (DUBS) [23, 24]. Ubiquitin-related
enzymes include E1 ubiquitin-activating enzyme, E2 ubiquitin-
conjugating enzyme, E3 ubiquitin ligase, E4 ubiquitin chain
extension enzyme, and deubiquitinating enzymes. Ubiquitin
tagging of natively folded proteins is achieved through the first
three enzymes. E3 ubiquitin ligase, a specific substrate-binding
component, plays a pivotal role in the ubiquitin-mediated protein
degradation cascade, determining the specificity and rate of UPS.
The E3 ligase undergoes autoubiquitination, making it susceptible to
proteasomal degradation, necessitating continuous transcriptional
replenishment [3, 23]. The 26S proteasome, the primary protease of
the ubiquitin-proteasome system, degrades polyubiquitinated
proteins into peptides [25]. It consists of a 20S proteasome and
one or two 19S proteasomes. These regulatory factors, when
combined, enhance proteasome activity and allow the proteasome
to degrade substrate proteins marked by complex enzyme
machinery by attaching ubiquitin (Ub) molecule chains. The 20S
can only recognize and degrade unfolded/damaged/misfolded
proteins, while the 19S can recognize ubiquitinated proteins and
other potential substrates of the proteasome, unfolding target
proteins into protein chains to pass through the 20S core protein.
Subsequently, substrates are degraded into short peptides,
polyubiquitin chains are degraded into free monomers by
deubiquitinating enzymes (DUB), and the released ubiquitin can
be reused by the E1 enzyme [26]. Various types of E1, E2, and
E3 enzymes facilitate the ubiquitination of different types of target
proteins. The ubiquitination of proteins consists of four steps: 1)
E1 activates ATP-dependent ubiquitin. 2) Activated ubiquitin is
transferred to the E2 ubiquitin carrier protein. 3) E2 transfers the
activated ubiquitin portion to a protein substrate specifically bound
to E3. In the case of RING finger ligases, the transfer is direct, while
in the case of HECT domain ligases, ubiquitin first forms an
additional thioester intermediate on E3, then transferred from
E3 to the substrate. 4) The continuous ligation of the ubiquitin
portion produces polyubiquitin chains, which serve as a binding
signal for the downstream 26S proteasome, causing the target
substrate to degrade into peptides [21, 22, 27].

The ubiquitin-proteasome system involves nearly 750 E3 and
about 90 DUB genes playing regulatory roles in skeletal muscle
atrophy, referred to as atrogenes [28]. These atrogenes regulate
various processes controlling muscle mass (such as myogenesis,
protein synthesis, and degradation) and function in upstream
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regulatory pathways. These USP genes can be divided into three
functions: 1) myofibril protein degradation, 2) myogenesis
inhibition, and 3) autophagy regulation. During the
ubiquitination process, E3 ligases are considered key enzymes
catalyzing the activated form of Ub. Since their discovery in
2001, two muscle-specific E3 ubiquitin ligases, MuRF-1 and
Atrogin-1 (MAFbx), have been shown to be associated with the
regulation of skeletal muscle atrophy under various pathological and
physiological conditions [29]. In mammalian muscles, MuRF1 and
Atrogin-1 are responsible for the activation of protein degradation.
Atrogin-1 and MuRF1 control the ubiquitination and subsequent
forced degradation of regulatory proteins such as calcineurin
phosphatase and MyoD as well as structural proteins like myosin
and troponin I [3]. MuRF1 and Atrogin-1 are significantly
upregulated during various types of atrophy. Additionally,
inhibiting the expression of MuRF1 and Atrogin-1 can also
partially counteract skeletal muscle atrophy [29-31].

3.1 The role of the ubiquitin-proteasome
pathway in disuse muscle atrophy

The fundamental physiological principle of skeletal muscle is
“use it or lose it.” Skeletal muscles exhibit significant plasticity,
adapting according to functional demands. A reduction or cessation
in activity levels typically leads to muscle atrophy and metabolic
dysfunctions. The loss of skeletal muscle mass resulting from a
sudden decrease in muscle loading and inhibited neural activation is
often termed “disuse muscle atrophy.” Classic models of disuse
muscle atrophy include bed rest, joint immobilization, mechanical
ventilation, spaceflight, and denervation [32]. Any loss in skeletal
muscle mass fundamentally stems from a chronic imbalance
between muscle protein synthesis and degradation rates [33].
Muscle atrophy arises when the equilibrium between protein
synthesis and degradation is disrupted, usually manifested by
inhibited protein synthesis and elevated protein degradation,
regardless of the duration of disuse. The loss in strength is often
more than twice the muscle size reduction [34]. While there’s some
debate about which of these factors predominates, most literature
indicates that during the early stages of disuse (up to 10 days),
protein synthesis remains relatively constant, while protein
degradation increases considerably [35, 36]. That is, enhanced
protein degradation is the primary cause of atrophy. For
prolonged disuse (more than 10 days), the relationship with
protein degradation becomes unclear, with decreased protein
synthesis becoming the primary reason for muscle atrophy. The
ubiquitin-proteasome system is generally considered the most
crucial protein degradation system under disuse conditions.
Under disuse, the ubiquitin-proteasome system is primarily
regulated by the cellular energy sensor, AMP-activated protein
kinase (AMPK). The role of AMPK in protein regulation evolves
as the duration of disuse extends.

Studies have shown that when muscles are active, growth ceases;
during muscle activity, the anabolic signaling pathway and protein
synthesis are inhibited [37]. Eukaryotic elongation factor 2 (eEF2)
and AMPK can lead to the suppression of the mTORC1/p70S6K
signaling pathway and reduced mRNA translation efficiency [38,
39]. Upon cessation of activity, both anabolic and catabolic

metabolism are activated to maintain intracellular homeostasis.
From the first day of unloading, changes in adenosine
monophosphate (AMP) concentration, accumulation of
carbohydrates (CHO), and increased reactive oxygen species
(ROS) concentration trigger a signaling cascade, resulting in the
upregulation of E3 ubiquitin ligases. These factors culminate in
alterations in protein metabolism and myosin phenotypes. On the
first day of disuse, AMPK is dephosphorylated due to increased ATP
accumulation in antigravity muscles compared to pectoral muscles,
disrupting the ATP/AMP dynamic equilibrium [40-43].
Dephosphorylated AMPK might activate protein kinase D
(PKD), with activated PKD further increasing AMPK
dephosphorylation [41, 44]. Concurrently, CHO accumulation
may also contribute to AMPK dephosphorylation [45]. As
AMPK activity diminishes, cytoplasmic calcium concentration
drops, and dephosphorylated eEF2 stimulates polypeptide chain
elongation, activating the anabolic pathway, thus enhancing muscle
protein synthesis rate [38, 39, 46]. However, with prolonged muscle
disuse (e.g., 4–5 days), reduced mitochondrial oxidative
phosphorylation leads to decreased ATP production.
Subsequently, activated AMPK can phosphorylate six regulatory
sites on FOXO3, promoting its nuclear retention and activation [47,
48], leading to the upregulation of key atrophy genes Atrogin-1 and
MuRF1, resulting in muscle atrophy. For even more extended disuse
periods (>10 days), research suggests that muscle atrophy is
primarily due to decreased protein synthesis rates, without a
significant increase in protein degradation [33]. Additionally,
reactive oxygen species (ROS), crucial regulators in cellular
signaling pathways, coupled with compromised antioxidant
systems, are often regarded as major inducers affecting disuse
muscle atrophy protein synthesis and degradation [49-51].
Intracellular Ca2+ overload, by activating caspase-3-dependent
apoptosis, is also an essential signaling pathway in disuse muscle
atrophy [52].

Current research on countering disuse muscle atrophy suggests
that exercise is among the best strategies. Existing literature confirms
that different types of resistance exercises enhance muscle protein
synthesis by activating the PI3K-AKT-mTOR pathway, playing a
crucial role in disuse models [53-55]. However, exercise might not
be suitable for the elderly or those bedridden for extended periods,
and during spaceflight, exercise can only partially delay
microgravity-induced skeletal muscle atrophy [56]. Preliminary
studies in our laboratory suggest that Rhodiola rosea can
effectively counteract microgravity-induced muscle atrophy.
Traditional Chinese herbs like Astragalus, Schisandra, and
taurine have been proven in studies to reduce the expression of
ubiquitin ligases Atrogin-1 or MuRF1 and inhibit disuse muscle
atrophy [57-59], hinting at the potential of traditional medicine as a
promising approach against disuse muscle atrophy in the future.
Resveratrol, an antioxidant, has successfully counteracted disuse
atrophy in studies [60]. Additionally, while protein supplementation
combined with exercise yields optimal results, amino acid
supplementation alone can notably improve protein synthesis but
can only partially counteract muscle atrophy [61].

In conclusion, the primary cause of disuse muscle atrophy might
be the skeletal muscle’s adaptive self-regulation in response to low
energy consumption. Hence, mere energy supplementationmight be
the least effective remedy for disuse muscle atrophy; short-term
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disuse is mainly due to increased protein degradation, while long-
term disuse relies on reduced protein synthesis. The combination of
exercise and amino acid supplementation stands out as the best
countermeasure for disuse muscle atrophy, with various traditional
medicines and antioxidants demonstrating promising therapeutic
potentials.

3.2 The role of the ubiquitin-proteasome
pathway in sarcopenia

Sarcopenia is the age-related loss of skeletal muscle mass and
function [62]. As age advances, numerous changes occur in skeletal
muscle, such as the transformation of type II muscle fibers to type I,
infiltration of fat within and betweenmuscles, a decrease in the number
of type II fiber satellite cells, and alterations in the integrity of
mitochondria in muscle cells [63-67]. Aging disrupts the
homeostasis of skeletal muscle, leading to an imbalance in the
pathways of muscle protein synthesis and degradation, resulting in
comprehensive muscle atrophy [68]. Concurrently, elderly individuals
are prone to bedridden conditions due to illness, thus facing the dual
challenges of disuse muscle atrophy and sarcopenia. A study by Landi
and colleagues using the EWGSOP assessment method on individuals
over 80 years old revealed that muscle loss syndrome is prevalent
among the elderly (25%), and the risk of falls for these patients
during a 2-year follow-up period is more than three times that of
non-sarcopenic patients [69]. A study by Kitamura Akira indicated that
the prevalence of sarcopenia among Asian men is 11.5%, and 16.7%
among women [70]. Another study on sarcopenia suggested that the
mortality risk for men depends on muscle mass, while for women, the
risk is more influenced by low fat mass, muscle strength, and physical
performance [71]. Given the growing aging population, combatting
sarcopenia has become an urgent issue.

The 2018 International Clinical Practice Guidelines for Sarcopenia
(ICFSR) highlighted that physical activity combined with resistance
training can be the primary prescription for treating sarcopenia [72].
Steven’s research suggests that resistance and endurance exercises three
times a week can significantly benefit sarcopenia by improving muscle
mass, strength, and function. There are few exercise experiments designed
specifically for sarcopenia patients, and the methods, durations, and
intensities vary, but all have demonstrated the effectiveness of exercise
against sarcopenia [73-75]. Some evidence suggests that adequate intake
of protein, vitamin D, antioxidants, and long-chain polyunsaturated fatty
acids is beneficial for health [76], but their individual effects on sarcopenia
have not been reported.Nevertheless, protein and vitaminD supplements
remain essential components for sarcopenia treatment. Alfonso reported
that essential amino acid (EAA) leucine and β-hydroxy-β-methylbutyrate
(HMB) supplements have a role in improving muscle mass and function
[77]. Currently, no specific drugs have been approved for sarcopenia.
Aging is accompanied by a reduction in testosterone and growth
hormone secretion. A report by Manthos revealed that the combined
administration of testosterone and growthhormone ismore effective than
either hormone alone [78]. A recent study suggested that inhibiting
muscle growth inhibitors might be a new direction to combat
sarcopenia [79].

Early studies found that the ubiquitin levels in the extensor
digitorum longus (EDL) of elderly rats (24 months old) and the
quadriceps of humans aged 70–79 years were significantly increased

compared to normal levels [80]. Recently, some researchers detected
that the overall ubiquitin level in rat bicep femoris muscle increases
with age [81]. However, contradicting findings have emerged. A
study by Leslie showed no difference in the overall ubiquitin levels in
the bicep femoris muscles of 9-month-old and 29-month-old male
rats[̂82̂]. The role of Atrogin-1 and MuRF1 in sarcopenia research
has shown conflicting results. In Clavel’s report, the mRNA levels of
Atrogin-1 and MuRF1 in the tibialis anterior (TA) muscle of 24-
month-old rats significantly increased compared to 5-month-old
controls [83]. Other studies reported either unchanged or decreased
levels of Atrogin-1 and MuRF1 [82, 84]. Darren and colleagues
found that knocking out the MuRF1 gene in 24-month-old mice
resulted in a significant reduction in muscle weight, strength, and
cross-sectional area (CSA) compared to controls[85]. Some found
that the lifespan of Atrogin-1 knockout mice is shorter than normal
mice, and they experience higher muscle mass loss during aging
[86], suggesting that E3 ubiquitin ligases play a crucial role in
maintaining muscle mass during mouse aging.

In summary, in studies related to age-associated skeletal muscle
atrophy, both exercise and hormonal or drug therapies have
demonstrated effectiveness against atrophy. However, research on
their development and combat mechanisms, especially concerning
the ubiquitin pathway, is limited, and findings have been
inconsistent. This illustrates the complexity of the causes of
sarcopenia and suggests a need for further research to clarify the
mechanisms underlying the onset of sarcopenia.

3.3 The role of the ubiquitin-proteasome
pathway in cancer cachexia

Cancer Cachexia (CaCax), often simply referred to as cachexia,
is a severe complication of cancer. Approximately one-third of
cancer-related deaths can be attributed to cachexia [87]. It is
characterized by progressive atrophy of skeletal muscles and
adipose tissues, weight loss, decline in quality of life, and reduced
life expectancy [88, 89]. Studies have indicated that cachexia cannot
be prevented or alleviated by mere dietary changes or nutritional
augmentation [90]. Multiple experiments have demonstrated that
inhibiting skeletal muscle atrophy in cachexia patients can
significantly prolong their lifespan [91, 92]. Thus, the prevention
and treatment of cachexia might be an essential prerequisite for
treating cancer patients.

Distinct from other types of muscle atrophy, a hallmark of
cancer cachexia is pervasive systemic inflammation [93, 94].
Inflammatory cytokines regulate the intracellular signaling
pathways associated with muscle atrophy. In vitro studies suggest
that these cytokines can elevate the expression of muscle-specific
ubiquitin ligases, Atrogin-1 and MuRF1. Pro-inflammatory
cytokines partly induce muscle atrophy by modulating the AKT/
FOXO/UPS pathway. Phosphorylation of AKT inhibits protein
catabolism transcription factors. The full activation of AKT,
which promotes protein synthesis and induces FOXO1, initially
accelerates protein degradation and contributes to MuRF1 and
Atrogin-1 transcription during muscle atrophy. Pro-inflammatory
cytokine Interleukin-6 (IL-6) is considered a central mediator of
cancer cachexia, with IL-6 levels correlating positively with the
progression of cachexia [95]. Baltgalvis et al. found that in cancer
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mice, systemic concentrations of IL-6 increased with tumor
progression and correlated with elevated p-STAT-3 and Atrogin-
1 mRNA levels [96]. Research indicates that IL-6 binds with the IL-
6r-Gp130 receptor complex and activates the JAK tyrosine kinase.
Conformational changes in JAK proteins activate the STAT proteins
through phosphorylation [97]. STAT transcriptional activation
induces muscle atrophy through various mechanisms. STAT
stimulates the activity of CCAAT/enhancer-binding protein (C/
EBPδ), thereby enhancing the expression of myostatin, Atrogin-1,
MuRF1, and caspase-3 [98, 99]. Furthermore, in cachexia-induced
muscle atrophy, inflammation can suppress IGF-1, leading to
enhanced catabolism [100]. IGF-1 is a pivotal growth factor
regulating both the anabolic and catabolic pathways of skeletal
muscle. Inhibiting the IGF-1/PI3K/AKT pathway results in
protein degradation, particularly of myofibrillar proteins, and an
increased expression of Atrogin-1 [3, 5, 101]. Even though
inflammation has been proven to play a crucial role in the
development of cachexia, more insight is needed into how these
cytokines advance disease progression to either prevent or delay
cachexia’s onset.

In conclusion, substantial evidence from both animal and
human studies suggests that the UPS is activated during skeletal
muscle atrophy in cancer cachexia. Muscle-specific E3 ubiquitin
ligases MuRF1 and Atrogin-1 are notably upregulated during the
onset and progression of cancer cachexia, with inflammation playing
a pivotal role in the development of muscle atrophy in cachexia. Due
to the complex etiology of diseases like cancer, no effective measures
have been identified to counteract the muscle atrophy they induce.
Hence, there’s a pressing need for further research into the role of
UPS in skeletal muscle atrophy during cancer cachexia in humans.

4 Summary and outlook

Historically, the physiological challenge posed by skeletal muscle
atrophy has been of paramount importance. Its implications span
across the potential extension of human lifespan, advances in cancer
treatment, and even the bold aspirations of interstellar exploration.
The struggle against skeletal muscle atrophy has, and continues to
be, a pressing matter in the annals of scientific inquiry.

Contemporary research delineates that while every decrement in
skeletal muscle mass is invariably anchored in a persistent
disequilibrium between muscle protein synthesis and degradation,
muscle atrophy, dependent on its etiology, manifests distinct
pathophysiological characteristics. Disuse muscle atrophy, for
instance, can largely be ascribed to metabolic adaptations to
diminished energy demands, and interventions such as resistance
training coupled with amino acid supplementation emerge as
primary counteractive measures. In the realm of age-induced
muscle atrophy, modalities ranging from exercise regimens to
hormonal therapeutics have been spotlighted for their potential
therapeutic benefits. When navigating the complexities of cancer

cachexia, the omnipresent shadow of inflammation looms large,
underpinning muscle wasting processes. Despite cachexia’s
multifarious etiological landscape, therapeutically targeting
inflammation presents itself as an imperative.

Yet, within the corpus of extant literature, the exploration of the
ubiquitin-proteasome system (UPS) in skeletal muscle atrophy
remains, surprisingly, in its nascent stages. Elevated expressions
of diverse E3 ligases have been identified across various atrophic
conditions. Inhibition of the UPS pathway offers a tantalizing
prospect for mitigating muscle wasting. However, a mosaic of
experimental results has emerged, with some indicating that
certain E3 gene knockouts neither halt nor alleviate muscle
atrophy, and might even accentuate its progression. Thus, the
labyrinth of UPS in skeletal muscle atrophy’s mechanistic
underpinnings is yet to be fully navigated. Seminal studies,
notably those centered around MuRF1 and Atrogin-1, pave the
way, but the journey ahead mandates a deeper scholarly quest to
unveil precise mechanisms, thereby fortifying our theoretical
armamentarium for muscle atrophy’s prevention and treatment.
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