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Objective: The objective of this study is to identify patients with sepsis who are at a
high risk of respiratory failure.

Methods: Data of 1,738 patients with sepsis admitted to Dongyang People’s
Hospital from June 2013 to May 2023 were collected, including the age at
admission, blood indicators, and physiological indicators. Independent risk
factors for respiratory failure during hospitalization in the modeling population
were analyzed to establish a nomogram. The area under the receiver operating
characteristic curve (AUC) was used to evaluate the discriminative ability, the
GiViTI calibration graphwas used to evaluate the calibration, and the decline curve
analysis (DCA) curve was used to evaluate and predict the clinical validity. The
model was compared with the Sequential Organ Failure Assessment (SOFA) score,
the National Early Warning Score (NEWS) system, and the ensemble model using
the validation population.

Results: Ten independent risk factors for respiratory failure in patients with sepsis
were included in the final logistic model. The AUC values of the prediction model
in the modeling population and validation population were 0.792 and 0.807,
respectively, bothwith good fit between the predicted possibility and the observed
event. The DCA curves were far away from the two extreme curves, indicating
good clinical benefits. Based on the AUC values in the validation population, this
model showed higher discrimination power than the SOFA score (AUC: 0.682; p <
0.001) and NEWS (AUC: 0.520; p < 0.001), and it was comparable to the ensemble
model (AUC: 0.758; p = 0.180).

Conclusion:Ourmodel had good performance in predicting the risk of respiratory
failure in patients with sepsis within 48 h following admission.
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Introduction

Background

Sepsis is the result of an invasion of pathogens into the body,
leading to immune disorders and organ dysfunction (Lelubre and
Vincent, 2018; Rubio et al., 2019). Due to its high mortality and
disability rates, sepsis has become a global concern (Singer et al.,
2016; Rhodes et al., 2017). A meta-analysis of 27 studies from seven
developed countries showed that the incidence of hospital-treated
sepsis was 437/100,000, and the mortality rate was 17%
(Fleischmann et al., 2016). In organ dysfunction caused by sepsis,
the lung is a commonly affected organ, which can easily lead to
respiratory failure (Erickson et al., 2009; Cochi et al., 2016; Singer
et al., 2016; Fowler et al., 2019).

Respiratory failure is a decrease in PaO2 caused by various
reasons. In the United States, the incidence rate of respiratory failure
is 1,275/100,000, and the hospital mortality rate of patients with
respiratory failure is 12% (Kempker et al., 2020). It is one of the
common critical diseases, and the surviving patients may have
physical, psychological, and cognitive problems (Brummel et al.,
2015; Hashem et al., 2016). It is considered a burden on public health
and the healthcare system (Bice et al., 2013). Studies have shown that
the mortality rate of sepsis patients with respiratory failure is
significantly increased (Angus et al., 2001; Bellani et al., 2016;
Cochi et al., 2016; Fowler et al., 2019). Therefore, it is important
to predict whether respiratory failure may occur during
hospitalization in patients with sepsis so that patients with a high
risk can be identified early and interventions can be undertaken to
reduce the mortality rate.

Studies have shown that in patients with COVID-19, the SOFA
scores (Vincent et al., 1996) and NEWS (Subbe et al., 2001) are
useful for predicting respiratory failure (Lalueza et al., 2022).
However, the scoring systems and models mentioned previously
were not developed for predicting respiratory failure, and there are
doubts about their efficacy in predicting the risk of respiratory
failure in patients with sepsis. Some scholars have developed amodel
for predicting the risk of respiratory failure in patients with

pancreatitis (Qiu et al., 2022). However, as the model is not
aimed at patients with sepsis, there are doubts about its efficacy
in predicting the risk of respiratory failure in patients with sepsis.
Several models could predict acute respiratory distress syndrome
(ARDS) in sepsis patients, but they are established based on the
patients from the intensive care unit, indicating limited practice with
those in the ordinary ward (Bai et al., 2022; Xu et al., 2023). In
addition, respiratory failure is a progressed and deteriorated status of
ARDS; thus, the prediction model might not be shared by them.

The aim of our study was to develop a useful predictive model
for predicting the risk of respiratory failure within 48 h following
admission in sepsis patients to help clinicians screen high-risk
patients for timely intervention and communication.

Methods and materials

Research participants

In this retrospective study, a total of 1,738 sepsis patients
admitted to Dongyang People’s Hospital from June 2013 to April
2023 were included. The inclusion criteria were meeting the
diagnostic criteria of sepsis 3.0; infection caused the SOFA score
to increase by 2 points on the original basis. The exclusion criteria
were as follows: 1) patients younger than 18 years old, 2) patients
with respiratory failure at admission (patients with SpO2 less than
90% at admission), 3) and patients who discontinued treatment.
Respiratory failure within 48 h following admission was based on
the lowest PaO2/FiO2 values of less than 300 mmHg.

Observation indicators

We collected some basic information of the patients, such as
gender, age, and past medical history, of the following: hypertension,
diabetes, cerebral infarction, chronic lung disease (including chronic
obstructive pulmonary disease, interstitial pneumonia, and chronic
pulmonary fibrosis), chronic heart disease (including cardiac

FIGURE 1
Flowchart for patient inclusion and exclusion.
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TABLE 1 Baseline characteristics of the modeling population and validation populationa.

Variable Total (n = 1,738) Modeling (n = 1,217) Validation (n = 521) p-value

Gender, n (%) 0.823

Male 962 (55) 671 (55) 291 (56)

Female 776 (45) 546 (45) 230 (44)

Age (years) 71 (59, 81) 71 (59, 80) 70 (58, 81) 0.579

Crp (mg/L) 113.6 (47.29, 187.64) 117.1 (47.2, 187.75) 109.51 (47.57, 186.98) 0.979

Procalcitonin (ng/mL) 6.82 (1.73, 28.9) 6.93 (1.74, 29.57) 6.71 (1.62, 27.64) 0.998

Alanine transaminase (U/L) 24 (14, 44) 24 (14, 45) 24 (15, 44) 0.982

Aspartate transaminase (U/L) 33 (22, 60) 32 (22, 60) 34 (22, 58) 0.397

Triglyceride (mmol/L) 2.99 (2.4, 3.66) 3.01 (2.43, 3.66) 2.97 (2.36, 3.68) 0.791

Total bilirubin (umol/L) 12.9 (8.5, 24.37) 12.8 (8.4, 24.8) 13.2 (8.6, 23.4) 0.668

Creatinine (umol/L) 108 (75.25, 168) 109 (76, 170) 107 (74, 160) 0.306

Blood urea nitrogen (mmol/L) 8.59 (6.1, 13.28) 8.7 (6.2, 13.7) 8.24 (6, 12.4) 0.062

Lactic acid (mmol/L) 2 (1.3, 3.3) 2 (1.3, 3.4) 2 (1.3, 3) 0.367

Pro-BNP (pg/mL) 1,321 (441.28, 3,893) 1,334 (477.8, 3,821) 1,282 (404.6, 4,009) 0.392

Cholinesterase (U/L) 4,210 (3,094, 5,392) 4,219 (3,109, 5,367) 4,158 (3,032, 5,399) 0.498

Prothrombin time (s) 15.1 (14.1, 16.5) 15.1 (14.1, 16.4) 15.1 (14.2, 16.5) 0.385

D-dime (mg/L) 3.08 (1.74, 6.58) 3.13 (1.79, 6.63) 2.93 (1.61, 6.53) 0.369

Aptt (s) 42.1 (37.1, 48.1) 41.9 (36.8, 48) 42.5 (37.6, 48.4) 0.23

Potassium (mmol/L), n (%) 0.445

3.5–5.5 1,062 (61) 750 (62) 312 (60)

<3.5 630 (36) 432 (35) 198 (38)

>5.5 46 (3) 35 (3) 11 (2)

Sodium (mmol/L), n (%) 0.13

135–145 876 (50) 625 (51) 251 (48)

<135 803 (46) 546 (45) 257 (49)

>145 59 (3) 46 (4) 13 (2)

Magnesium (mmol/L), n (%) 0.443

0.75–1.25 1,122 (65) 793 (65) 329 (63)

<0.75 607 (35) 419 (34) 188 (36)

>1.25 9 (1) 5 (0) 4 (1)

Calcium (mmol/L), n (%) 0.661

2.25–2.75 81 (5) 60 (5) 21 (4)

<2.25 1,654 (95) 1,155 (95) 499 (96)

>2.25 3 (0) 2 (0) 1 (0)

Phosphorus (mmol/L), n (%) 0.15

0.97–1.61 468 (27) 322 (26) 146 (28)

<0.97 1,168 (67) 815 (67) 353 (68)

>1.61 102 (6) 80 (7) 22 (4)

White blood cell (109/L), n (%) 0.472

4–10 588 (34) 413 (34) 175 (34)

<4 179 (10) 132 (11) 47 (9)

>10 971 (56) 672 (55) 299 (57)

Hemoglobin (109/L), n (%) 0.864

110–160 981 (56) 687 (56) 294 (56)

<110 706 (41) 496 (41) 210 (40)

>160 51 (3) 34 (3) 17 (3)

(Continued on following page)
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TABLE 1 (Continued) Baseline characteristics of the modeling population and validation populationa.

Variable Total (n = 1,738) Modeling (n = 1,217) Validation (n = 521) p-value

Platelet (109/L), n (%) 0.687

100–300 1,142 (66) 795 (65) 347 (67)

<100 497 (29) 349 (29) 148 (28)

>300 99 (6) 73 (6) 26 (5)

Albumin (g/L) 29.6 (26.1, 32.5) 29.6 (26.2, 32.5) 29.6 (26, 32.5) 0.733

Globulin (g/L), n (%) 0.457

20–35 1,435 (83) 1,013 (83) 422 (81)

<20 174 (10) 115 (9) 59 (11)

>35 129 (7) 89 (7) 40 (8)

SpO2 (%) 97 (95, 98) 97 (95, 98) 97 (95, 98) 0.289

Temperature (°C), n (%) 0.361

36–37.5 746 (43) 528 (43) 218 (42)

<36 86 (5) 65 (5) 21 (4)

>37.5 906 (52) 624 (51) 282 (54)

Map (mmhg), n (%) 0.612

70–105 1,091 (63) 773 (64) 318 (61)

<70 450 (26) 308 (25) 142 (27)

>105 197 (11) 136 (11) 61 (12)

Heart rate (times/min) 98 (84, 114) 98 (84, 114) 100 (85, 114) 0.444

Breath rate (times/min) 20 (19, 22) 20 (18, 22) 20 (20, 21) 0.992

GCS 15 (15, 15) 15 (15, 15) 15 (15, 15) 0.577

Diabetes, n (%) 0.214

No 1,398 (80) 969 (80) 429 (82)

Yes 340 (20) 248 (20) 92 (18)

Hypertension, n (%) 0.952

No 1,011 (58) 709 (58) 302 (58)

Yes 727 (42) 508 (42) 219 (42)

Cerebral infarction, n (%) 0.611

No 1,677 (96) 1,172 (96) 505 (97)

Yes 61 (4) 45 (4) 16 (3)

Tumor, n (%) 0.941

No 1,441 (83) 1,008 (83) 433 (83)

Yes 297 (17) 209 (17) 88 (17)

Chronic lung disease, n (%) 1

No 1,676 (96) 1,174 (96) 502 (96)

Yes 62 (4) 43 (4) 19 (4)

Chronic heart disease, n (%) 0.971

No 1,706 (98) 1,194 (98) 512 (98)

Yes 32 (2) 23 (2) 9 (2)

Chronic liver disease, n (%) 0.681

No 1,639 (94) 1,150 (94) 489 (94)

Yes 99 (6) 67 (6) 32 (6)

Chronic kidney disease, n (%) 0.639

No 1,674 (96) 1,170 (96) 504 (97)

Yes 64 (4) 47 (4) 17 (3)

Leukemia, n (%) 0.233

No 1,715 (99) 1,204 (99) 511 (98)

Yes 23 (1) 13 (1) 10 (2)

(Continued on following page)
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insufficiency NYHA II grade and above and old myocardial
infarction), chronic liver disease (cirrhosis), chronic kidney
disease (chronic renal insufficiency and nephrotic syndrome),
tumor, leukemia, and the involved infection sites, including the
central nerve system, lung, bile duct, urinary duct, and peritonitis.
We also collected the following first indicators at admission:
hypersensitive C-reactive protein, procalcitonin, alanine
transaminase, aspartate transaminase, triglyceride, total bilirubin,
creatinine, blood urea nitrogen, lactic acid, pro-brain natriuretic
peptide (Pro-BNP), cholinesterase, prothrombin time, D-dimer,
activated partial thromboplastin time, potassium, sodium,
magnesium, calcium, phosphorus, hemoglobin, white blood cell
count, platelet count, albumin, globulin, mean arterial pressure,
pulse oxygen saturation, body temperature, respiratory rate, heart
rate, Glasgow Coma Score (GCS), SOFA score, and NEWS (i.e., a
total of 46 indicators, two scoring systems).

Method description

First, the data were analyzed using R software (version 4.2.2).
Continuous variables with a normal distribution were expressed as
the mean plus or minus standard deviation and were tested using the
t-test. Variables with a non-normal distribution were expressed as
the median and interquartile range, and were tested using the
Mann–Whitney U test. Categorical variables were expressed as a
percentage and were tested using the chi-squared test.

The highest missing ratio among all variables was that of lactic
acid (20.3%), and the missing ratios of the other variables were all

less than 20%.We set up seeds and used themice package to perform
multiple imputations. In order to facilitate clinical interpretation
and to ensure that there was a linear relationship between each
variable and logitp whenmultivariate logistic regression analysis was
conducted, some continuous variables were converted to categorical
variables. The data were randomly divided into the modeling
population and the validation population at the ratio of 7:3.
Univariate analysis was performed on the modeling population;
multicollinear analysis was performed on the significant indicators
in the univariate analysis, which were evaluated using variance
inflation coefficients (VIFs). VIFs of less than 10 indicated that
there was no notable collinearity among the risk factors (Hsieh and
Lavori, 2000). Whether there was a linear relationship between the
variables and logitp was tested by the Box-Tidwell function, with a
p-value < 0.05 indicating the absence of a linear relationship. After
confirming that there was no multicollinearity among the variables
and that there was a linear relationship with logitp, multivariate
logistic regression analysis was performed, and then, stepwise
regression analysis was performed to screen out the independent
risk factors and establish a nomogram.

Evaluation of the established prediction
model

The area under the receiver operation curve (AUC) was used to
assess the discrimination ability of the predictive model. An AUC >
0.75 indicated that the model was good (Silva et al., 2015); a
calibration graph was applied to evaluate the agreement between

TABLE 1 (Continued) Baseline characteristics of the modeling population and validation populationa.

Variable Total (n = 1,738) Modeling (n = 1,217) Validation (n = 521) p-value

Central nerve infection, n (%) 1

No 1,732 (100) 1,213 (100) 519 (100)

Yes 6 (0) 4 (0) 2 (0)

Lung infection, n (%) 0.672

No 1,258 (72) 885 (73) 373 (72)

Yes 480 (28) 332 (27) 148 (28)

Bile duct infection, n (%) 0.289

No 1,559 (90) 1,085 (89) 474 (91)

Yes 179 (10) 132 (11) 47 (9)

Urinary duct infection, n (%) 0.288

No 1,448 (83) 1,022 (84) 426 (82)

Yes 290 (17) 195 (16) 95 (18)

Peritonitis, n (%) 0.105

No 1,622 (93) 1,144 (94) 478 (92)

Yes 116 (7) 73 (6) 43 (8)

SOFA score 4 (3, 7) 4 (3, 7) 4 (3, 6) 0.626

NEWS score
Ventilator, n (%)

3 (2, 5) 3 (2, 5) 3 (2, 5) 0.653

No 1,623 (93) 1,144 (94) 479 (92) 0.107

Yes 115 (7) 73 (6) 42 (8)

Callout: a, continuous variables are described by the median and quartiles. Category varieties are analyzed by the χ2 test and continuous variables are analyzed by theWilcoxon rank-sum test; b,

first examination index following admission.

Crp, high-sensitivity C-reactive protein; Pro-BNP, pro-brain natriuretic peptide; Aptt, activated partial thromboplastin time; SpO2, pulse oxygen saturation; Map, mean arterial pressure; GCS,

Glasgow Coma Score; SOFA, Sequential Organ Failure Assessment; NEWS, National Early Warning Score.
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TABLE 2 Univariate analysis between respiratory failure and no respiratory failure in the modeling populationa.

Variable Total (n = 1,217) Control group (n = 972) With respiratory failure (n = 245) p-value

Gender, n (%) 0.952

Male 671 (55) 535 (55) 136 (56)

Female 546 (45) 437 (45) 109 (44)

Age (years) 71 (59, 80) 71 (59, 80) 73 (58, 81) 0.364

Crp (mg/L) 117.1 (47.2, 187.75) 113.28 (45.87, 182.85) 127.81 (57.6, 200) 0.024

Procalcitonin (ng/mL) 6.93 (1.74, 29.57) 6.34 (1.63, 24.81) 12.07 (2.82, 48.38) <0.001

Alanine transaminase (U/L) 24 (14, 45) 24 (14, 43) 26 (16, 48) 0.136

Aspartate transaminase (U/L) 32 (22, 60) 31 (21, 56) 37 (23, 80) <0.001

Triglyceride (mmol/L) 3.01 (2.43, 3.66) 3.04 (2.51, 3.7) 2.75 (2.14, 3.46) <0.001

Total bilirubin (umol/L) 12.8 (8.4, 24.8) 12.5 (8.3, 24.1) 14.3 (9, 27.3) 0.032

Creatinine (umol/L) 109 (76, 170) 105 (76, 167) 121 (82, 190) 0.029

Blood urea nitrogen (mmol/L) 8.7 (6.2, 13.7) 8.4 (6.04, 12.9) 10.7 (7.2, 16.73) <0.001

Lactic acid (mmol/L) 2 (1.3, 3.4) 1.9 (1.3, 3) 3 (1.6, 4.8) <0.001

Pro-BNP (pg/mL) 1,334 (477.8, 3,821) 1,168 (423.88, 3,032.25) 3,038 (868.9, 9,828) <0.001

Cholinesterase (U/L) 4,219 (3,109, 5,367) 4,319.5 (3,253.5, 5,518.5) 3,730 (2,667, 4,897) <0.001

Prothrombin time (s) 15.1 (14.1, 16.4) 15 (14.1, 16.2) 15.5 (14.2, 17.5) <0.001

D-dime (mg/L) 3.13 (1.79, 6.63) 2.87 (1.67, 5.82) 4.66 (2.42, 10.93) <0.001

Aptt (s) 41.9 (36.8, 48) 41.6 (36.7, 47.3) 43.9 (38, 49.6) 0.003

Potassium (mmol/L), n (%) 0.096

3.5–5.5 750 (62) 587 (60) 163 (67)

<3.5 432 (35) 359 (37) 73 (30)

>5.5 35 (3) 26 (3) 9 (4)

Sodium (mmol/L), n (%) 0.005

135–145 625 (51) 503 (52) 122 (50)

<135 546 (45) 441 (45) 105 (43)

>145 46 (4) 28 (3) 18 (7)

Magnesium (mmol/L), n (%) 0.043

0.75–1.25 793 (65) 648 (67) 145 (59)

<0.75 419 (34) 321 (33) 98 (40)

>1.25 5 (0) 3 (0) 2 (1)

Calcium (mmol/L), n (%) 0.209

2.25–2.75 60 (5) 43 (4) 17 (7)

<2.25 1,155 (95) 927 (95) 228 (93)

>2.25 2 (0) 2 (0) 0 (0)

Phosphorus (mmol/L), n (%) <0.001
0.97–1.61 322 (26) 242 (25) 80 (33)

<0.97 815 (67) 683 (70) 132 (54)

>1.61 80 (7) 47 (5) 33 (13)

White blood cell (109/L), n (%) 0.151

4–10 413 (34) 332 (34) 81 (33)

<4 132 (11) 97 (10) 35 (14)

>10 672 (55) 543 (56) 129 (53)

Hemoglobin (109/L), n (%) 0.063

110–160 687 (56) 564 (58) 123 (50)

<110 496 (41) 380 (39) 116 (47)

>160 34 (3) 28 (3) 6 (2)

(Continued on following page)
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TABLE 2 (Continued) Univariate analysis between respiratory failure and no respiratory failure in the modeling populationa.

Variable Total (n = 1,217) Control group (n = 972) With respiratory failure (n = 245) p-value

Platelet (109/L), n (%) 0.005

100–300 795 (65) 655 (67) 140 (57)

<100 349 (29) 266 (27) 83 (34)

>300 73 (6) 51 (5) 22 (9)

Albumin (g/L) 29.6 (26.2, 32.5) 29.9 (26.78, 32.9) 27.6 (23.8, 31.3) <0.001

Globulin (g/L), n (%) <0.001
20–35 1,013 (83) 828 (85) 185 (76)

<20 115 (9) 72 (7) 43 (18)

>35 89 (7) 72 (7) 17 (7)

SpO2 (%) 97 (95, 98) 97 (95, 98) 96 (93, 98) <0.001

Temperature (°C), n (%) 0.283

36–37.5 528 (43) 422 (43) 106 (43)

<36 65 (5) 47 (5) 18 (7)

>37.5 624 (51) 503 (52) 121 (49)

Map (mmhg), n (%) 0.613

70–105 773 (64) 612 (63) 161 (66)

<70 308 (25) 252 (26) 56 (23)

>105 136 (11) 108 (11) 28 (11)

Heart rate (times/min) 98 (84, 114) 98 (84, 114) 105 (86, 118) 0.004

Breath rate (times/min) 20 (18, 22) 20 (18, 20) 20 (20, 23) <0.001

GCS 15 (15, 15) 15 (15, 15) 15 (15, 15) <0.001

Diabetes, n (%) 0.336

No 969 (80) 768 (79) 201 (82)

Yes 248 (20) 204 (21) 44 (18)

Hypertension, n (%) 0.119

No 709 (58) 555 (57) 154 (63)

Yes 508 (42) 417 (43) 91 (37)

Cerebral infarction, n (%) 0.555

No 1,172 (96) 934 (96) 238 (97)

Yes 45 (4) 38 (4) 7 (3)

Tumor, n (%) 0.765

No 1,008 (83) 803 (83) 205 (84)

Yes 209 (17) 169 (17) 40 (16)

Chronic lung disease, n (%) 0.952

No 1,174 (96) 937 (96) 237 (97)

Yes 43 (4) 35 (4) 8 (3)

Chronic heart disease, n (%) 0.109

No 1,194 (98) 957 (98) 237 (97)

Yes 23 (2) 15 (2) 8 (3)

Chronic liver disease, n (%) 0.997

No 1,150 (94) 919 (95) 231 (94)

Yes 67 (6) 53 (5) 14 (6)

Chronic kidney disease, n (%) 1

No 1,170 (96) 934 (96) 236 (96)

Yes 47 (4) 38 (4) 9 (4)

Leukemia, n (%) 1

No 1,204 (99) 961 (99) 243 (99)

Yes 13 (1) 11 (1) 2 (1)

(Continued on following page)
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the predicted probability and the actual observed probability. When
a p-value tested by Hosmer–Lemeshow was greater than 0.05, the
model showed adequate fitness (Niu et al., 2017). Finally, the net
clinical benefit of using the established model could be shown as the
distance from the all curve to the none curve (the two extreme
curves) in decision curve analysis. In another way, the more the
distance of the model curve from the two extreme curves, the better
the clinical significance and net benefit conferred to the clinic
(Nattino et al., 2016); they were used to judge the discrimination,
calibration, and clinical validity, respectively, of our model, and
these were also verified in the validation population.

In addition, several other models were constructed using the
NEWS and the SOFA score in the validation populations, with
AUCs being compared using the DeLong test. When the significance
in the DeLong test was less than 0.05, a significant difference was
observed between the compared AUCs. An ensemble model based
on the enrolled 46 variables was established using the ensemble
methods, including support vector machines (SVMs), decision trees
C5.0 (C5.0), extreme gradient boosting (XGBoost), and the decision
by the following R packages: CARET, XGBoost, C50, e1071, and
gbm (Jiang et al., 2022). The importance of involved variables in the
ensemble method was evaluated using SHAP values.

Results

Comparison of the basic information
between the modeling population and the
validation population

A total of 1,915 patients with sepsis were included, including
154 patients with respiratory failure at admission, 13 patients who

discontinued treatment, and 10 patients younger than 18 years
(Figure 1). Among the study subjects, there were 345 patients
with respiratory failure during hospitalization, accounting for
19.9% of the patients. The number of invasive ventilator users
was 115, accounting for a percentage of 6.6%. There were 28%
cases with lung infection, 10% with bile duct infection, 17% with
urinary duct infection, and 45% with infection in other anatomic
sites or unknown sites. A total of 1,217 patients were in the modeling
population, and 521 patients were in the validation population.
There was no significant difference in any variable between the
modeling population and the validation population (p > 0.05;
Table 1).

Variable screening and logistic model
construction

Univariate analysis of the modeling population showed that
procalcitonin, aspartate transaminase, triglyceride, blood urea
nitrogen, lactic acid, Pro-BNP, cholinesterase, prothrombin time,
D-dimer, phosphorus, albumin, globulin, pulse oxygen saturation,
respiratory rate, GCS, lung infection, and peritonitis were associated
with respiratory failure (p < 0.001; Table 2). The results showed that
the included variables had no collinearity in predicting respiratory
failure (VIFs < 10; Supplementary Table S1), and there was a linear
relationship with logitp (p > 0.05; Supplementary Table S2),
suggesting that they could be used to construct a logistic
regression model. Multivariate logistic regression analysis and
stepwise regression showed that the respiratory rate, lactic acid,
Pro-BNP, D-dimer, albumin, globulin, pulse oxygen saturation,
GCS, lung infection, and peritonitis were independent factors
related to respiratory failure (Table 3).

TABLE 2 (Continued) Univariate analysis between respiratory failure and no respiratory failure in the modeling populationa.

Variable Total (n = 1,217) Control group (n = 972) With respiratory failure (n = 245) p-value

Central nerve infection, n (%) 0.183

No 1,213 (100) 970 (100) 243 (99)

Yes 4 (0) 2 (0) 2 (1)

Lung infection, n (%) <0.001
No 885 (73) 739 (76) 146 (60)

Yes 332 (27) 233 (24) 99 (40)

Bile duct infection, n (%) 0.805

No 1,085 (89) 865 (89) 220 (90)

Yes 132 (11) 107 (11) 25 (10)

Urinary duct infection, n (%) 0.188

No 1,022 (84) 809 (83) 213 (87)

Yes 195 (16) 163 (17) 32 (13)

Peritonitis, n (%) <0.001
No 1,144 (94) 930 (96) 214 (87)

Yes 73 (6) 42 (4) 31 (13)

SOFA score 4 (3, 7) 4 (3, 6) 6 (4, 9) <0.001

NEWS score 3 (2, 5) 3 (2, 4) 4 (2, 5) <0.001

Callout: a, continuous variables are described by the median and quartiles. Category varieties are analyzed by the χ2 test and continuous variables are analyzed by theWilcoxon rank-sum test; b,

first examination index following admission.

Crp, high-sensitivity C-reactive protein; Pro-BNP, pro-brain natriuretic peptide; Aptt, activated partial thromboplastin time; SpO2, pulse oxygen saturation; Map, mean arterial pressure; GCS,

Glasgow Coma Score; SOFA, Sequential Organ Failure Assessment; NEWS, National Early Warning Score.
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Establishment of a nomogram in the
modeling population

A nomogram was established using 10 variables (Figure 2). Each
variable of the patient could be matched with the point scoring line
according to the specific values to obtain the respective scores.
Finally, the scores of each variable were summed to obtain the
total score, and then, the corresponding risk could be obtained with
the risk scale at the bottom.

Model evaluation of the discrimination
power, goodness of fit, and clinical benefit

The AUC value of the model in the modeling population was
0.792, and the 95% CI was 0.761–0.823, suggesting good
discrimination (Figure 3A). The p-value of the calibration graph
was 0.754, indicating a good fit (Figure 3B). In the DCA curve
diagram, the curve of the model was far away from the two extreme
curves, showing that the model had a good clinical benefit value
(Figure 3C).

The AUC value in the validation population was 0.807, the 95%
CI was 0.759–0.856 (Figure 4A), and the p-value of the calibration
graph was 0.796, suggesting a good fit (Figure 4B). In addition, the
DCA curve was far away from the two extreme curves (Figure 4C).

Comparison with the models established by
the SOFA score, NEWS, and ensemble
method

In the validation population, the AUC value of the model
established by the NEWS was 0.520 (95% CI: 0.457–0.583). The
AUC value of the model established by the SOFA score was 0.682
(95% CI: 0.621–0.742; Figure 5A). Our model had better
discrimination than the NEWS model (p < 0.001) and the SOFA
score model (p < 0.001). The ensemble model in our study had an
AUC value of 0.758 in the validation population, with a 95% CI of
0.704–0.813 (Figure 5B), which was comparable to the established
logistic prediction model (p = 0.180). The calibration curve indicated
that the ensemble model was poorly calibrated (Supplementary Figure
S1). Pro-BNP, lactic acid, SpO2, albumin, and creatinine were the top
five variables among the 29 important variables in the ensemble
model, as indicated by SHAP values (Supplementary Figure S2).

Discussion

In this retrospective study, 10 variables were identified as
independent risk factors for respiratory failure after hospital
admission in septic patients, namely, respiratory rate, lactic acid,
Pro-BNP, D-dimer, albumin, globulin, pulse oxygen saturation,

TABLE 3 Multivariable logistic regression analysis and stepwise regression analysis of involved variables in the modeling group.

Variable Multivariable logistic regression Stepwise regression

OR (95% CI) p-value OR (95% CI) p-value

Procalcitonin (ng/mL) 1.000 (0.995–1.004) 0.872 NA NA

Aspartate transaminase (U/L) 0.995 (0.999–1.000) 0.072 1.000 (0.999–1.000) 0.079

Triglyceride (mmol/L) 0.970 (0.793–1.182) 0.765 NA NA

Urea nitrogen (mmol/L) 1.007 (0.983–1.032) 0.546 NA NA

Lactic acid (mmol/L) 1.106 (1.043–1.174) 0.001 1.108 (1.047–1.175) <0.001

Pro-BNP (pg/mL) 1.000 (1.000–1.000) <0.001 1.000 (1.000–1.000) <0.001

Cholinesterase (U/L) 1.000 (0.999–1.000) 0.986 NA NA

Prothrombin time (s) 1.002 (0.976–1.000) 0.861 NA NA

D-dime (mg/L) 0.947 (1.021–1.081) 0.001 1.050 (1.022–1.081) <0.001

Phosphorus <0.97 (mmol/L) 0.782 (0.538–1.144) 0.200 0.765 (0.533–1.107) 0.151

Phosphorus <1.61 (mmol/L) 1.643 (0.873–3.080) 0.122 1.741 (0.944–3.186) 0.073

Albumin (g/L) 0.947 (0.908–0.986) 0.009 0.943 (0.913–0.974) <0.001

Globulin <20 (g/L) 2.494 (1.504–4.091) <0.001 2.513 (1.528–4.091) <0.001

Globulin >35 (g/L) 0.708 (0.367–1.304) 0.284 0.704 (0.366–1.290) 0.273

Breath rate (times/min) 1.047 (1.001–1.095) 0.415 1.048 (1.002–1.095) 0.039

SpO2 (%) 0.854 (0.805–0.905) <0.001 0.856 (0.807–0.907) <0.001

GCS 0.782 (0.625–0.981) 0.031 0.776 (0.624–0.967) 0.022

Lung infection 2.070 (1.470–2.914) <0.001 2.060 (1.466–2.892) <0.001

Peritonitis 2.788 (1.566–4.909) <0.001 2.809 (1.590–4.908) <0.001

Callout: Pro-BNP, pro-brain natriuretic peptide; SpO2, pulse oxygen saturation; GCS, Glasgow Coma Score.
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GCS, lung infection, and peritonitis. After evaluating the
discrimination, calibration, and clinical validity, our model has a
good potential clinical value and interpretability. Because the
prediction model incorporates 10 indicators that can be obtained
as soon as patients are admitted to the hospital, it could be a helpful
tool in screening for sepsis patients with a high risk of respiratory
failure within 48 h following admission.

In our model, D-dimer acted as a biomarker of abnormal
hemostasis and an indicator of intravascular thrombus formation
(Johnson et al., 2019). The elevated D-dimer level indicates the
presence of thrombus in the microvessels or large blood vessels of
the lung, which can lead to imbalance of the ventilatory blood flow.
Recent studies have pointed out that in patients with COVID-19,
high levels of D-dimer are significantly related to respiratory failure
(Takeshita et al., 2021). Some studies have pointed out that the
albumin level at admission can predict the risk of respiratory failure
(Thongprayoon et al., 2020), which may be related to the fact that
low albumin indicates malnutrition, which leads to the atrophy of
the diaphragm and respiratory muscles and affects the respiratory
function. Low albumin also leads to a decrease in the plasma osmotic
pressure, which is more likely to cause pulmonary edema (Blunt
et al., 1998). Globulin is composed of immunoglobulin and
complements, playing a key role in the antivirus and anti-
bacterium response. In this study, a lower globulin level was
associated with increased respiratory failure risk, which could be
indirectly explained by the fact that globulin is associated with sepsis
severity and lung injury would more likely occur in patients with
severe sepsis (Nenke et al., 2015; Horvath-Szalai et al., 2018).
Patients with a low GCS have reduced airway protection ability,
which can easily lead to sputum blockage and aspiration. In some
studies, GCSs have also been found to be associated with respiratory
failure (Lu et al., 2022). Inflammation in the lungs would cause

FIGURE 2
Risk-prediction nomogram for respiratory failure within 48 h
following admission in patients with sepsis.

FIGURE 3
Evaluation of the prediction model in the modeling group. (A) ROC curves, (B) calibration chart, and (C) DCA curves.
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dysfunction in mucosal immunity, macrophages, and monocytes,
which might consequently increase the susceptivity to secondary
infections and respiratory distress (Bouras et al., 2018; Roquilly et al.,
2020). SpO2 is a sensitive indicator representing whether the patient
is hypoxic, and the increase in the respiratory rate is often due to the
compensation caused by hypoxia. In patients with sepsis, lung
damage is prone to occur (Tasaka et al., 2008), and the
indicators can be reflected in the decrease of SpO2 and the
increase of the respiratory frequency at admission; thus, these
patients may be more prone to respiratory failure. Lactic acid is

an indicator of the oxygen metabolism and is used to gauge the
prognosis in sepsis and other critical diseases (Liu et al., 2015;
Houwink et al., 2016; Luo and He, 2023), and it could serve as a
predictive factor for respiratory failure in this study and ARDS in
previous data (Mikkelsen et al., 2013). Pro-BNP, as an indicator of
cardiac function, could also be an indicator for other disease
deterioration, and its elevated levels would be closely related to
respiratory failure (Takasu et al., 2013; Cheng et al., 2015). A high
respiratory rate at admission indicated the presence of hypoxia and
the need for compensation, which would cause fatigue in the

FIGURE 4
Evaluation of the prediction model in the validation group. (A) ROC curves, (B) calibration chart, and (C) DCA curves.

FIGURE 5
Comparison of ROCs for models. (A) Comparison to the models based on the SOFA and NEWS scoring system and (B) comparison to the models
based on the ensemble method.
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respiratory muscle. Moreover, the presence of peritonitis was the
risk factor for respiratory failure, which might be caused by surgical
operation for the diagnosis and therapy of peritonitis.

The NEWS is helpful in identifying patients with early critical
illnesses (Subbe et al., 2001), and the SOFA score is clinically used to
predict the severity of sepsis patients (Vincent et al., 1996). Although
these two scoring systems were not developed for the prediction of
respiratory failure, previous studies have shown that in some patients,
the aforementioned two scoring systems are helpful in predicting the
risk of respiratory failure (Lalueza et al., 2022). According to the results
of the current study, the AUC value of our model was significantly
higher than those of the models using the aforementioned two scoring
systems, suggesting higher discrimination of our model. The increased
prediction power of our model could be explained by the inclusion of
the variables related to theworsening of the gas exchange function (such
as respiratory rate and lactic acid); however, some of them are expensive
and not routinely tested in clinical practice. Our findings raise the
significance of novel variables in predicting the respiratory failure risk.

We also built an ensemble model, which was comparable to our
logistic model on discrimination, but lower fitness was found for the
ensemble model. Moreover, the decision support provided by
models based on machine learning algorithms is often difficult to
be explained clinically (Kelly et al., 2019) due to its complexity. Thus,
we believe that our logistic model is more functional in prediction in
terms of clinical interpretation than machine learning models, such
as the ensemble model.

Our study has the following limitations: It is a single-center
study without validation with external data, so it is unclear if it is also
applicable in other regions. There were 10 variables enrolled in the
final model; some of themmight be not available for a source-limited
region. Our study could serve as a reference, especially our flowchart
on variable selection and model evaluation, for other research
workers who would like to predict the possibility of respiratory
failure.

Conclusion

Based on clinical indicators, we constructed a model for
predicting the risk of respiratory failure within 48 h following
admission in sepsis patients. This established model is effective,
and it can help clinical staff in the decision-making process involved
in the management of patients with sepsis.
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