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Nitric oxide (NO), a free radical labile gas, is involved in the regulation of various
biological functions and physiological processes during animal reproduction.
Recently, increasing evidence suggests that the biological role and chemical
fate of NO is dependent on dynamic regulation of its biosynthetic enzyme,
three distinct nitric oxide synthase (NOS) according to their structure, location
and function. The impact of NOS isoforms on reproductive functions need to be
timely elucidated. Here, we focus on and the basic background and latest studies
on the development, structure, importance inhibitor, location pattern, complex
functions. Moreover, we summarize the exactlymechanismswhich involved some
cell signal pathways in the regulation of NOS with cellular and molecular level in
the animal reproduction. Therefore, this growing research area provides the new
insight into the important role of NOS male and female reproduction system. It
also provides the treatment evidence on targeting NOS of reproductive regulation
and diseases.
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Introduction

Over the last three decades, nitric oxide (NO), a small free-radical diatomic gas, has
been identified as an extraordinarily important bioregulator that mediates a variety of
biological functions in NO-synthesized cells and interactions with nearby cells and
molecules (Hattori and Tabata, 2006; Iova et al., 2023). NO is synthesized by the
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oxidation of L-arginine-citrulline, which is mediated by nitric
oxide synthase (NOS) and accompanied by NO production (Lind
et al., 2017; Hosseini et al., 2022). The biological role and
chemical fate of NO are affected by the subcellular localization
of three distinct NOSs: neuronal NOS (nNOS), endothelial NOS
(eNOS), and inducible NOS (iNOS) (Griffith and Stuehr, 1995;
Alderton et al., 2001). In animal reproduction, there are several
reports on the role of NOSs in terms of their abundance, location,
isoforms, and activity and participates in complex physiological
processes and pathological effects (Cinelli et al., 2020;
Rostamzadeh et al., 2020; Solanki et al., 2022). However, there
were lack of the exactly describe of NOS structure and summarize
of the possible mechanisms which involved in the regulation of
NOS in above publication. Therefore, we needed to pay more
attention to the structure in different isoforms NOS which suited
for the enzyme function and focus on more area abut male and
female animal reproduction in this review.

An overview of NOS from identified to now

Since the discovery of NO in 1980, NOS as the key synthase of
NO has been explored and continue to be studied (Furchgott and
Zawadzki, 1980; Palmer et al., 1987). In 1990, the NOSs were first
identified and described as a 2′,5′-adenosine diphosphate affinity
column eluted with nicotinamide adenine dinucleotide phosphate
(NADPH) from rat cerebella. Thereafter, three major isoforms were
molecularly cloned and purified over the next several years (Bredt
and Snyder, 1990; Bredt et al., 1991; Schmidt and Murad, 1991).

The eNOS (NOS-3) enzyme, which comprises 26 exons,
25 introns, and 21–22 kbp at 7q35–7q36 of chromosome 7 from
the vascular endothelium was identified in 1992 (Lamas et al., 1992;
Marsden et al., 1992; Alderton et al., 2001). The iNOS (NOS-2)
enzyme, which comprises 26 exons, 25 introns, and 37 kbp at
17cen–q11.2 of chromosome 17 was identified in human
hepatocytes in 1993 (Geller et al., 1993). Notably, NOS-knockout
mice were used in a functionality study in 1993 (Huang et al., 1993).
The nNOS (NOS-1) enzyme, which comprises 29 exons, 28 introns
and >200 kbp, at 12q24.2–12q24.3 of chromosome 12 was identified
in 1994 (Hall et al., 1994). Furthermore, NOS recognition sites for
NADPH, flavin-adenine dinucleotide (FAD), flavin
mononucleotide, and calmodulin (CaM) indicate that the
synthase is regulated by several factors (Bredt et al., 1991).

In animal reproduction, nitric oxide synthase activity in themale
reproductive tract was found to be regulated by androgens
(Chamness et al., 1995). The importance of the field of NO
research was recognized in 1998 by the award of the Nobel Prize
to Furchgott RF, Ignarro LJ and Murad F for their work that led to
the discovery of NO as a biological mediator in mammalian cells.
Considering the important roles of NO and NOS, inhibitors of the
three NOS isoforms have received increasing attention in various
fields of life sciences and have become a research hotspot.

In 2002, the first review on NOS inhibitors discussed iNOS
inhibitors with classified, comprehensive information, and rational
design (Vallance and Leiper., 2002). Moreover, exploration of novel
domain architecture and functions revealed that
tetrahydrobiopterin (BH4) serves as an electron donor in NOS
oxygen activation and allows NOS to generate haem-oxy species

that react with Arg or N-hydroxy-L-arginine (Stuehr et al., 2004;
Stuehr and Haque., 2019). In addition, the role of heat shock protein
90 (hsp90) during NOS modulation and the exact mechanism of its
regulation was discovered and applied in the development of several
NOS isoform-specific drug prototypes that blocked dimerization of
haem-containing NOS monomers in cells (Peng et al., 2012;
Woodward et al., 2010).

In recent years, nNOS and nNOS: CaM complexes have been
investigated using cryogenic electron microscopy (cryo-EM). These
investigations revealed the active-state architecture in which the
nNOS reductase domains were identified to be flexibly linked in
both CaM-free and CaM-bound states (Pospiech et al., 2019).
Furthermore, the structure of human sGCα1β1, a key primary
sensor of nitric oxide, revealed the transducer module bridges,
the nitric oxide sensor module, and the catalytic module in
different functional states using cryo-EM (Kang et al., 2019).
Notably, the epigenetic mechanism plays a much greater role in
nNOS than in other isoforms and induces the S-nitrosylation of
histone deacetylase 2 relayed by the transnitrosylation of
glyceraldehyde 3-phosphate dehydrogenase (Figure 1) (Yoon
et al., 2021). Meanwhile, the overviews for NOS in different
animal species was shown in Table 1.

The structure of NOSS

The NOS monomer consists of a heme domain, BH4 bound to
its N-terminus, and a reductase domain containing FAD and flavin-
adenine mononucleotide (FMN) (Lind et al., 2017; Hosseini et al.,
2022). The NOSs share homology in regions involved in cofactor
binding, such as NADPH, FAD, FMN, CaM, and adenine binding
sites. In addition, they have similar enzymatic mechanisms that
involve electron transfer for the oxidation of the terminal guanidino
nitrogen of L-arginine (Figure 2).

In mammals, NOSs can be classified into three different
subtypes according to their position: neurons (nNOS, also known
as NOS-1); immune system (iNOS or NOS-2); and endothelial cells
(eNOS or NOS-3), which are involved in nerve transmission,
smooth tissue relaxation, and immune responses, respectively. In
addition, variants of other canonical isoforms include mitochondrial
NOS (mtNOS) in the mitochondria (Carnicer et al., 2021; Carnicer
et al., 2013; Li et al., 2014), penile NOS (PnNOS), testis-specific NOS
(TnNOS), and invertebrateDrosophilaNOS (dNOS) (Hosseini et al.,
2022).

However, a highly conserved primary sequence (>90%) of the same
NOS isoform from different mammalian species has been reported. For
example, the structure of human eNOS highly resembles that of bovine
eNOS in the same space group with one dimer per asymmetric unit
with visible residues Lys67–Trp480 in the human eNOS structure, but
Lys69–Trp482 in the bovine eNOS (Li et al., 2014).

Neuronal nitric oxide synthase (NNOS)

The nNOS enzyme exists in two forms, i.e., soluble and particulate.
The enzyme was originally identified in neurons, where it is
concentrated at neuronal synapses. Human nNOS mainly contains
the following: a PDZ domain at the NH2 terminus; an oxygenase
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domain containing heme and BH4 interacting sites; a reductase domain
containing interacting sites for FMN, FAD, andNADPH; and the FMN
domain connects to the oxygenase domain via the CaM domain.
Furthermore, nNOS contains an auto-inhibition segment that
interrupts the FMN domain (Carnicer et al., 2021; Solanki et al.,
2022). In addition, there are five different isoforms of nNOS
proteins that are products of alternatively spliced NOS1 mRNAs:
nNOS-a, m, β, γ, and nNOS2 (Carnicer et al., 2013).
Phosphorylation of nNOS at Ser847 by CaMKII and 90-kDa
ribosomal S6 kinase 1 attenuates the NO synthesis activity of nNOS
in vitro and in cells (Araki et al., 2020).

Endothelial nitric oxide synthase (ENOS)

Compared with the nNOS and iNOS, eNOS proteins contain an
autoinhibition segment that interrupts the FMN domain, and there
is an oxygenase domain at the myristoylation, palmitoylation, and
zinc-ligating positions (Solanki et al., 2022). In different species, the
crystalline structure of human eNOS highly resembles that of bovine
eNOS, with one dimer per asymmetric unit in the same space group,

especially in the active sites of Asn366 and Val104 residues in
human eNOS and Asn368 and Val106 in bovine eNOS.
However, quite a few clusters of positive density in human eNOS
appeared next to acidic residues on the protein surface that provided
additional crystal contacts (Li et al., 2014; Li et al., 2014). CaM and
hsp90 bind to eNOS and regulate its activity. CaM is induced by an
increase in intracellular Ca2+ when phosphorylated at serine,
threonine, and tyrosine residues, which stimulates the flux of
electrons within the reductase domain and increase Ca2+

sensitivity of eNOS (Fleming and Busse, 2003). However,
hsp90 is an allosteric modulator that activates the enzyme and
promotes eNOS recoupling (Carnicer et al., 2013; Li et al., 2014; Man
et al., 2022).

Inducible nitric oxide synthase (INOS)

Notably, iNOS is the simplest mammalian NOS, consisting
solely of reductase, oxygenase, and CaM-binding domains that
lack the auto-inhibitory loop present in eNOS as well as the PDZ
domain of nNOS (Cinelli et al., 2020). Due to its short half-life, iNOS

FIGURE 1
Timeline of nitric oxide synthase (NOS) development.

FIGURE 2
Schematic and functional domain structure of human nitric oxide synthase (NOS). (A). Human neuronal NOS (nNOS; NOS-1). (B). Human inducible
NOS (Inos; NOS-2). (C). Human endothelial NOS (eNOS; NOS-3).
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is independent of calcium signaling and produces high
concentrations in short pulses (Gage and Thippeswamy, 2021).
In particular, the tight binding of CaM to iNOS allows it to be
activated at low physiological concentrations of calcium (40 nM in
iNOS vs. 400 nM in nNOS and eNOS). However, it is effectively
locked in an active position where calcium regulation is no longer
relevant (Cinelli et al., 2020; Venema et al., 1996). Furthermore, low
doses of the essential cofactor BH4 may affect iNOS activity and
dimerization and NO itself may negatively regulate iNOS activity
(Assreuy et al., 1993). NOS expression can be induced by cytokines,
environmental agents, and other diseases in almost all cell types,
especially in inflammatory or abnormal conditions such as testicular
injury or luteolysis (Cinelli et al., 2020; Fleming, 2010; Rostamzadeh
et al., 2020). With regards to its expression and localization, iNOS is
not constitutively expressed in cells, but its expression can be
induced by infection, bacterial lipopolysaccharide (LPS),
cytokines, and other agonists (Solanki et al., 2022).

Other identified NOS isoforms

Several studies have reported the variants of other canonical
isoforms in various tissues and organs. The mtNOS enzyme was first
found in the matrix of the mitochondrial inner membrane using
protein mass fingerprinting and anti-iNOS and anti-nNOS
antibodies (Ghafourifar and Richter, 1997). Furthermore, the
main biological function of mtNOS is to catalyze the production
of NO and inhibit the uptake of Ca2+ and increase mitochondrial
Ca2+ by negative feedback, which maintains the stability of
intracellular Ca2+. However, further studies are required to clarify
whether mtNOS is an independent gene entity or a product of three
conventional NOS-encoding genes (Lacza et al., 2009; Shvedova
et al., 2018).

The pnNOS enzyme is an nNOS variant expressed in the penis
and prostate and exists as alpha and beta spliceoforms that lack an
N-terminal PDZ domain. The alpha splice variant is active in NO
formation at nerve terminals, whereas the functional role of the beta
variant in vivo is unclear and may not be substantial (Musicki et al.,
2009; Musicki et al., 2011).

Testis-specific NOS (TnNOS) is a variant of the nNOS protein,
the mRNA expression of which is restricted in male gonadal tissues,
especially in Leydig cells. TnNOS is a 125-kd protein and possesses
NOS enzymatic activity comparable to that of the full-length nNOS
(160 kd). Moreover, this protein variant lacks the PDZ protein
interaction domain implicated in membrane localization. TnNOS
may have a unique biological role in the testes or play an important
role in the regulation of testosterone release and represents an
intriguing model (Hosseini et al., 2022; Wang et al., 2002).

NOS inhibitors

Given their importance, there is a need to understand the
structural and pharmacophoric requirements for the development
of potent and selective NOS inhibitors based on NOS structure and
function for potential clinical use. NOS inhibitors are broadly
classified into two categories depending on their source or origin,
that is, natural and synthetic (Table 2). Synthetic and highly selective

NOS inhibitors are classified into arginine and non-arginine analogs
which classified base on pharmacophore, functional groups, or
heterocyclic ring present (Król and Kepinska et al., 2020; Minhas
et al., 2020; Sakamuri et al., 2020). NOS inhibitors were first
designed in the 1980s and the 1990s and are based on
L-arginine, an enzyme substrate. This approach yielded strong
compounds, but unfortunately, with a poor level of selectivity
among the isoforms. By the end of the 1990s, the first crystal
structures of iNOS and eNOS showed a high degree of similarity,
particularly with respect to their active sites. One of the most critical
moments in the history of NOS inhibitors was the description of
highly selective iNOS inhibitors (Minhas et al., 2020; Oliveira et al.,
2013; Pradhan et al., 2018). However, many NOS inhibitors have
been produced:

Among the inhibitors of nNOS, one of the disubstituted indoline
derivatives from Neur Axon has a bulky cyclic amino-substituent-4-
(methylamino) cyclohexyl group at the 1-position of the indoline and
presents the best selectivity (IC50 = 0.37) (Annedi et al., 2012). The 3,4-
dihydroquinolin-2(1H)-one and 1,2,3,4-tetra-hydroquinolineinhibitors
are derivatives of quinoline and contain a 6-substituted thiophene
amidine group with excellent potency and selectivity for nNOS
(IC50 = 0.089) (Ramnauth et al., 2011; Yang et al., 2015).
Furthermore, pyrrolidine derivatives containing one or two 2-amino-
4-methylpyridine groups with a chiral pyrrolidine linker exhibited the
best activity and potency of 9.7 nM (Jing et al., 2014). Several a-amino
functionalized aminopyridine derivatives were designed to target to
BH4 against nNOS, exhibiting a Ki of 24 nM for nNOS, with 273 and
2822-fold selectivity against iNOS and eNOS, respectively (Kang et al.,
2014).

In recent years, accompanying structure-based virtual screening,
molecular docking, and molecular dynamics simulation drug design
techniques, benzo [d]thiazol-2-yl-methyl-4-(substituted)-piperazine-1-
carbothioamide was synthesized as a novel nNOS inhibitor, showing
the highest selectivity for nNOS (nNOS = 66.73 ± 1.51; eNOS = 28.70 ±
1.39; iNOS = 13.26 ± 1.01) in HEK 293 cells expressing NOS isoforms
compared with 7-nitroindazole (7-NI), a widely accepted nNOS
inhibitor in the animal models (Agrawal et al., 2022).
ZINC000013485422 showed good stability and selectivity for nNOS
through dual van der Waals interactions, multiple alkyl interactions,
and one pi-cation interaction formed with nNOS, which kept the
molecule firmly attached to the target (Boumezber and Yelekçi., 2023).

In inhibitors of iNOS, four farnesyl phenols (grifolinones A and
B, grifolin, and neogrifolin) extracted from an inedible mushroom,
Albatrellus caeruleoporus, exhibited inhibitory activity (IC50 = 23.4,
22.9, 29.0, and 23.3 µM, respectively) significantly higher than that
of L-NMA (IC50 88.4 µM) (Quang et al., 2006). Narchinol C, a
sesquiterpenoid, inhibited NO production (IC50 = 21.6 µM) in
RAW-264.7 cells, comparable to aminoguanidine (IC50 =
17.5 µM) (Guo et al., 2019). There are many synthetic molecules
for inhibiting iNOS directly (Cheshire et al., 2011; Cinelli et al.,
2020). Of all synthesized acetamidine derivatives, compounds with
an indole ring substituted with an acetamidino group through a
methylene linker maximally inhibited iNOS (IC50 = 53 nM) with
good selectivity in a recombinant enzyme assay of murine iNOS
(Fantacuzzi et al., 2016). Furthermore, nitroguanidinoalkylamide
coupled to variedly substituted phenyl ring of five-membered
heterocyclic compounds through pyrrolidine, yielded an
unsubstituted phenyl analog 122 (R = H) and was identified as
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TABLE 1 The overviews for NOS in different animal species.

Species Breed Isforms Cell or
tissue

Gene or protein
feature

Enzyme
charachteristics

Highlighting work References

Mouse No data iNOS macrophages 4.4 kb with 1,144 amino
acids (aa) and the
molecular mass 131KD

iNOS antigen only after
exposure to IFN-y and LPS

Abnormal estrous cyclicity
in disruption of eNOS and
iNOS

Xie et al. (1992);
Jablonka-Shariff
et al. (1999)

Balb/c
mouse

nNOS brain 4,388 bp and 1,429 aa,
97.9% and 93.6%
identical to the rat and
human

With recognition and
consensus binding sites

generated mice that lack the
nNOS gene but viable,
fertile were normal

Ogura et al. (1993);
Huang et al. (1993)

eNOS endothelial cells 4,140 bp and 1,202 aa Contained with recognition
and consensus binding sites

Endothelial nitric oxide
deficiency results in
abnormal placental
metabolism

Lamas et al. (1992);
George et al. (2022)

Rat No data iNOS vascular
smooth muscle
cells

4 kb with 1,147 aa and
the molecular mass
131KD

Contained NADPH, FMN,
FAD binding regions

The different NOS were
localization in the rat ovary
during follicular
development, ovulation and
luteal formation

Nunokawa et al.
(1993); Zackrisson
et al. (1996)

Wistar rats nNOS small intestine
enteric nerve
terminals

three different 5′-end
splice variants of nNOS,
88% homology with
exon 1 subtype from the
mouse brain

Activity increased under
NADPH (1 mM) and
calmodulin (1 mM)

Invoved in
neurotransmitters
glutamate and nitric oxide
during GnRH and LH
release

Tatoyan and Giulivi
(1998); Dhandapani
and Brann (2000)

Wistar rats eNOS Kidney
endothelial cells

3,953 bp and 1,202 aa No data Involved in protective
effects of L-carnitine on
erectile function and
reproductive function in
diabetes rats

Mohaupt et al.
(1994); Li et al.
(2021)

Wistar rats mtNOS liver
mitochondria

120-130kD, highly
unstable, dimeric under
native conditions

activity increased 30%–40%
associated with exogenous
THB4,Ca2+, and calmodulin

No data Tatoyan and Giulivi
(1998)

Guinea pig Hartley
guinea-pig

iNOS lung 3,447 bp, a protein of
1,149 residues with
molecular mass of
131 kDa

concentration dependent
manner with 100 nM
calmodulin

iNOS to block implantation
through action on the
endometrium

Shirato et al. (1998),
Shi et al. (2003)

Bovine No data iNOS Alveolar
macrophages

3,471 bp transcript,
translated a protein of
1,156 aa

No data Addition of NO can be
avoided the free radical-
induced damage

Widdison et al.
(2007), Upadhyay
et al. (2022)

No data nNOS endothelial cells 4 kb with 1,232 aa Activity increased under
NADPH and calmodulin

Involved in the effect of
endothelins on bovine
oviductal and smooth
muscle motility

Lamas et al. (1992);
Kobayashi et al.
(2016)

No data eNOS Bovine aortic
endothelial cells

3,650 bp, 58% and 51%
identical to the rat and
mouse

Calcium stimulated
production of nitrite was
enhanced under eNOS

Regulating final follicle
maturation, ovulation and
early luteal angiogenesis

Nishida et al. (1992),
Berisha et al. (2020)

Pig Yorkshire
pigs

iNOS Alveolar
macrophages

3,948 bp, 1,064 aa,90.2%
amino acid sequence
identity with human
and murine iNOS

No data melatonin and silymarin
can decrease ROS and NO
production in frozen-
thawed sperm via iNOS

Pampusch et al.
(1998); Lee and Lee
(2023)

No data eNOS Pulmonary
artery
endothelial cells

representing a protein of
1,205 aa with a
molecular mass of
134 kDa

Level of nitrite not increased
after infection with PRSS
virus

produced pigs carrying an
eNOS gene driven by Tie-2
promoter and tagged with
V5 His tag

Zhang et al. (1997);
Hao et al. (2006)

No data nNOS Kidneys of
preweanling
piglets

1,468 aa and 160kD,
76% homology human
nNOS

No data Involved in the effect of E2
levels on the cholinergic
innervation pattern of
ovaries during pathological
states

Solhaug et al.
(2000); Jana et al.
(2018)

(Continued on following page)
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the most active iNOS inhibitor (IC50 = 2.36 µM) in an isolated
enzyme assay (Liu et al., 2008).

In addition, 1-carbothioamide analog of hexahy dropyridazine-1-
carboximidamides, a six-membered heterocyclic compound,
completely inhibited the production of NO (IC50 = 0.6 mM) in
RIN-5H cells (Minhas et al., 2020; Morgenstern et al., 2004). Several
oxadiazole derivatives, such as 3-pyridyl, are potent iNOS inhibitors
(IC50 = 0.05 µM) that bind iNOS through its pyridyl nitrogen projecting
toward Gly391, through hydrogen bonding with Gln190, Gly372,
Gly391, and Gly406 as well as four cation-π interactions (Sun et al.,
2011). Furthermore, steroidal compounds (derivatives of glycyrrhetinic
acid) and chalcone derivatives (2, 4, 6-trimethoxyacetophenone) have
been evaluate for their anti-inflammatory activity in LPS-induced
RAW-264.7 macrophage cells with inhibition at 50 μM and
27.60 μM respectively (Chiaradia et al., 2008; You et al., 2013). In
general, when people develop potent inhibitors of nNOS or iNOS, the
high selectivity of these inhibitors for nNOS and iNOS over eNOS is
critically important. Furthermore, because eNOS is found
predominantly in the vascular endothelium and is fundamental for
healthy cardiovascular function, the inhibition of eNOS is very likely to
produce unwanted side effects. Thus, no patents have been reported for
eNOS inhibitors (Pradhan et al., 2018; Yang et al., 2015).

Location of NOS in animal reproductive
system

Location of NOS in male animal
reproductive system

Considering the abundant role of NOS, different isoforms are found
in the epithelium, muscle, endothelium, and neurons of the male animal

reproductive system. All three NOS isoforms are found in the testes and
display distinctive yet overlapping cellular distribution patterns.
Specifically, nNOS, iNOS, and eNOS are found in both Sertoli and
germ cells in the seminiferous epithelium, in myoid cells, in endothelial
cells, in myofibroblasts, and in spermatozoa and Leydig cells (Fujisawa
et al., 2000; Lue et al., 2003; Zini et al., 1999). Remarkably, a testis-specific,
truncated form of nNOS (TnNOS) has recently been shown to localize
exclusively in Leydig cells but not in Sertoli and germ cells (Davidoff
et al., 1997; Lissbrant et al., 1997; Tatsumi et al., 1997), indicating a
potential role in steroidogenesis. Furthermore, it is not apparent whether
these NOSs are stage-specific proteins in the seminiferous epithelium
throughout the epithelial cycle (Lee and Cheng, 2004).

Location of NOS in female animal
reproductive system

In the female animal reproductive system, the expression and
activity of NOS greatly depends on the cell type, ovarian vascular
system, resident or infiltrating macrophages, and animal species.
Moreover, it varies throughout different ovarian processes (Budani
and Tiboni, 2021; Iova et al., 2023; Rosselli et al., 1998).

In the ovary, eNOS was expressed in granulosaluteal cells, rat mural
granulosa cells (Jablonka-Shariff and Olson., 1997), blood vessels (Van
Voorhis et al., 1995), rat stroma, thecal and luteal cells (Zackrisson et al.,
1996), cattle granulosa cells (Pires et al., 2009), the theca, granulosa and
cumulus cells of buffalo, ovarian preantral follicles (PFs), antral follicles
(AFs) and ovulatory follicles (OFs) (Dubey et al., 2012), the endothelium,
chorioallantoic membrane, luminal and glandular epithelium of ovine
placental and uterine tissues (Zheng et al., 2000), the equine endometrium
(Roberto da Costa et al., 2007), and pig granulosa cells (Kim et al., 2005;
Ponderato et al., 2000). In addition, iNOS is expressed in rat granulosa cells

TABLE 1 (Continued) The overviews for NOS in different animal species.

Species Breed Isforms Cell or
tissue

Gene or protein
feature

Enzyme
charachteristics

Highlighting work References

Sheep No data iNOS white blood
cells

4,192 bp and 1,154 aa,
88.8% homologous to
the human protein

binding sites for calmodulin,
FAD, FMN, NADPH-ribose,
and NADPH-adenine

Involved in the arginine
supplementation may
accelerate ovulatory
processes and the estrous
rate

Mershon John et al.
(2002); Guo et al.
(2017)

No data nNOS cerebella and
cortex

150 kDa which
correlates well with the
other purified nNOS

Km (L-arginine) = 2.8 μM,
Ec50 (CaCl2) = 280 nM

nNOS Involved in the
release pattern of GnRH by
the hypothalamus includes
both pulses and surges

Crack et al. (1998);
Virginia et al. (2021)

No data eNOS Coronary artery
tissues

4,097 bp and 1,205 aa,
strong homology with
the human eNOS

contains the cofactor binding
sites at the amino
terminal end

accelerate ovulatory
processes and the estrous
rate after arginine
supplementation

Mershon John et al.
(2002); Guo et al.
(2017)

Poultry Pekin
ducks

iNOS leukocytes from
spleens

3,447 bp, encoded a
protein of 1,148 aa with
molecular weight of
130 kDa

iNOS levels can be elevated
addition of LPS or IFN-γ in
splenocyte cell culture

As an inflammatory factor
during cage stress

Simon et al. (2011);
Zhang et al. (2019)

chickens iNOS chicken
macrophage
cell line, HD11

4.5kb and 1,136 amino
acid, 66.6%, 70.4%, with
mouse and human

pyrrolidine dithiocarbamate
blocked substantially the
accumulation of iNOS mRNA
in chicken macrophage cells

Se effectively alleviated
HgCl2-induced testes injury
by p38 MAPK/ATF2/iNOS
signaling pathway in
chicken

Lin et al. (1996);
Chen et al. (2022)
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from primary, secondary, and small antral follicles (Van Voorhis et al.,
1995); rat stroma, thecal, and luteal cells; immature and in vitromatured
oocytes of cattle (Pires et al., 2009; Zackrisson et al., 1996; Zamberlamet al.,
2011); and granulosa and theca cells in buffalo (Dubey et al., 2012).

In addition, in the placenta, iNOS is expressed in macrophages, the
immune system, and other cells, but is also found in endothelial cells
and trophoblast cells; however, this isoform has not been detected in
porcine granulosa cells (Jablonka-Shariff and Olson., 1997; Ponderato
et al., 2000). In early embryo development, NO production has also
been demonstrated in bovine embryonic stem cells of the blastocyst cell
mass and in the placenta, cytotrophoblasts, and syncytium in the
placental vascular wall in the second trimester of pregnancy (Basini
et al., 1998; Basini and Grasselli, 2000).

Although nNOS has the same location pattern as iNOS and eNOS,
nNOS is expressed in porcine granulosa cells in the theca, granulosa,
and cumulus cells of PFs, AFs, and OFs, and appears to be involved in

oocyte maturation or activation with weak immunohistochemistry
(Dubey et al., 2012; Kim et al., 2005; Nakamura et al., 2002; Petr
et al., 2006). However, on postnatal days 1, 5, 7, 10, and 19 in rats, all
three isoforms of NOS were mainly localized to the oocytes and were
expressed as a gradual increase in granulosa cells and theca cells within
the growing follicle. The ovarian total NOS activity and NO levels
increased on postnatal days 7 and 10 compared with other days (Zhang
et al., 2011). In fetal and neonatal pigs, all three isoforms of NOS are
mainly localized in the oocyte and show a gradual increase in granulosa
and theca cells with growing follicles (Ding et al., 2012).

The role of NOS in animal reproduction

To date, several reports on the role of NOS in animal reproduction
have been published owing to its abundant location, isoforms, and

TABLE 2 The different inhibitors of nNOS and iNOS.

NOS
isforms

Inhibitor name Chemical constitution IC 50 or Ki Application References

nNOS disubstituted indoline derivatives disubstituted indoline derivatives IC 50 = 0.37 µM In neuronal cells and many kinds of
neurodegenerative disorders

Annedi et al. (2012)

3,4-dihydroquinolin-2(1H)-one
and 1,2,3,4-tetra-hydroquinoline

derivatives of quinoline IC 50 = 0.089 µM Reverse thermal hyperalgesia and
reduce tactile hyperesthesia in rats
with a dose of 30 mg/kg

Ramnauth et al.
(2011); Yang et al.

(2015)

2-amino-4-methylpyridine groups
with a chiral pyrrolidine linker

Pyrrolidine derivatives Ki = 9.7 nM against three different isoforms of
NOS, including rat nNOS, bovine
eNOS, andmurine macrophage iNOS

Jing et al. (2014)

a-amino Aminopyridine derivatives Ki = 24 nM with 273- and 2822-fold selectivity
against iNOS and eNOS

Kang et al. (2014)

benzo [d]thiazol-2-yl-methyl-4-
(substituted)-piperazine-1-
carbothioamide

benzothiazole-piperazine
carbothioamide

Inhibition activity
(nNOS =
66.73 ± 1.51)

6-OHDA-induced unilaterally
lesioned rats showed the
improvement in motor and non-
motor functions with significant
nNOS binding affinity

Agrawal et al.
(2022)

ZINC000013485422 4,6-bis (3- methylbut-2-en-1-
yl) −8,17-dioxatetracyclo [8.7.0.0
2, 7 .011, 16 ]heptadeca-
2,4,6,11,13,15-hexaene-5,14-diol

Ki = 114.06 nM No data Boumezber and
Yelekci (2023)

iNOS four farnesyl phenols (grifolinones) Polyphenolic constituents IC 50 = 23.4, 22.9,
29.0, and 23.3µM,
respectively

Inhibit NO production in RAW-
264.7 cells

Quang et al. (2006)

narchinol C sesquiterpenoids IC 50 = 21.6 µM Guo et al. (2019)

L-NAME arginine analogs IC 50 = 20 μM,
Ki = 3.9 µM

Inhibit NO production in many cell Cheshire et al.
(2011); Cinelli et al.

(2020)

acetamidine derivatives acetamidine derivatives IC 50 = 53 µM Inhibit NO production in glioma cells Fantacuzzi et al.
(2016)

Nitroguanidinoalkylamide of five-
membered heterocyclic compounds

five-membered heterocyclic
compounds

IC 50 = 2.36 µM Inhibitory effects of test samples on
the NO production in LPS-activated
mouse macrophages

Liu et al. (2008)

Carbothioamide analog of hexahy
dropyridazine 1-carboximidamides

Six-membered heterocyclic
compounds

IC 50 = 0.6 mM Inhibit NO production in RIN-5H
cells

Minhas et al. (2020);
Morgenstern et al.

(2004)

derivatives of glycyrrhetinic acid Steroidal compounds IC 50 = 50 µM evaluated the anti-inflammatory
activity in LPS-induced RAW-
264.7 macrophage cells

Chiaradia et al.
(2008); You et al.

(2013)
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activity. During animal reproduction, NOS exerts regulatory effects on
the central nervous system, including the pituitary gland. Inmales, NOS
is involved in spermatogenesis, the testis, the blood-testis barrier (BTB),
and steroidogenesis. In females, NOS also participates in complex
physiological processes such as follicle development, steroidogenesis,
and ovulation (Figure 3). Interestingly, the exact physiological and
pathological effects of NOS on male and female reproductive functions
are based on its isoforms.

The role of NOS in male animal
reproduction

The role of NOS in spermatogenesis and the
testis

In the testis, the NO–NOS system is upregulated under
different stimuli, such as testosterone withdrawal, aging, and
heat, which generate testicular reactive oxygen species (Turner
and Lysiak, 2008). For example, in testicular torsion model, the
expression of iNOS and NO were increased but iNOS inhibitors
can protect against testicular injury (Shiraishi et al., 2001). NOS
is a vital factor in testicular damage induced by different
conditions. For example, increased eNOS and iNOS
expression and decreased nNOS expression were detected in a
testicular damage-induced diabetic group; however, leptin

partially prevented testicular damage by ameliorating
histopathological changes by suppressing iNOS expression
(Kapucu and Akgun-Dar, 2021). Moreover, Selenium (Se)
effectively alleviates HgCl2-induced testicular injury by
improving the antioxidant capacity to reduce inflammation
mediated by the p38 mitogen-activated protein kinase
(MAPK)/activating transcription factor 2 (ATF2)/iNOS
signaling pathway in chickens by decreasing iNOS protein
expression (Chen et al., 2022). The iNOS protein also
increased testicular ischemia/reperfusion (I/R) in injured rats
and induced spermatogenetic activity, seminiferous tubular
diameter, and Leydig cell mass (Sangodele et al., 2021).
Therefore, iNOS is involved in testicular damage via
decreased tissue antioxidative defense capacity and the
regulation of testicular hemodynamics (El-Shalofy et al., 2023).

NOSs have also been shown to regulate germ cell development
in the testis (Zini et al., 1996; O’Bryan et al., 1998; Zini et al., 1998;
Taneli et al., 2005; Dutta et al., 2022). Remarkably, the first
implication of NO in sperm motility stems from localization
studies, which demonstrated the presence of all three types of
NOS in spermatozoa (Herrero et al., 1996; Revelli et al., 1999;
Zini et al., 1998). The iNOS protein may play a role in regulation
of germ cell apoptosis in testis by treatment of other factors such as
the environment (heat), reproductive hormones (testosterone,
follicle-stimulating hormone) or compounds (astragalin). To
prevent spermatogenic dysfunction it downregulates the protein

FIGURE 3
Physiological and pathological effects of nitric oxide synthase (NOS) on male and female animal reproductive functions.
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expressions of tumor necrosis factor (TNF)-α and iNOS but not
eNOS in testes which increases antioxidant enzyme activities and
inhibits inflammation (Guo et al., 2009; Han et al., 2019; Olfati and
Moghaddam, 2018).

The eNOS enzyme plays an important role in spermatogenesis.
When eNOS was overexpressed in transgenic mice, the numbers of
spermatocytes and spermatids in eNOS-Tg cryptorchid testes
significantly decreased compared with those in wild-type
cryptorchid testes from day 3, This suggested accelerated
testicular germ cell apoptosis induced by experimental
cryptorchidism (Ishikawa et al., 2005). In addition, treatment of
spermatozoa with NOS inhibitors leads to reduced motility, and
the T allele, which encodes aspartic acid, of the eNOS (Glu298Asp)
248 single nucleotide polymorphism (SNP) may be associated with
low sperm motility via activation of the cyclic guanosine
monophosphate (GMP)/protein kinase G signaling pathway
(Buldreghini et al., 2010; Lewis et al., 1996; Miraglia et al.,
2011). Abdelzaher’s research shows that an increase in eNOS
activity may help nicorandil to protect against testicular
toxicity, such as reduction in the number of germinal
epithelium, sloughed germinal cells with pyknotic nuclei, and
arrest of spermatogenesis induced by methotrexate (MTX).
MTX can also reduce the immune expression of eNOS in
testicular tissue (Abdelzaher et al., 2020). Therefore, eNOS is a

cytoplasmic protein that supports cells and interstitial cells,
spermatogenesis, the vas deferens, and the epididymal
epithelium, suggesting a crucial role of NO/NOS in the normal
functioning of spermatozoa.

In addition, eNOS and iNOS reactions were considerably
higher in the spermatozoa-present group than in the
spermatozoa-absent group, but the nNOS reaction was only
prominent in the Leydig cells in both groups. These results
suggested that eNOS, iNOS, and mast cells play important
roles in spermatogenesis (Hürda et al., 2021). However, NOS
systems are upregulated in models of testicular damage and in
human testes with maturation arrest and may contribute to the
impairment of spermatogenesis by preventing adequate
functioning of the spermatogonia population via impaired
spermatogonia cell cycle, thereby inducing GC-1 arrest in the
S phase (Ferreiro, 2019). Furthermore, supplementation with
arginine significantly increased serum NO levels in 150-day-
old boars, along with a significant increase in total nitric oxide
synthase activity, demonstrating that additional arginine
supplementation in the diet can increase serum NO levels
(Wei et al., 2022). NOS systems are primarily based on iNOS
and eNOS, which are involved in spermatogenesis and testicular
development. However, the exact role of nNOS requires further
investigation.

FIGURE 4
Nitric oxide synthase (NOS) pathway involved in animal reproduction.
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The role of NOS in tight junction dynamics
and adherens junctions

NOS is involved in the connections between Sertoli and germ
cells in the BTB (Rostamzadeh et al., 2020). Sertoli cell tight
junctions (TJs) are located near the basal lamina of the testes and
are closest to the basement membrane. NO/NOS signaling pathways
that are known to regulate Sertoli cell TJ dynamics are as follows:
First, NO stimulates soluble guanylyl cyclase (sGC) to synthesize
cyclic (cGMP), leading to TJ disruption and activation of protein
kinase G (PKG). In turn, this can affect TJ dynamics via its effects on
occludin, reducing the level of occludin at the site of Sertoli cell TJ,
thereby opening up the TJ barrier (Lee and Cheng, 2003; Lee and
Cheng, 2004; Lee and Cheng, 2008). Furthermore, it is apparent that
the effects of NOS on the permeability barrier are based on testicular
conditions (Kubes, 1995; Michel and Curry, 1999). For example,
NOS, especially iNOS, is upregulated in the testes of rats with
autoimmune orchitis, leading to testicular impairment (Ni et al.,
2019; Jarazo Dietrich et al., 2012).

In the testis, adhesion between Sertoli cells and spermatids is
conferred by cell-cell actin-based adherens junctions (AJs) (Cheng
and Mruk., 1985; Russell and Peterson., 1985). AJs are found at the
Sertoli-Sertoli and Sertoli-germ cell interfaces in the epithelium from
the basal to the adluminal compartment, depending on ectoplasmic
specialization in the testis, in an in vivo model in which adult rats
were treated with adjudin, a molecule that induces adherens
junction disruption.

Disruption of AJ is also associated with transient iNOS
induction. Immunohistochemistry showed that iNOS
accumulated intensely in the Sertoli and germ cells in the
epithelium during adjudin-induced germ cell loss, with
concomitant accumulation of intracellular cGMP and induction
of PRKG, but not cyclic adenosine monophosphate (cAMP) or
protein kinase A (PKA). Therefore, NOS/NO regulates Sertoli germ
cell AJ dynamics via the cGMP/PRKG pathway (Lee et al., 2005). Lee
et al. further found that eNOS and iNOS may depend on the
downstream sGC/cGMP/protein kinase G signaling pathway to
regulate the structural components of tight junctions and
adhesive junctions of the testis, leading to spermatogenic
epithelium (Wang et al., 2020).

The role of NOS in male steroidogenesis

Male steroidogenesis is based on three levels of the
hypothalamic-pituitary-gonadal axis and steroidogenic cells
within the adrenal cortex and gonads via the steroidogenic
pathway. Abundant evidence suggests that NOS plays an
important role in the control of reproduction because of its
ability to regulate gonadotropin-releasing hormone (GnRH)
secretion from the hypothalamus and pituitary gonadotropes
(Mondillo ett al., 2009). Briefly, NO produced by NOS can
activate cGMP-dependent protein kinase 1(PRKG1) and the
phosphorylation of astrocytes to activate soluble cGMP, thereby
promoting steroid production in Leydig cells. In 2002, Drewett et al.
showed that NO can inhibit cytochrome P450scc (CYP11A1) at
higher doses, thus inhibiting steroid production in Leydig cells (Wei
et al., 2002). Testicular cells are well-equipped with a NO-cGMP

pathway, which may significantly participate in the regulation of
testicular functions, such as spermatogenesis and steroidogenesis, by
reversibly binding to the heme group of cytochrome P450-
dependent enzymes of the steroidogenic pathway (Davidoff et al.,
1997; Del Punta et al., 1996; Pomerantz and Pitelka, 1998). NOS is
involved in testicular testosterone synthesis and causes a significant
decrease in androgen production. The addition of D-Asp to
incubated testicular homogenates significantly increased the
testosterone concentration, whereas the addition of L-Arg
decreased hormone production, suggesting an autocrine action of
NO by NOS on the steroidogenic activity of Leydig cells (Lamanna
et al., 2007). Furthermore, in the aging testes, treatment with either
SNP or L-NAME on testicular steroidogenic factor (3-beta HSD/
StAR) showed that increased NO caused decreased steroidogenesis,
which is related to iNOS (Banerjee et al., 2012). Recently,
intracellular mechanisms underlying the negative modulation of
Leydig cell steroidogenesis by histamine (HA) have been elucidated.
The anti-steroidogenic action of HA was blocked by the addition of
the phospholipase C inhibitor U73122. However, the NOS inhibitor
L-NAME markedly attenuated the effect of the amine on steroid
synthesis. In another study, tamoxifen, as an estradiol level
modulator, induced an increase in circulating steroids and
testicular testosterone levels in mice after in vivo treatment,
which may be responsible for the increased expression of
testicular iNOS and consequently increased production of NO
(Verma and Krishna, 2017). These findings suggest that NOS
activation is the main intracellular mechanism by which HA
exerts its antisteroidogenic effects.

The role of NOS in female animal
reproduction

The role of NOS in follicle development

Follicle development is a dynamic process that is regulated by
many factors, and the ovarian antral follicle count (AFC) is a marker
of the ovarian stimulatory response to superovulation protocols in
female animals (Alward et al., 2023). During follicular development,
NO play the different roles in every stage from egg nest, different
levels follicle and follicular atresia which based on
microenvironment and the cross talk between granulosa cell,
follicle and ovary via an intraovarian NO-generating system
(Basini and Grasselli, 2015; Abdelnaby and Abo El-Maaty, 2021;
Budani and Tiboni, 2021). In generally, the dual role of NO in
regulating follicular development is still controversial especially
follicular atresia depending mostly on its concentration and
factors in reproductive system such as hormone, cytokines and
others (Li et al., 2020; Cao et al., 2021; Dutta and Sengupta, 2022).
Although discussed in many studies, it aslo may puzzled when
defined the exactly role. Therefore, NOS may be the one of serious
factor.

In the hypothalamus, nNOS potentiates adult female fertility in
rodents by stimulating GnRH secretion, which, in turn, promotes
luteinizing hormone release and affects follicle development by
increasing nNOS activity and physiological NO during nNOS
serine1412 (S1412) phosphorylation (Guerra et al., 2020).
However, in the ovary, follicle development depends on the
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microenvironment and is based on complex factors, such as
cytokines, growth factors, and locally produced substances. Many
follicles are blocked and cleared because of the complex crosstalk
between apoptotic cell death and cell growth signals. The activation
of NO can regulate follicular development, promote the release of
luteinizing hormones and gonadotropins, cause luteolysis, and
induce ovulation and tissue remodeling. NOSs were expressed in
many parts of the ovary in different species (Zhang et al., 2011; Li
et al., 2020; Zhang et al., 2020). However, the role of the iNOS and
eNOS seemed to have a double role of nitric oxide during the process
of folliculogenesis and follicular which based on NO concentration
and were strongly dependent on interactions with other factors
acting within the ovary in a line of research (Nath and Maitra, 2019;
Budani and Tiboni, 2021).

First, expression of iNOS in rat or bovine granulosa cells is
accompanied by the involvement of the Fas/FasL system in inducing
apoptosis through the activation of a caspase-mediated cell death
(Chen et al., 2005; Zamberlam et al., 2011). However, the presence of
iNOS is a requirement for immature follicles to remain quiescent,
and the alteration in iNOS expression in granulosa cells of immature
follicles may be a trigger, thereby rendering them atretic or
developing follicles (Matsumi et al., 2000). Second, follicular
development induced by pregnant mare serum gonadotropin
(PMSG) in immature rats is associated with an increase in eNOS
(but not iNOS) expression (Van Voorhis et al., 1995; Jablonka-
Shariff and Olson, 1997), whereas subsequent stimulation with
human chorionic gonadotropin (hCG) induces an increase in
both isoforms (Jablonka-Shariff and Olson, 1997). In addition,
the eNOS protein is localized in the cytoplasm of oocytes and
theca and granulosa cells during all stages of folliculogenesis, and
occasionally in the nucleus of bovine antral follicle oocytes (Pires
et al., 2009; Tessaro et al., 2011).

NOS has made great progress in the female animal
reproduction, since gene knockout animals have been used in
the field of NO research. Furthermore, eNOS promotes primordial
follicle activation, oocyte growth, and granulosa cell proliferation
in neonatal ovaries via eNOS/cGMP/PKG pathway (Zhao et al.,
2020). In mouse follicles cultured in vitro, the precursor (L-arg),
intermediate (NG-OH-L-arg), and end product (L-cit) of NOS
activity affected mouse follicle development. The omission of
L-arginine significantly reduced follicle survival and ovulation.
Partial compensation for L-arginine withdrawal was achieved
using L-citrulline and NG-hydroxy-L-arginine. Specific
abnormalities in follicle growth have also been reported
(Mitchell et al., 2004). Supplementation of arginine, a
nutritional factor, increases eNOS and sGC protein expression
in theca cells and affects follicle number and cell proliferation in
nutritionally compromised ewes. Therefore, the nutrition and Arg
are involved in the regulation of follicular function in nonpregnant
sheep (Grazul-Bilska et al., 2019). However, some studies have
shown that three NOS subtypes (nNOS, iNOS, and eNOS) are
expressed at the transcriptional and translational levels at different
stages in buffalo follicles (PFs, AFs, and OFs). Using PMSG to
induce follicular development leads to increased eNOS expression
in granulosa cells. Subsequently, hCG was used to stimulate
induction, and the expression of two subtypes (eNOS and
iNOS) increased (Budani and Tiboni, 2021; Iova et al., 2023).
Interestingly, the most significantly expressed genes encoding

enzymes in the oocytes of primordial follicles differed from
those expressed in oocytes at other follicular stages. The nNOS
enzyme and hydroxysteroid 17-beta dehydrogenase 4, are part of
the peroxisomal beta-oxidation pathway, as revealed by a genome-
scale metabolic model (Peñalver Bernabe et al., 2019). However,
high doses of NO induce cell death of granulosa cells and
subsequently cause follicular atresia via the p38 pathway when
NOS activity is elevated by some complex factors under different
physiological condition (Cinelli et al., 2020; Rostamzadeh et al.,
2020; Solanki et al., 2022). Nevertheless, the roles and exact
mechanisms of the three NOS isoforms require further
investigation.

The role of NOS in female steroidogenesis

Among the signaling molecules that induce the function of
different animal ovaries, NO is considered a regulator of steroid
production (Delsouc et al., 2016). The impairment of steroid
production by NOS has been demonstrated in different species
and under different conditions in different species, such as humans,
rats, mice, cattle, and pigs (Rosselli et al., 1998; Basini and Tamanini,
2000; Grasselli et al., 2001). In the porcine corpus luteum (CL),
studies have revealed that NO produced by iNOS and eNOS not only
inhibits progesterone and estradiol (E2) synthesis but also regulates
steroidogenesis differently depending on the phase of follicular
development. For example, E2 production in granulosa cells
derived from both small (<3 mm) and medium (3–5 mm)
follicles is directly inhibited by NOS via cytochrome
P450 aromatase. However, in the presence of gonadotropin, NOS
inhibition with methyl arginine (L-NMMA) increases the
production of E2 and progesterone in granulosa cells, albeit to a
lesser extent in less mature, small follicles than in the large mature
follicles (Masuda et al., 1997; Ducsay and Myers, 2011). In contrast
to earlier studies, another research group found that NO positively
regulated E2 synthesis via cGMP during the first 24 h of culture in
bovine granulosa cells, whereas it inhibited progesterone synthesis in
a cGMP-independent manner. However, this surprising finding was
not fully explained (Faes et al., 2009). Puzzlely, which is an isoform
of NOS was involved in these negative effects and regulation of NO
and E2 requires more studies (Hanke and Campbell, 2000; Delsouc
et al., 2016). Sometimes, melatonin reverses the mRNA expression
of steroidogenic enzymes and the phosphatase and tensin homolog/
phosphoinositide 3-kinase/protein kinase B/mTOR/AMP-activated
protein kinase signaling pathway, which reduces cyclooxygenase
(Cox), particularly Cox-2, by suppressing the expression of the
inducible gene of nitric oxide synthase in female rats treated with
cisplatin (Al-Shahat et al., 2022). In contrast, the placenta plays a
major role in steroid hormone production via placental
trophoblasts. For example, progesterone synthesis in the placenta
requires the involvement of a series of enzymes, including
steroidogenic acute regulatory proteins (StAR), CYP11A1, and
3 beta-hydroxysteroid dehydrogenase (HSD3B). At this stage,
eNOS mRNA expression and etrahydrobiopterin reduction (BH4/
BH2 ratio) were increased by low-dose N-acetylcysteine. Therefore,
placental progesterone levels and eNOS expression are correlated
with environmental organophosphates (Rivero Osimani et al., 2016;
Sanikidze et al., 2019; Ding et al., 2021; Ding et al., 2021).
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The role of NOS in ovulation

The iNOS-derived NO is required for nuclear maturation of
oocytes, including germinal vesicle breakdown (GVBD) and first
polar body emission in mice (Bu et al., 2004; Tao et al., 2004; Huo
et al., 2005; Tao et al., 2005) and cattle (Matta et al., 2009). Some
reports have demonstrated the subcellular localization of iNOS at
different stages of meiotic maturation in mouse oocytes. Conversely,
a reduction in iNOS expression and total nitrite levels is associated
with meiotic resumption in diplotene-arrested oocytes but induces
apoptosis in aged oocytes (Huo et al., 2005; Tripathi et al., 2009). In
addition, the mRNA level of eNOS decreased in the follicle group
20 h after GnRH administration, followed by a rapid and significant
upregulation immediately after ovulation. NO derived from iNOS
also affects the in vitro maturation of the bovine cumulus-oocyte
complex, thereby modulating the viability of cumulus cells and the
oocyte. The progression of meiosis after GVBD, the migration of
cortical granules, cleavage, blastocyst, and the initial phase of
embryo development is an indispensable factor (Viana et al.,
2007; Matta et al., 2009). In a word, NOS as paracrine factors are
involved in the local mechanisms, regulating final follicle
maturation, ovulation and early luteal angiogenesis (Berisha
et al., 2020).

The role of NOS in corpus luteum function

In mammals, the CL is a transient organ that secretes
progesterone (P4) after ovulation, which contributes to the
establishment and maintenance of pregnancy. During all
development, the CL has a secretory function, and undergoes
luteolysis under complex conditions, such as regression in the
absence of pregnancy (Shirasuna et al., 2012; Dutta et al., 2022;
Hojo et al., 2022). NO can participate in CL development and be
used as a potential insertion medium to maintain angiogenesis and
blood flow via three types of CL cells: steroidogenic, endothelial, and
immune cells (Korzekwa et al., 2004; Weems et al., 2004; Grazul-
Bilska et al., 2019; Luo et al., 2021; Dutta et al., 2022). Some studies
have shown that NO inhibits P4 production, stimulates the secretion
of prostaglandin (PG) F2α, reduces the number of viable luteal cells,
and participates in functional luteolysis (Korzekwa et al., 2007).
During this stage, eNOS and iNOS regulate NO production and
include cytokines that act as pro-apoptotic and anti-apoptotic
factors in bovine and rabbit CL (Motta et al., 2001; Petroff et al.,
2001; Preutthipan et al., 2004; Skarzynski et al., 2005; Korzekwa
et al., 2006). For instance, in the NO donor-stimulated Fas and Bax
mRNA and caspase-3 expression, but not in Fas-L and bcl-2 gene
expression. The ratio of bcl-2 to bax mRNA levels decreased in cells
treated with the NO donor. In a recent study, NO was shown to
upregulate the expression of PPARG coactivator 1 αi and its
downstream factors through the cGMP pathway, thereby
decreasing granulosa cell apoptosis and participating in the
regulation of granulocyte steroid production through the
mitochondrial-dependent pathway (Ferreira-Dias et al., 2011;
Guo et al., 2019; Hojo et al., 2022).

During CL luteolysis, many reports have suggested that NO
plays a crucial role in the regulation of the estrous cycle in
structural luteolysis by inducing the apoptosis of luteal cells in

cattle. In addition, TNF and interferon g accelerate luteolysis by
increasing NO production via stimulation of iNOS expression
and NOS activity in bovine luteal endothelial cells (LECs).
P4 may act in maintaining CL function by suppressing iNOS
expression in bovine LECs (Yoshioka et al., 2012). However, in
canines, expression of eNOS and iNOS was lowest on the day of
ovulation, whereas eNOS expression increased significantly
towards day 20. On days 20 and 30, iNOS, endothelins
exerted their vascular endothelin A receptor- and endothelin
receptor B during CL rapid development-mediated effects and
then activate the nitric oxide (NO) pathway (Tavares Pereira
et al., 2019; Socha et al., 2022). Exogenous melatonin increased
the CL diameter and colored area, accompanied by decreased
NO from the serum until days 6 and 14, which may be involved
in activating eNOS in heat-stressed cows (Kantar et al., 2015;
Abdelnaby and Abo El-Matty, 2021). In rats, the celiac ganglion
plays a physiological role in the presence of the GnRH system
during luteal regression through the superior ovarian nerve at
the end of pregnancy. At this stage, the release of ovarian and
ganglionic NO increases. Thus, the increase in ovarian NO levels
triggered by blocking ganglionic GnRH action with CTX could
contribute to the increase in ovarian progesterone release and
the low apoptotic luteal cell percentage observed in the
experimental group, indicating that NO production by the
celiac ganglion modulates the physiology of the ovary and
luteal regression during late pregnancy. However, the exact
mechanism underlying NOS activity remains unclear
(Morales et al., 2021; Vallcaneras et al., 2022).

NOS pathway involved in animal
reproduction

The NOS pathway in animal reproduction is based on the NOS/
NO system that produces NO via sGCs. NOS, a rate-limiting
enzyme, uses L-arginine as a substrate and oxygen to generate
NO, oxidation products, and L-citrulline (Cinelli et al., 2020;
Rostamzadeh et al., 2020). NO acts in vivo as follows:

L-arginine +3/2 NADPH + H+ + 2O2 = citrulline + NO + 3/
2 NADP and is catalyzed by NOS (Sanikidze et al., 2019; Luo et al.,
2021). NO can activate sGC, a common NO sensor in mammals,
through the L-arginine-NO-cGMP pathway (Hattori and Tabata, 2006;
Lind et al., 2017; Iova et al., 2023). Its activation leads to the
transformation of guanosine triphosphate (GTP) into cGMP, which
regulates downstream cell targets, such as cGMP-dependent protein
kinases, ion channels, and receptors. Although the three NOS isozymes
have different structures and functions, they share similar pathways in
NO synthesis (Luo et al., 2021; Dutta and SenGupta, 2022).

During this process, NO induces rupture of the His–Fe (II) bond
within the heme of sGC, a heterodimer composed of one α (α1 or α2)
and a βsubunit (β1). This induces a conformational change in the
His ligand (pentacoordinated NO complex), which is conveyed to
the catalytic center in a partially obscure manner, resulting in
increased activity for the conversion of GTP to cGMP (Francis
et al., 2010; Hall and Garthwaite, 2009; Martínez-Ruiz et al., 2011;
Russwurm and Koesling, 2004). Several pathways play important
roles in animal reproduction (Figure 4). In the hypothalamic and
pituitary gonadotropes, NOS plays an important role in controlling
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reproduction owing to its ability to control GnRH secretion
(Mondillo et al., 2009). Moreover, iNOS protein expression and
activity were increasing via p38 MAPK/ATF2/iNOS signaling
pathway involved in testicular injury induced by HgCl2 as in
inflammation condition which leading spermatogenetic activity,
seminiferous tubular diameter, and Leydig cell mass (Sangodele
et al., 2021; Chen et al., 2022). Similar in follicular atresia, NO
produced by iNOS aslo can play the negatively affected cell death via
the p38 pathway during follicle development. Therefore, iNOS is
involved in testicular damage and cell death via decreased tissue
antioxidative defense capacity and the regulation of testicular
hemodynamics (El-Shalofy et al., 2023). In male animals, NO
produced by NOS can activate cGMP-dependent PRKG1 and
phosphorylate astrocytes to activate soluble cGMP, thus
promoting steroid production in Leydig cells. However, NO can
inhibit CYP11A1 at high doses and inhibit steroid production (Wei
et al., 2002; Mondillo et al., 2009). However, in females, exogenous
ovarian nerves can directly control NO and E2 levels during the
follicular phase (Rosselli et al., 1998; Basini and Tamanini, 2000;
Grasselli et al., 2001). Furthermore, eNOS promoted primordial
follicle activation, oocyte growth and granulosa cell proliferation in
neonatal ovaries via the eNOS/cGMP/PKG pathway and then
worked on FBXW7 and mTOR protein induced primordial
follicle activation (Mitchell et al., 2004; Tessaro et al., 2011; Zhao
et al., 2020). Notably, PMSG can activate eNOS expression, which in
turn induces follicular development in granulosa cells (Budani and
Tiboni, 2021; Iova et al., 2023). However, the new NOS pathway in
animal reproduction requires further exploration.

Conclusion

Over the past 30 years, NOS, the producer of NO in the body,
acted as three isoforms and play essential role via abundant location
in animal reproduction which also hot spot today. NOS regulated
NO’s dual and dynamic role in male and female reproductive
functions via many factors in reproductive system such as
hormone, cytokines and others. Notable, NOS are associated with
the injuries, pathology and abnormal condition of physiological
processes during animal reproduction. In turn, the more discovery
about the structure of NOS and relations pathway will help to make
clear the exactly mechanisms. As can be seen in this review, the
various biological functions of reproduction associated with NOS
can affect organs or systems. However, many processes in the NOS
have still not been fully explained yet. Focusing on these topics can
help provide the new insight into and the treatment evidence on
targeting NOS of reproductive regulation and diseases. Therefore, it
is foreseeable that the continuous development of the study of NOS
and its mechanism will have broad prospects in the future.
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