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Poor wound healing and pathological healing have been pressing issues in recent
years, as they impact human quality of life and pose risks of long-term
complications. The study of neovascularization has emerged as a prominent
research focus to address these problems. During the process of repair and
regeneration, the establishment of a new vascular system is an indispensable
stage for complete healing. It provides favorable conditions for nutrient delivery,
oxygen supply, and creates an inflammatory environment. Moreover, it is a key
manifestation of the proliferative phase of wound healing, bridging the
inflammatory and remodeling phases. These three stages are closely
interconnected and inseparable. This paper comprehensively integrates the
regulatory mechanisms of new blood vessel formation in wound healing,
focusing on the proliferation and migration of endothelial cells and the release
of angiogenesis-related factors under different healing outcomes. Additionally,
the hidden link between the inflammatory environment and angiogenesis in
wound healing is explored.
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1 Introduction

A successful wound healing process hinges upon the orchestrated interplay of three
distinct stages: the inflammatory phase, proliferative phase, and remodeling phase. Over the
course of wound repair, the establishment of a novel vascular system unfolds as an ongoing
endeavor. Within the confines of the wound site, an initial period witnesses fervent and
efficient angiogenesis, culminating in the emergence of a disorganized and fledgling network
of neovessels. Subsequent to this, a methodical process of pruning these neovessels
transpires, with the aim of reinstating a vascular network milieu akin to its pre-injury
state. However, the manifestation of pathological angiogenesis can take the form of either
impaired or excessive vessel formation. The former is intricately tied to the emergence of
non-healing wounds, while the latter finds correlation with the pathogenesis of conditions
such as pathological scars, tumors, arthritis, and retinal disorders. Concurrently, the
inflammatory phase and angiogenesis are inextricably linked, given that an array of
inflammatory cells has been substantiated as sources of pro-angiogenic factors. This
symbiotic relationship begets a hierarchical regulatory role for both processes within the
intricate framework of wound repair.
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2 Vascular development and regulation
in tissue repair

Vascular development is a complex process involving diverse cell
types and microenvironmental alterations (Schultz et al., 2011). This
process encompasses key stages, including activation, sprouting,
regression, and maturation (Wietecha et al., 2013). At the cellular
level, endothelial cells play a pivotal role as the foundational vascular
scaffold during tissue repair. In the phase of angiogenic sprouting, these
cells undergo a sequence of events, including activation, adhesion,
proliferation, and migration (Wacker and Gerhardt, 2011; Chen
et al., 2019). On the molecular level, angiogenesis is a
multidimensional process wherein existing or surviving vessels form
new blood vessels, dynamically regulated by numerous cellular
mechanisms and mediators (De Palma et al., 2017).

2.1 Stimulation and activation of
neoangiogenesis

2.1.1 Regulation of VEGF-Driven angiogenic
signaling pathways by various signaling

FactorsVascular regeneration is primarily mediated through the
signaling of Vascular Endothelial Growth Factor Receptor-2
(VEGFR-2) in endothelial cells (Simons et al., 2016). Over
30 years ago, VEGF, also known as vascular permeability factor
(vPF), was discovered by Senger et al. in tumor cells. VEGF is an
essential factor in angiogenesis and remodeling, mediating cell
proliferation, angiogenesis promotion, and increased permeability
capabilities. Growth factors and their receptors are subject to
regulation by various molecules and their receptors, and they can
also modulate the expression of downstream receptors and cellular
behaviors. Hypoxia is a crucial driving factor for angiogenesis, and
Hypoxia-Inducible Factors (HIFs) serve as the principal regulatory
factors in cellular responses to hypoxia (Semenza, 2012). Under
conditions of low oxygen or hypoxia, the finely orchestrated vascular
homeostasis governed by prolylhydroxylase domain-containing
enzymes (PHDs) becomes disrupted, leading to the accumulation
of hypoxia-inducible factor-1 alpha (HIF-1α) (Salceda and Caro,
1997; Hickey and Simon, 2006). This shift propels the transition of
the vasculature from quiescence to an active state, creating a
favorable surrounding, for neovascularization. In hypoxic
environments, various responsive and inflammatory cells release
pro-angiogenic factors, with vascular endothelial growth factor
(VEGF) occupying a prominent position. VEGF is closely
associated with the accumulation of Hypoxia-Inducible Factor 1-
alpha (HIF-1α). HIF-1α regulates downstream VEGF, and together,
they play a concerted role in the process of angiogenesis (Zhang
et al., 2018). Additionally, VEGF is expressed in various cell types,
including keratinocytes involved in the formation of the epidermis.
FOXO1, a forkhead transcription factor involved in a wide range of
cellular processes, is significantly activated in the leading edge and
basal layer of keratinocytes after skin injury (Jeon et al., 2018). It
promotes the signal transduction of VEGF in keratinocytes by
downregulating the anti-angiogenic signal CD36 (Ren, 2018). The
PI3K/AKT/mTOR pathway plays a crucial role in regulating cell
growth, metabolism, and biosynthesis. It modulates angiogenesis
either through HIF-1α-dependent or HIF-1α-independent

mechanisms, increasing the expression of VEGF and other
endothelial growth factors (Zhong et al., 2000; Chen and
Meyrick, 2004; Falcon et al., 2011). Simultaneously, it can
promote angiogenesis by enhancing the migration of
keratinocytes and fibroblasts and inducing VEGF expression (Du
et al., 2023). The upregulation of VEGF leads to weakened cell-cell
connections and increased microvascular permeability, marking the
initiation of the activation and sprouting phases in new blood vessel
formation (Weis and Cheresh, 2005). Notch serves as a direct
molecular guide for tip cell development. The expression of
VEGF/VEGF-R and the chemokine receptor CXCR4 are critical
molecules controlling the activity of the Notch signaling pathway.
Additionally, VEGF triggers the expression of the Notch ligand
dll4 in tip cells, establishing a Notch-Dll4 signaling coupling to
promote vascular sprouting and arterial formation (Pitulescu et al.,
2017).

2.1.2 Mechanical stress regulation in the early stage
of angiogenesis

Clues from mechanical mechanics have been demonstrated to
significantly impact angiogenic sprouting through various
mechanisms, particularly in determining the location of tip cell
formation (Yung et al., 2009; Barrasa-Ramos et al., 2022). Among
these, shear stress generated at the apex of endothelial cells in response
to intraluminal flow appears to be particularly relevant in determining
the axial position of sprouting (Ghaffari et al., 2017). Intraluminal flow,
at low values, promotes the degradation of the endothelial cell basement
membrane by regulating matrix metalloproteinase activity, thereby
altering vascular permeability (Seano et al., 2014; Fey et al., 2016).
Transvascular and interstitial blood flows seem crucial in determining
the circumferential position of vascular occurrence (Ghaffari et al.,
2017). The transduction of mechanical signals into cellular biological
signals is intricately linked to the key transcriptional regulatory factor
YAP/TAZ (Totaro et al., 2018). The stretching of the cellular scaffold
activates YAP/TAZ, leading to their translocation from the cytoplasm to
the cell nucleus. Shear stress generated by blood flow has also been
shown to transport YAP/TAZ into the nuclei of endothelial cells
(Nakajima et al., 2017). Notably, the Hippo pathway, particularly the
YAP/TAZ pathway, orchestrates endothelial contact inhibition and the
modulation of vascular endothelial calcification protein, thereby
contributing to vascular sprouting (Choi et al., 2015). The EGFR-
RAS-RAF-MEK-ERK signaling axis can stimulate the activation of
LATS kinase and influence downstreamHippo pathways (Vlahov et al.,
2015). Furthermore, YAP/TAZ mediate VEGF-VEGFR2 signaling in
angiogenesis and foster the establishment and maturation of the
vascular barrier (Kim et al., 2017; Wang et al., 2017). Presently, in
vivo imaging microscopy directly captures the formation of novel,
distorted microvasculature during wound healing. This nascent
vasculature exhibits heightened sprouting frequency compared to
adjacent normal capillaries, likely attributed to signaling pathway
activation resulting from perturbed downstream hemodynamic
properties (Chong et al., 2017).

2.2 Selective regression of neoangiogenesis

Simultaneously, as vasculature matures, selectively regressing
neovessels eventually restore the capillary density present prior to
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injury. Insufficient perfusion of certain newly formed capillaries
induces diminished shear stress and a dearth of endothelial cell
survival signals, TIE1 and TIE2, integral in physiological vessel
regression (Ando and Yamamoto, 2013). During such regression,
endothelial cells migrate from pruned vessels to neighboring ones
due to differential shear forces (Chen et al., 2012; Franco et al.,
2015). Apoptosis signals mediated by the BCL2 family proteins do
not actively initiate vessel regression; rather, they facilitate vessel
clearance when migration to alternative vessels is unfeasible
(Franco et al., 2015; Watson et al., 2016). In pathological vessel
regression, observed in conditions like diabetic retinopathy and
diabetic nephropathy, hyperglycemia amplifies vessel regression
and endothelial cell apoptosis. Elevated glucose levels heighten the
BAX/BCL2 ratio and activate protein kinase C, with VEGF
assuming a pivotal role in high-glucose-induced endothelial cell
apoptosis (Quagliaro et al., 2003; Yang et al., 2008).
Concomitantly, during wound healing, the regression of nascent
capillaries closely involves negative vascular regulatory factors.
Among these, pigment epithelium-derived factor (PEDF), a serpin
family member, emerges as a promising anti-angiogenic factor
within the vascular system. It is recognized for its ability to induce
endothelial cell apoptosis and reduce the permeability of leaky
neovessels (Aurora et al., 2010). Another influential factor in
wound capillary remodeling is Sprouty-2 (SPRY2). Functioning
as an intracellular protein, SPRY2 impedes the mitogen-activated
protein kinase (MAPK) signal, ultimately attenuating the impact of
VEGF on endothelial cell proliferation during wound healing
(Cabrita and Christofori, 2008).

3 The intrinsic relationship between
hypoxia and poor neovascularization

3.1 High glucose suppresses HIF-1α-
mediated pro-angiogenic pathways

Numerous studies underscore the association between
impaired angiogenesis and delayed wound healing, with
diabetes often leading to chronic non-healing wounds (Chao
and Cheing, 2009). Oxygen assumes a pivotal role in nearly all
aerobic cellular respiration and metabolic processes during the
wound healing trajectory. Yet, both oxygen deprivation and excess
can exert substantial influence on the healing dynamics. Hypoxia,
instigated by oxygen deficiency, prompts the activation of
hypoxia-inducible factor-1 alpha (HIF-1α). This master
regulator not only influences downstream VEGF signaling but
also exerts control over the HIF1α-PFKFB3 pathway. Of particular
significance, PFKFB3 plays a decisive role in dictating the
competition amongst endothelial tip cells and, akin to VEGF,
assumes a central role in the initiation of vascular neogenesis (Min
et al., 2021). Amid normoxic conditions, prolyl hydroxylase
domain-containing enzymes (PHDs) transition into an active
state upon encountering oxygen and divalent iron. This
activation sets the stage for the hydroxylation of HIF-1α,
subsequently subjecting it to ubiquitination by Von Hippel-
Lindau protein (VHL), a ubiquitin E3 ligase. The ubiquitinated
HIF-1α is then subjected to degradation via the 26S proteasome.
However, under hypoxic circumstances, HIF-1α stabilizes and

migrates into the cellular nucleus, where it dimerizes with HIF-
1β. The resulting complex binds to hypoxia-response elements
(HREs) nestled within HIF target genes, thereby instigating their
transcription. High glucose conditions inhibit the activity of the
N-terminal and C-terminal transactivation domains of HIF-1α
(Botusan et al., 2008). Moreover, elevated glucose levels incite the
accumulation of methylglyoxal, which destabilizes HIF-1α via
PHD-independent or VHL-independent mechanisms (Ceradini
et al., 2008). In scenarios marked by high glucose and hypoxia, the
methylglyoxal-mediated activation of HIF-1α and the co-activator
p300 mutually hinder transcriptional processes (Figure 1). Chen Z,
Zhu Y, and others have also discovered that hypoxia can regulate
angiogenesis, including endothelial cells, through the HIF-1α/Let-
7s/AGO1/VEGF pathway. This involves negative regulation of
AGO1, leading to a significant increase in VEGF protein
expression (Chen et al., 2013; Zhu et al., 2020).

3.2 Regulation of angiogenesis by AMPK
under hypoxic conditions

In recent years, the role of glucose and lipid metabolism in
angiogenic sprouting has gained attention. AMP-activated protein
kinase (AMPK) has long been recognized for its role in regulating
glycolysis and fatty acid oxidation. It has been used to treat diabetes
by inducing glucose uptake in muscle cells to expend energy. The
activation of CaMKK/AMPK can regulate glucose uptake and
metabolism in diabetes treatment (Entezari et al., 2022). AMPK
stimulates the phosphorylation of two crucial regulatory proteins,
TBC1D1 and TBC1D4, of glucose transporter 4 (GLUT4),
promoting glucose uptake by muscle cells (Spaulding and Yan,
2022). AMPK has been shown to have both positive and negative
regulatory effects in angiogenesis. Under physiological conditions
such as hypoxia, local ischemia, and exercise, activated AMPK
signaling inhibits mTORC1 signaling, inducing cellular
autophagy. The AMPK/mTOR pathway prevents oxidative stress
in the endoplasmic reticulum and mitochondria caused by high
glucose, protecting endothelial cells from apoptosis and dysfunction
(Varshney et al., 2017; Jin et al., 2018). Some studies also suggest that
endothelial cell autophagy stabilizes HIF-1α, promoting vascular
expression (Salminen et al., 2016). Stimulating AMPK
phosphorylation also activates the PI3K/AKT axis, controlling
inflammation and downstream mTOR activation to promote
angiogenesis. However, under pathological and tumor conditions,
such as in diabetic retinopathy, high glucose can inhibit AMPK
activity and activate mTOR. The latter upregulates HIF-1α, leading
to increased VEGF expression. Emerging evidence implies that
AMPK activation in tumor cells engenders the ubiquitination
and degradation of HIF-1α, thereby counteracting its activation
(Seo et al., 2016; Wang et al., 2022a; Chen et al., 2022). Notably,
Cheng Wang and colleagues postulate the coexistence of PHD2 and
AMPK within the same complex. AMPKα1 phosphorylates PHD2,
rendering it inactive and curtailing the PHD2-mediated
hydroxylation and degradation of HIF-1α (Wang et al., 2022b).
The profound interrelation between AMPK-dependent and
-independent regulation of HIF-1α, as well as the potential cross-
linkage between these pathways, remains a terrain ripe for further
exploration (Figure 2).
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3.3 Impaired macrophage function in
chronic wounds

Macrophages are crucial cells derived from the immune system
during the repair process. In fact, macrophages play a pivotal role in
the early stages of angiogenesis by guiding the sprouting of
endothelial cells. Macrophages establish crosstalk with endothelial
cells during angiogenesis by producing various growth factors such
as VEGF, PDGF, fibroblast growth factor (FGF), and TNF.
Additionally, matrix metalloproteinases (MMPs) produced by
macrophages assist in creating a biologically useable gradient of
VEGF, guiding endothelial sprouting (De Palma et al., 2017).
Recently, through in vivo imaging, it has been discovered that
macrophages also occupy the gaps between the tips of blood
vessels in skin wound healing. Macrophages around newly
formed vessels contribute to the anastomosis of vessels and the
stability of late-stage angiogenesis (Blanco and Gerhardt, 2013).
However, in diabetic wounds, the increase in advanced glycation end
products (AGEs) due to high glucose leads to inherent sensitivity of
marrow progenitor cells in diabetic mice to pro-inflammatory
macrophage polarization. Although their polarization towards
pro-inflammatory M1 phenotype is heightened, their phagocytic
activity is significantly reduced, resulting in the accumulation of
neutrophils in diabetic wounds (Ishida et al., 2019). Simultaneously,

this interferes with their polarization towards the anti-
inflammatory, pro-healing M2 phenotype (Pavlou et al., 2018).

Macrophages affected by hyperglycemic environment
consequently discharge elevated levels of pro-inflammatory
cytokines, thereby instigating a decline in the population of
M2 phenotypic cells while ushering in an upswing in the
proportion of M1 phenotypic cells (Mirza and Koh, 2011).
Furthermore, emerging research underscores the role of
inflammatory macrophages in the initial stages of wound repair
initiation, wherein they orchestrate the disintegration of neutrophils
within wounds. The untimely inhibition of TNF-α expression can
potentially undermine neovascularization (Gurevich et al., 2018).
Therefore, the reduced angiogenesis in diabetic wounds may be
related to macrophage dysfunction.

3.4 The influence of microRNA on
angiogenesis

An increasing body of evidence indicates that non-coding RNA,
particularly microRNA, can either promote or inhibit endothelial
cell proliferation, migration, and lumen formation, ultimately
influencing angiogenesis (Bartel, 2004; Voellenkle et al., 2012).
Furthermore, an array of data substantiates the notion that the

FIGURE 1
Under hypoxic and non-diabetic conditions, HIF-1α is stabilized and translocates to the nucleus, where it forms a dimer with HIF-1β on the hypoxia
response element (HRE) of target genes. This complex recruits co-activators, including p300, facilitating the transcription of HIF-1 target genes. This
process mediates the adaptive response to hypoxia and promotes vascularization in wound healing through the activation of the HIF-1α/VEGF signaling
pathway along the regulated axis. In diabetic conditions, both the degradation of HIF-1αmediated by prolyl hydroxylase (PHD) and themodification
of HIF-1αmediated bymethylglyoxal are enhanced, leading to the ubiquitination of HIF-1α. Concurrently, methylglyoxal inhibits the recruitment of HIF-1
dimers and co-activators by modifying p300. This inhibition suppresses the dimerization of HIF-1 and the recruitment of co-activators, ultimately
preventing the expression of HIF-1α. As a result, this molecular cascade contributes to the altered response to hypoxia in diabetic conditions.
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dysregulation of miRNA-mediated angiogenesis regulation
contributes to an array of maladies, encompassing vascular
tumors, tumor development, and aortic dissection. In the recent
years, research inquiries have ventured into the realm of miRNAs
and their contribution to angiogenesis within the context of chronic
non-healing wounds. MiRNAs, through their capacity to target and
regulate RNA and protein synthesis, exert modulatory influence
over cellular biological effects and angiogenic factors, thus wielding
considerable sway over the intricacies of angiogenesis in non-healing
wounds. Pertinently, inhibitors of miRNA-200b evince a propensity
to enhance angiogenesis, with their diminished expression aligning
with hypoxic conditions and a concomitant reduction in HIF-1α
expression (Chan et al., 2011). In a downstream progression, Ets-1
emerges as a novel target—a transcription factor with a stake in
angiogenesis. Notably, Ets-1 steps in to salvage miRNA-200b-
induced detriment, stymieing the trauma-induced process of
angiogenesis inhibition. This serves as a compelling illustration
that transient miR-200b downregulation serves as an initiator of
the angiogenic cascade. Moving to the diabetic wound context, the
expression of miRNA-200b impinges upon the expression of
GATA2 and VEGF2, leading to a constriction of angiogenesis
(Chan et al., 2012). In a converse vein, the quelling of miR-200b
expression fosters the resurgence of Notch1 expression and
reactivates the Notch pathway, thereby amplifying the growth
trajectory of vascular endothelial cells (Qiu et al., 2021).
Moreover, miRNA-210, elicited by hypoxia, precipitates
heightened expression of the Notch1 signaling molecule, a
stimulus that precipitates the migration of endothelial cells and
augments the processes of angiogenesis (Lou et al., 2012). However,
in a contrasting realm, miR-20b-5p assumes a role in tempering the

Wnt9b/β-catenin signaling pathway, consequently dampening
endothelial cell function and putting a check on angiogenesis
(Xiong et al., 2020).

4 Pathological excessive angiogenesis
and scar formation

In certain pathological contexts, the upregulation of
angiogenesis assumes a pivotal role as a pathological hallmark
driving the onset and progression of diseases. Malignant tumors
stand as quintessential examples, relying heavily on
neovascularization for an unceasing supply of nutrients that
facilitate tumor proliferation, invasion, and metastasis. Moreover,
the trajectory of scar formation is intrinsically linked to excessive
angiogenesis within the healing process of superficial skin wounds
(Korntner et al., 2019).

4.1 The role of endothelial cells in scar
formation

This aspect comes to the fore during the emergence of
hyperproliferative scars and hypertrophic scar nodules, marked
by a considerable elevation in capillary content and
neovascularization responses, surpassing the usual baseline levels
(Amadeu et al., 2003; van der Veer et al., 2011). Low-apoptotic
myofibroblasts (Hmyos) also contribute to the process of
angiogenesis. Hmyos produce signal entities called microvesicles,
significantly increasing three cellular processes of angiogenesis:

FIGURE 2
Molecular Crosstalk Between AMPK and HIF Pathways. HIF-P4H2, a protein responsible for regulating HIF, plays a crucial role. Under normoxic
conditions, HIF-P4H2 hydroxylates proline residues on HIF-1α through its oxygenase activity, enhancing its binding affinity to von Hippel-Lindau (VHL)
protein andmarking it for degradation. However, under hypoxic conditions, reduced HIF-P4H2 activity leads to decreased HIF-1α hydroxylation, making
it less prone to VHL binding, resulting in HIF-1α accumulation; FIH1 is another key protein in the hypoxic response. It inhibits the interaction between
HIF-1α and transcription co-factors CBP/p300, suppressing HIF-1 transcriptional activity. Under hypoxia, FIH1 activity decreases, less effectively inhibiting
HIF-1α and CBP/p300 interaction, allowing enhanced binding and increased HIF-1 transcriptional activity. Under hypoxia, HIF-P4H2 binds Ca, promoting
downstream CaMKK2/AMPK activation. Simultaneously, FIH1 can interact with ubiquitin ligase OTUB1, facilitating AMPK activation. This intricate
molecular interplay underscores the complex crosstalk between HIF and AMPK pathways, with HIF-P4H2 and FIH1 playing key roles in mediating their
interaction. Such molecular interactions offer vital insights into adaptive mechanisms in low oxygen environments.
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endothelial cell proliferation, migration, and assembly into
capillary-like structures (Laberge et al., 2021). On one facet, the
incomplete structural makeup of nascent blood vessels during
angiogenesis bestows upon them elevated permeability,
facilitating immune cell infiltration and the entry of
inflammatory cytokines from microvessels into the extracellular
matrix (ECM). This results in heightened local inflammation and
promotes the formation of hypertrophic scars (Ogawa and Akaishi,
2016). Moreover, fibronectin in the exudate serves as a substrate for
fibroblast attachment and inward growth, providing the matrix. The
implications of this are underscored by the work of Christian et al.,
who have delineated that, during the emergence of glial scars within
the nervous system, fibrinogen functions as an early signal within
the TGF-β/Smad pathway (Schachtrup et al., 2010). Upon the
infiltration of fibroblasts, collagen deposits are precipitated.
Conversely, the signals emanating from apoptotic endothelial
cells within poorly perfused neovessels, stemming from
inadequate blood flow, set the wheels in motion for the
development of fibrosis. In vitro studies have provided
compelling evidence, demonstrating that the conditioned media
sourced from apoptotic endothelial cells elicits heightened local
fibroblast adhesion and prompts the augmented expression of α-
smooth muscle actin, effectively serving as an indirect contributor to
the process of scar formation (Chang et al., 2022).

Furthermore, endothelial cells in scar nodules can lose their
original adhesive characteristics and apical-basal polarity,
transforming into migratory undifferentiated mesenchymal cells
that invade adjacent tissues. This differentiation process is known
as endothelial-to-mesenchymal transition (EndoMT) (Medici and
Kalluri, 2012). Fibroblasts and myofibroblasts in scar nodules are
derived from endothelial cells. Matsumoto et al. and Tanaka et al.
observed a significant increase in the expression of pro-
inflammatory and pro-fibrotic genes, SERPINA3 and LAMC2,
and the vascular generation-related gene VEGF in CD34 +
vascular endothelial cells within scar tissue (Matsumoto et al.,
2020; Tanaka et al., 2019).

4.2 Extracellular matrix in pathological
scarring

In the process of angiogenesis during wound healing, the
degradation of extracellular matrix (ECM) promotes vascular
sprouting, with endothelial tip cells migrating into the tissue to
provide a conducive environment. However, the degradation of
ECM components in this process may stimulate compensatory
collagen production by neighboring fibroblasts, leading to
increased deposition of scar tissue. Several studies have suggested
that reducing vascular production can effectively alleviate scar
healing, potentially by altering the ECM homeostasis and
improving the state of damaged degradation and excessive
accumulation (Ferguson et al., 1996). In hypertrophic scar (HTS)
formation, there is an imbalance in ECM synthesis and remodeling
(Ulrich et al., 2010). Fibroblasts and myofibroblasts persist due to
apoptosis defects, resulting in sustained presence of myofibroblasts,
excessive deposition of fibroblast collagen I, and scar formation
(Sidgwick and Bayat, 2012). Nodules containing myofibroblasts are
characteristic of hypertrophic scars (Xue and Jackson, 2015).

MMP1, a matrix metalloproteinase (MMP) that can improve scar
formation, is downregulated during HTS formation, leading to
reduced degradation of ECM components such as collagen I,
collagen III, and fibronectin. In hypertrophic scar nodules,
collagen production is 20 times higher than normal scars, and
the ratio of type I to type III collagen (17:1) is three times higher
than in normal scars (6:1). Scar nodules lack elastic fiber, hyaluronic
acid, and elastin, resulting in stiff scar tissue (Sidgwick and Bayat,
2012).

4.3 Scarless healing in fetal wounds

During the course of human fetal development, a remarkable
phenomenon called scarless wound healing prevails, albeit
exclusively in the early stages of fetal growth. Subsequent to
around 24 weeks of human fetal development or approximately
16–18 days of mouse gestational age, the transition from scarless
wound healing to scar-forming commences. The mechanisms
and processes governing scarless wound healing in fetuses offer a
realm of novel insights into potential avenues for the prevention
and treatment of scars in adults (Walmsley et al., 2015; Shakoor
et al., 2021) (Cass et al., 1997). Comparative analysis between
fetal and adult repair models has revealed that scarless wounds
exhibit lower levels of VEGF compared to their scar-forming
counterparts. Remarkably, the exogenous introduction of VEGF
is capable of converting a scarless wound model into one that
forms scars (Wilgus et al., 2008). This notion is corroborated by
animal repair models, where the inhibition of angiogenesis yields
enhanced healing outcomes. This manifests through the
suppression of fibroblast proliferation and collagen deposition
(Li et al., 2009), the reduction of vascular density, and the
contraction of scar width (Wilgus et al., 2008). Furthermore,
scientific inquiry has unveiled that curtailing redundant and non-
functional neovascularization can foster wound healing while
simultaneously minimizing scar formation. The expeditious pace
of wound healing on oral mucosa, in contrast to skin wounds, is
aligned with the relatively weaker angiogenic response in oral
mucosa. Furthermore, upon juxtaposing the scarless and scar-
forming phases of fetal repair, it emerges that VEGF expression
experiences a substantial upsurge during the scarless repair stage.
However, it is intriguing to observe that the receptors for VEGF,
namely, VEGFR-1 and VEGFR-2, undergo a downregulation of
around 30%–50% in all scarless repair fetal mice when compared
to the skin of age-matched control mice. Notably, this
downregulation does not culminate in a significant
discrepancy in the quantity of blood vessels between the two
groups (Colwell et al., 2005). This phenomenon hints towards the
possibility that the diminution of VEGFR-1 and VEGFR-2 could
potentially mitigate unnecessary non-functional vascular
perfusion, thereby exerting control over scar formation.
Consequently, it can be inferred that once the angiogenic
response surpasses the optimal threshold required for effective
wound healing, the onset of scar formation becomes inevitable.
Research pertaining to the transplantation of exosomes sourced
from fetal mesenchymal stem cells, aimed at promoting scarless
wound healing in diabetic wounds, further underscores the
pivotal role played by fetal mesenchymal stem cells in the
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context of scarless wound healing (Wang et al., 2022a). The
metabolic state of adult mesenchymal stem cells tends to veer
towards aerobic glycolysis, while fetal cells demonstrate a
propensity towards relying on oxidative phosphorylation as
their primary energy source. Pre-existing research by B.
WANG et al. has lent credence to the notion that the
introduction of fetal cell mitochondria triggers metabolic
reprogramming in adult cells. This metabolic state of
mesenchymal stem cells is intertwined with the phenomenon
of cellular senescence. Furthermore, the presence of a less acidic
microenvironment also assumes significance in the landscape of
wound healing (Shakoor et al., 2021). Notably, within the
spectrum of fetal scarless healing, a substantial concentration
of glycosaminoglycan hyaluronic acid (HA) is discernible within
the fetal extracellular matrix. This abundance of HA, in turn,
augments the proliferation and migration of fibroblasts
(Longaker et al., 1991). By contrast, hyaluronic acid assumes a
transient role in the early stages of adult wound healing. In the
context of rabbit fetuses, the degradation of hyaluronic acid
precipitates heightened collagen production and
neovascularization. Leveraging this contrast, B. A. Mast et al.
ventured to hypothesize that the active components stemming
from the degradation of hyaluronic acid contribute to the adult
wound healing response. Their investigation culminated in the
discovery that treatment with hyaluronic acid degradation
products yielded a marked increase in collagen content and
neovascular response compared to the control group. This
substantiates the notion that hyaluronic acid degradation
products indeed play a contributory role in the process of scar
formation.

5 Interaction between inflammatory
response and angiogenesis

Vascularization is a highly integrated, multicellular process that
relies on various cell activities within the microvascular
environment, with the crucial involvement of immune cells. The
interplay between angiogenesis and the onset of inflammation plays
a synergistic role in wound healing. Various inflammatory cells such
as neutrophils, monocytes, lymphocytes, macrophages, among
others, release multiple angiogenic factors upon exiting the
bloodstream. These factors, including vascular endothelial growth
factor (VEGF), stimulate endothelial cells to produce adhesion
molecules, recruiting inflammatory cells to leave the bloodstream,
thereby forming a feedback loop. Simultaneously, angiogenesis
maintains the inflammatory state by supplying oxygen and
nutrients to the inflammatory site, providing a substantial surface
area for the production of necessary cell factors, adhesion molecules,
and other inflammatory mediators. However, when chronic
inflammation or inadequate clearance of pathogens leads to the
failure of the inflammatory response, the increased blood flow to the
inflamed tissue is necessary to sustain the survival of inflammatory
cells producing these factors. In this context, inhibiting the growth of
new blood vessels may potentially control the inflammatory
response, presenting an avenue for preventing and treating
chronic inflammatory diseases (Gallo, 2000; Zittermann and
Issekutz, 2006; Costa et al., 2007).

5.1 ANG-TIE—Keymediators in inflammation
and vascularization

The ANG-TIE receptor pathway assumes significance in the
realms of vascular permeability and pathological vascular
remodeling, thus underscoring the intersection between
inflammation and this process (Saharinen et al., 2017). TIE1,
with its role as an ANG2 converter, is subject to cleavage by TNF
released during inflammation. This culminates in the
antagonistic activity of ANG2, rendering TIE2 incapable of
phosphorylation and allowing FOXO1 to execute its functions
unhindered. This eventuality leads to a reduction in vascular
stability and a simultaneous enhancement of vascular
permeability, thereby creating an environment conducive to
neovascular sprouting (Kim et al., 2016; Eklund et al., 2017).
In a similar vein, the VEGF discharged by inflammatory cells can
activate TIE2’s tyrosine kinase activity through the cleavage of
the extracellular domain of TIE1 (Du Cheyne et al., 2020). As the
inflammatory response wanes and VEGF release subsides, the
ANGPT-TIE receptor pathway undergoes pruning and a
reconfiguration of mechanisms associated with endothelial
cells. This encompasses responses to shear stress mediated by
VE-PTP, the migration of cells within the endothelial cell-matrix
milieu, inter-endothelial cell connections, and the binding of
ANG1 to TIE2, an event that triggers NF-κB—a regulator of
inflammatory responses. The decreased release of these factors,
coupled with significant eNOS activation, collectively contribute
to the well-established vascular protective function of this
pathway (Figure 3).

5.2 Macrophages: crucial participants in the
interplay of vascularization and
inflammation

Macrophages emerge as pivotal orchestrators at the crossroads
of angiogenesis and inflammation, owing to their versatile and
adaptable phenotypes. These cells are proficient at releasing an
array of dynamic cytokines, growth factors, and proteinases that
wield the capacity to sculpt the local milieu. This attribute
underscores their profound importance in this intricate interplay
(Wynn et al., 2013). Macrophages are adept at directly instigating
wound angiogenesis through the secretion of pro-angiogenic factors
like VEGF. Indirectly, they influence angiogenesis by releasing
cytokines such as IL-8 and proteases like MMP9, which activate
blood vessels and modify the extracellular matrix, thereby fostering
an environment conducive to neovascularization (Zajac et al., 2012;
Alraouji and Aboussekhra, 2021; Nueangphuet et al., 2021). In
recent years, the conventional dichotomy of macrophages into
discrete M1 and M2 phenotypes has undergone reevaluation,
with the understanding that macrophages exist along a
continuum where they can concurrently or sequentially exhibit
both phenotypes (Houser et al., 2011). Macrophages not only
participate in angiogenesis through paracrine secretion but also,
during the budding stage of angiogenesis, guide the fusion of
endothelial tip cells through adhesion molecules CDH5 and
PECAM1, forming a partnership with endothelial cells (Fantin
et al., 2010; Liu et al., 2016). VEGF has been found to promote
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the polarization of M2 macrophages (Wheeler et al., 2018).
Macrophages’ participation in angiogenesis extends beyond their
paracrine secretions; they function as companions during
angiogenesis, facilitating endothelial cell fusion in the sprouting
phase. Observations indicate that macrophages located near the
terminal endothelial cells express tumor necrosis factor (TNF),
which suggests an M1 phenotype. Strikingly, the absence of
macrophages in mice led to the development of abnormal and
underdeveloped vascular systems in the testes, even though the
overall endothelial cell counts remained unaffected (DeFalco et al.,
2014). Furthermore, macrophages exhibiting an M2-like phenotype
induce endothelial cell apoptosis and engage in the phagocytosis of
apoptotic endothelial cells, thereby underpinning their role in
vascular remodeling and prunning processes (Gurevich et al.,
2018). Furthermore, M2-like macrophages have been implicated
in controlling vascular permeability through the phosphorylation of
vascular endothelial (VE)-cadherin. Their influence on the vascular
barrier involves the downregulation of VLA4, which triggers a
cascade of signaling involving VCAM1/RAC1/ROS/p-PYK2/
p-VE-cadherin, thereby contributing to the regulation of vascular
integrity (Zhang et al., 2021). Despite the ANGPT-TIE signaling
system’s primary focus on endothelial cells, a noteworthy fraction of
macrophages also express TIE receptors. Interestingly, this
phenomenon seems to be independent of macrophage
polarization states and phenotypes. The precise role of the
ANGPT-TIE pathway in the migration and recruitment of
macrophages to inflammatory sites remains a matter of
contention. Ang-1 has the ability to induce monocyte chemotaxis
through a mechanism that operates apart from Tie-2 and integrin

binding. This effect is mediated by phosphatidylinositol 3-kinase
and heparin (Scholz et al., 2011; Srivastava et al., 2014).

6 Conclusion

In conclusion, angiogenesis stands as a pivotal orchestrator in the
complex symphony of wound healing and scar formation. Striking a
delicate balance in angiogenic processes is paramount, as both excessive
and insufficient angiogenesis can yield pathological outcomes,
impacting not only the quality of life but also carrying potential life-
threatening risks. The intricate interplay between angiogenesis and
inflammatory responses, characterized by the participation of immune
cells and the orchestration of cytokines, constitutes a fundamental
aspect of wound repair. Fetal scarless wound healing presents a
remarkable avenue for garnering insights applicable to scar
treatment in adult individuals. In this paradigm, factors like
angiogenesis and hyaluronic acid operate in concert to contribute to
the overall healing process. A comprehensive grasp of the multifaceted
role of angiogenesis in wound healing and scar formation lays the
foundation for the development of innovative therapeutic modalities
and preventive strategies. Interventions aimed at accelerating
vascularization can potentially ameliorate inflammatory reactions
and expedite wound healing timelines. The trajectory of future
research should delve into unraveling the intricate cross-talk
between diverse cell types, molecular signaling pathways, and
intricate networks within angiogenesis. This pursuit aims to unearth
optimal strategies that facilitate scarless wound healing. It is noteworthy
that scar healing exhibits a heightened angiogenic response compared to

FIGURE 3
Angiopoietin–TIE signalling in endothelial cells in homeostasis versus inflammation versus VEGF. Under steady-state conditions, the binding of Ang-
1 to the TIE2 receptor leads to the phosphorylation of TIE2, activating the PI3K/AKT1 pathway. This pathway phosphorylates FOXO1, triggering nuclear
exclusion of this transcription factor followed by degradation. Additionally, it promotes eNOS to maintain vascular homeostasis and can further enhance
downstream mTOR expression or induce ABIN2 to suppress the expression of key factors in the NF-κB inflammatory pathway. In the presence of
inflammation and sufficient VEGF expression, when TNF is released by M1 macrophages, the extracellular domain of the TIE1 receptor is cleaved. Due to
the dominant antagonistic activity of ANGPT2 over agonists, TIE2 remains unphosphorylated. Consequently, FOXO1 functions as a transcription factor
leading to the expression of genes associated with vascular instability (sprouting) and cellular apoptosis (pruning).
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non-scar healing, underscoring the importance of in-depth exploration
into the regulatory machinery governing angiogenesis. Such insights
hold the promise of not only enhancingwound healing but also averting
scar formation, thus presenting an exciting avenue for therapeutic
advancement.
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