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Extracting muscle synergies from surface electromyographic signals (sEMGs)
during exercises has been widely applied to evaluate motor control strategies.
This study explores the relationship between upper-limb muscle synergies and
the performance of joystick manipulation tasks. Seventy-seven subjects, divided
into three classes according to their maneuvering experience, were recruited
to perform the left and right reciprocation of the joystick. Based on the motion
encoder data, their manipulation performance was evaluated by the mean error,
standard deviation, and extreme range of position of the joystick. Meanwhile,
sEMG and acceleration signals from the upper limbs corresponding to the entire
trial were collected. Muscle synergies were extracted from each subject’s sEMG
data by non-negative matrix factorization (NMF), based on which the synergy
coordination index (SCI), which indicates the size of the synergy space and
the variability of the center of activity (CoA), evaluated the temporal activation
variability. The synergy pattern space and CoA of all participants were calculated
within each class to analyze the correlation between the variability of muscle
synergies and the manipulation performance metrics. The correlation level of
each class was further compared. The experimental results evidenced a positive
correlation between manipulation performance and maneuvering experience.
Similar muscle synergy patterns were reflected between the three classes and
the structure of the muscle synergies showed stability. In the class of rich
maneuvering experience, the correlation between manipulation performance
metrics and muscle synergy is more significant than in the classes of trainees
and newbies, suggesting that long-term training and practicing can improve
manipulation performance, stability of synergy compositions, and temporal
activation variability but not alter the structure of muscle synergies determined
by a specific task. Our approaches and findings could be applied to 1) reduce
manipulation errors, 2) assist maneuvering training and evaluation to enhance
transportation safety, and 3) design technical support for sports.

KEYWORDS

muscle synergy extraction, muscle synergy similarity, joystick manipulation,
maneuvering, electromyography, EMG

1 Background

Fine manipulation refers to the ability to perform precise actions or delicate tasks using
hands or tools, presented as coordination and precision of movements (Tang et al., 2017;
Tang et al., 2021). In the training and selection of pilots, evaluating the control ability of the
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joystick is critical, as the joystick is one of the primary control
devices in an aircraft and common interactive tools applied
with muscle synergy. In (Bezerra et al., 2019), the mean and
peak electromyographic activation values during joystick operation
have been studied for favorable pilot load conditions. Previous
research also revealed that muscle coordination changes during
motor adaptation to the viscous force field generated by haptic
interface (Fabio et al., 2016) or visuomotor rotation (Gentner et al.,
2013).

Joystick manipulation is a multi-joint coordinated motion for
which numerous control modes exist in the motion control of
the musculoskeletal system. Movements are inherently variable
and can be as consistent as possible by repetition of professional
athletes. Various studies have evidenced that the central nervous
system (CNS) can generate motor commands through a series of
synergistic combinations ofmuscles (d’Avella et al., 2003; Bizzi et al.,
2008; Bizzi and Cheung, 2013), known as muscle synergy. Muscle
synergy has recently been considered a common method for
studying complex motor control patterns, applied to research
fields of nerve damage effects (Roh et al., 2013; Tang et al., 2017),
human posture control (Torres-Oviedo and Ting, 2007; Robert and
Latash, 2008; Asaka et al., 2011), and locomotion of robot-assisted
technology (Pham et al., 2011; Salman et al., 2010; Wang et al.,
2021a; Wang et al., 2021b; Scano et al., 2019). Muscle contractions
during exercise can be divided into isometric and isotonic. In
isometric tasks, themodule structures ofmuscle synergies are robust
to changes in speed, and the neural commands to muscle synergies
change in response to speed changes (Kojima et al., 2017). The
motor control strategy can be modified depending on the accuracy
requirement of the isometric reach task (Ettema et al., 2005a;
Sano et al., 2020). In joystick isometric dual degree-of-freedom
torque tasks, the torque history affects coordination patterns, and the
motor system controls different orthogonal combinations of torque
oscillations and constant torques employing a single oscillating
muscle synergy (Ettema et al., 2005b). In joystick isometric force
feedback tasks (Camardella et al., 2021), divided muscle synergies
into groups with specific motor strategies and the same global
groups for all subjects, confirming that muscle sets can be reduced
to achieve comparable hand force estimation performances. For
isotonic contraction tasks, the literature shows that the CNS can
perceive the relationship between stiffness level and the size of the
endpoint deviation (Gribble et al., 2003; Osu et al., 2004) and alter
the mechanical impedance of the limb through the simultaneous
activation of antagonist muscle groups (Feldman and Levin, 1995;
Burdet et al., 2001), revealing the critical role of co-contraction in
arm movement performance.

In addition to co-contraction indices, inter- and intra-subject
similarities are hotspots in motor coordination (Alnajjar and
Shimoda, 2017; Barnamehei et al., 2018b; Esmaeili and Maleki,
2020). Studies have indicated that muscle synergies are a valuable
tool for quantifying variability at the muscle level and reveal
that intra-subject variability is lower than inter-subject variability
in synergy modules and related temporal coefficients, and both
intra-subject and inter-subject similarities are higher than random
synergy matching, confirming shared underlying control structures
(Zhao et al., 2021). During specific movements, two indices of
muscle cooperative stability and cooperative space are introduced
for the CNS, characterized by the best recruitment mechanism in

the process of balance behavior proficiency (Alnajjar and Shimoda,
2017). Taking kicking as an example, elite players have a high
similarity in the stability of muscle synergies (Barnamehei et al.,
2018b). In a controlled experiment with overhead shots, individual
muscle patterns ranged from moderate to highly similar between
elite and non-elite groups (Barnamehei et al., 2018a). These results
suggest that the CNS can create optimal sets of efficient behaviors
by optimizing the size of the synergy space in the appropriate region
by interactingwith the environment (Alnajjar et al., 2013). However,
the group comparison did not correlate muscle synergy results with
the performance of each exercise.

Training is hypothesized to change manipulation performance
and muscle synergies, and there is a specific correlation between
them. Subjects with different maneuvering experiences are selected
to perform the rocker manipulation task. This study explores
an objective and effective method to explore the relationship
between muscle synergy and manipulation performance, providing
theoretical support for sports science and scientific training
methods. To the best of our knowledge, this article is the first
to study the relationship between muscle synergy and joystick
manipulation position accuracy. This fine activity is practical and
essential for sports and transportation, rather than the broader
sense movements of the limb or joint, often studied in related
fields.

2 Data preparation: subjects,
hardware, and setup

2.1 Subjects, classes, and ethics

Seventy-seven healthy right-handed male subjects, detailed in
Table 1, aged 17–55 (25.18 ± 13.73) years, volunteered to participate
in this study and were divided into three classes according to their
maneuvering experience.

• Class Experts consists of professional pilots with over 1,000 h of
flight time;
• Class Trainees is formed by short-haul experienced pilots

who have completed 7–8 h of flight time in the company of
professionals;
• Class Newbies contains high school students without

experience in flying missions or joystick operations.

All subjects were informed of the experiment procedure
approved by the Ethics Review Committee of Fudan University
(No. FE22064R).

TABLE 1 Grouping and information of the 77 subjects.

Class Number Age Maneuvering experience (flight time)

Experts 19 40–55 ≥3,000 h

Trainees 30 18–19 7–8 h

Newbies 28 17–19 0

All 77 17–55 —
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FIGURE 1
Self-developed experimental device and software interface. (A) Top view of the device for experiments; (B) An exemplar result record. PD: position
deviation; PE: extreme range of the position. (C) A screenshot of the software interface; (D) Schematic experimental scene.

2.2 Experimental apparatus

Figure 1A exhibits our self-developed experimental apparatus
achieving rocker X/Y operation in two directions, for which the
motor encoder recorded the position of the joystick in real-time.
Users operate the experimental apparatus, interacting with an upper
computer interface. Figures 1B,C exemplify one record of a trail.

The angle of the joystick ranges from±15°, normalizing the angle
to the spacing of the two black circles on the screen. The precision
of the joystick is determined by the clearance of the planetary
reducer, which has a backlash of two arc minutes, that is, 0.03 mm
on the screen. The sensitivity of the device is determined by the
resolution of the motor encoder, 0.005 mm. The self-implemented
prototype acquired position datawith a position sampling frequency
of 200 Hz.

The coordination of the shoulder, elbow, wrist, and fingers
enables the manipulation of the joystick. The reciprocating motion
in this study is designed under a constant load condition (see
Figure 1B). The internal and external rotation of the shoulder and
the pronation/supination of the forearm were performed during the
experiment, while the elbow joint was retracted in the coronal plane
and flexed/extended in the sagittal plane. The range of motion of the
forearmwasmore evident than that of the elbow and shoulder joints.

Figure 1D illustrates the schematic experimental scene. All
subjects carried out experiments in their own habitual postures that
remained consistent and could have a slight forward lean. The base
of the experimental apparatus was fixed, and the seat backrest was
lowered backward to maintain enough space for the human body.
Therefore, no contact between the electrodes and the backrest was
observed or detected in the experiment.

2.3 Acquisition details

For convenience in the discussion, the entire experimental
procedure was described in terms of supination and pronation.

During the experiment, subjects were asked to sit upright on the
chair. The joystick moved back and forth along the X-axis, as
depicted in Figure 1A. The blue ball (10 mm) and the black circle
(20 mm) were initialized in the center and on the left/right sides,
respectively (see Figure 1C); the joystick moved right along the +X-
axis, while the blue ball synchronized with the right circle and vice
versa.

Subjects were asked to maintain a certain distance between their
elbows and thighs, thus exerting force with the upper limbs. They
were required to place the blue ball precisely in the circle center
as quickly as possible while maintaining accuracy. The blue ball
reciprocated between the black circles, providing instant feedback
on user operations while prioritizing accuracy. All participants
performed 16 repetitions in each test to ensure that at least 14 were
completed. The manipulation procedures and the corresponding
sEMG data were recorded simultaneously.

Operating the rocker arm requires rotation of the forearm and
the shoulder. The internal rotation of the shoulder mainly involves
the anterior deltoid (DA), the pectoralis major (PM), the latissimus
dorsi, and the teres minor (TM), while the external rotation involves
the infraspinatus (INF), the teres minor (TM), and the posterior
deltoid (DP). The energy of inner rotation is much higher than that
of outer rotation (Ijiri et al., 2020). The biceps brachii (short/long
head) can be used as a supinator muscle, where the biceps play
a role in the activity of medium or high-power supination. The
triceps brachii (long/lateral head) can be activated by the same
length and neutralize the tendency of the biceps to bend the
elbow (Soubeyrand et al., 2017). The pronator muscle consists of the
pronator muscle and the pronator teres muscle. The brachioradialis
(BRAD) is used primarily for elbow flexion but can also be used for
pronation.

As exhibited in Figure 2, a DELSYS Trigno system was used to
collect sEMG and acceleration data from 10 muscles of the upper
arm and shoulder, including BRAD, short head of the biceps (BICS),
long head of the biceps (BICL), PM, DA, long head of the triceps
(TRIL), lateral head of the triceps (TRILA), INF, TM, and DP.
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FIGURE 2
Placement and sensing muscles of sEMG sensors. Top right: self-adhesive electrodes. BRAD: brachioradialis; BICS: the short head of biceps; BICL: the
long head of biceps; PM: pectoralis major; DA: anterior deltoid; TRIL: the long head of triceps; TRILA: the lateral head of triceps; INF: infraspinatus; TM:
teres minor; DP: posterior deltoid.

The placement of the sEMG electrodes follows the guidelines for
noninvasive electromyographic assessment of muscles, as shown in
Figure 2, at a sampling rate of 1,249 Hz, while the acceleration was
sampled at 149 Hz.The acquired signalswere processed byMATLAB
(R2017b, MathWorks Natick, United States).

3 Methodology

3.1 Processing of motion encoder data

The position data were derived from the motor encoder (see
Figure 1C) and processed in the following steps to provide valid
manipulation performance data.

• Normalization and median filtering: Normalized values within
the (−1,1) interval of the raw data were filtered in the median
to eliminate interference noise from abnormal burrs. The filter
used 30 points and a window length of 150 ms.
• Indexing: Each successive data portion that contains all values

(above a threshold T or below −T) was indexed, resulting
in no fewer than 14 valid manipulation data partitions, as
instantiated by the red dots in Figure 1B. T defaulted to 0.8
and was manually adjusted in a few cases to obtain the correct
number of manipulation repetitions.
• Averaging and deviation: The position deviation (PD) is the

deviation between the mean value of all actual positions on all
trails, as instantiated by the green baselines in Figure 1B and
the theoretical value of the black circle, indicating the precision

of the position.The repeatability of the position (PR) represents
the standard deviation of all actual positions.The extreme range
of the position (PE) means the range of operation on each side.

3.2 Preprocessing of sEMG data

Before extracting muscle synergies, the acquired sEMG signal
was pre-processed.

• A mean shift procedure eliminated baseline shifts caused by
trial or subject electrode displacements.
• A Butterworth filter of 20–250 Hz removed high-frequency

noise, with which motion artifacts were also significantly
eliminated.
• Fixed band-stop filters removed the frequencies of 50 Hz and

150 Hz.
• A full-wave rectification flipped the negative EMG signal above

the baseline to ensure positive values.
• A Butterworth filter of 20 Hz filtered the rectified signal to

provide a smooth envelope (Kieliba et al., 2018).
• Min-Max scaling normalized the signal.

The simultaneous use of sEMG and ACC signals is a paradigm
often adopted for human activity studies (Liu and Schultz, 2022;
Liu. et al., 2023). A single extraction have been performed over the
whole trips (Oliveira et al., 2014).The acceleration signal (ACC)was
interpolated due to different sampling rates and filtered frommedian
to segment the results of muscle synergy activation. Pre-processed
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signals Vm×t (m is the channel of muscles) are decomposed:

Vm×t ≅Wm×n ×Hn×t, (1)

where W is the basis matrix for muscle activation, n is the number
of muscle synergies, and H holds the coefficients of the activation
of the n muscle synergies. Wi (i = 1,2,…,n) is a vector of the
muscle synergymatrix, each element of which takes a value between
0 and 1. Wis, specifying the participation level of each muscle
in each synergy and forming a muscle synergy, are activated by
the activation coefficient matrix Hi, which represents the neural
command of the CNS and determines the relative contribution of
the muscle synergy matrix (Tang et al., 2017).

The reconstructed matrix V′m×t is assumed to be

V′m×t =Wm×n ×Hn×t, (2)

which is directly related to the value of n. Variability accounted for
(VAF) is defined as

VAF = 1−
(Vm×t −V

′
m×t)

2

V2
m×t

(3)

which could be used to decide the value of n. VAF quantifies the
percentage of muscle cooperativity extracted relative to the original
EMG signal. The literature shows that the signal is considered
successfully reconstructedwhen theVAF is greater than 90%or until
the addition of synergy does not further increase the VAF by an
amount greater than 5% (Clark et al., 2010). The number of muscle
synergies n ∈ [1,10] is selected as the minimum number that could
adequately reconstruct pre-processed signals in all trials (Tang et al.,
2017).

3.3 Quantitative muscle synergy similarity

3.3.1 Muscle synergy spaces
SCI (synergy coordination index) is used to evaluate the size

of the resulting synergy space, in other words, the coordination
between the synergies utilized. In class c ∈ Experts, Trainees,
Newbies, the subject k’s synergy matrix M(c,k) and H (c,k) are
extracted from the sEMGsignals of all the corresponding trials. Each
segmented ACC signal for muscle synergy activation is regarded as
a circle, interpolated to 100 data points based on time.

M (c,k) =

[[[[[[[

[

W1 (c,k)

W2 (c,k)

⋮

Wn (c,k) .

]]]]]]]

]

(4)

H (c,k) =
[[[[

[

H1 (c,k)
H2 (c,k)
⋮

Hn (c,k)

]]]]

]

=
[[[[

[

[[[[

[

H1m (c,k)
H2m (c,k)
⋮

Hnm (c,k)

]]]]

]

[[[[

[

H1m (c,k)
H2m (c,k)
⋮

Hnm (c,k)

]]]]

]

⋯
[[[[

[

H1m (c,k)
H2m (c,k)
⋮

Hnm (c,k)

]]]]

]

]]]]

]

. (5)

Only positive vector components have a cooperative space
before the non-negative matrix decomposition for the estimation
of W, Furthermore, the vectors Wi (i = 1,2,…,n) are generally not
orthogonal to each other. The size of the cooperative space depends

on the relative angle of the vector Wi. To quantify the size of the
collaborative space, we define SCI in terms of the inner product of
Wi:

SCI (c,k) = 2
n (n− 1)

∑
i≠j

Wi (c,k) ⋅Wj (c,k) . (6)

SCI values range from 0 to 1. An SCI of 1 means that all vectors
Wi are identical, while 0 means that all vectors Wi are orthogonal.
The larger the SCI, the smaller the synergy space. The median and
standard deviation values of SCI describe the synergy space of the
group.

3.3.2 Variability of muscle activation
In addition to computing the variability of W, an evaluation

was also performed on the relationship between the variability of
performance and the variability of synergy recruitment through
the analysis of H, with the variability of the center of activity
(CoA) in the form of standard deviation. The CoA of class c is
defined as

CoA (c) = [CoA (c,1) CoA (c,2) ⋯ CoA(c,Kc)] , (7)

where Kc denotes the number of subjects in class c (k = 1,2,…,Kc)
and

CoA (c,k) =

[[[[[[[

[

CoAH1
(c,k)

CoAH2
(c,k)

⋮

CoAHn
(c,k)

]]]]]]]

]

. (8)

CoAHi
(c,k) is calculated as the mean of 14 cycles cut from the

ACC signal:

CoAHi
(c,k) = 1

14

14

∑
t=1
(CoAHim

(c,k)) , (9)

where the CoA during the mth part of Hi(c,k), CoAHim
(c,k), was

calculated using circular statistics (Watson, 1982; Kibushi et al.,
2018a) and plotted in polar coordinates with polar directions
of 0°–360° and radii denoting the mean activities of the
muscle:

CoAHim
(c,k) = tan−1

∑100
t=1
(sinθ×Him (t)))

∑100
t=1
(cosθ×Him (t)))

. (10)

CoAHim
(c,k) was calculated as the vector angle, the first

trigonometric moment that points to the center of mass of that
circular distribution using the following formulas. Variability is
reflected in the standard deviation (STD):

STDHim
(c,k) = √ 1

13

14

∑
i=1
(CoAHi

(c,k) −CoAHi
(c,k))

2
. (11)

3.4 Statistical analysis

The descriptive statistics in this work involve mean values
and standard deviations. Four one-way repeated analyses of
variance (ANOVA) were performed on the synergy similarity
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FIGURE 3
Significant results of the three classes’ manipulation performance metrics analyzed by one-way analyses of variance (ANOVA). The vertical axes
indicate the error value. All data passed the homogeneity of variance test. The asterisks indicate high significance (p < 0.05). PR: repeatability of the
position; PD: position deviation; PE: extreme range of the position. Note that PEleft differs from the other three subplots in the vertical axis range.

and manipulation performance metrics (PR, PD, PE) among the
three classes. In addition, the Pearson correlation coefficient r was
analyzed through the manipulation performance (PRleft, PRright,
PDleft, PDright, PEleft, and PEright), SCI, CoAHim

, and STDHim
. The

significance level was set as p < 0.05 for the statistical analysis
implemented by SPSS (version 26.0, SPSS Inc. Chicago, IL, United
States).

4 Results

4.1 Statistical analysis of manipulation
performance metrics

The performance metrics for the manipulation of the three
classes, PR, PD, and PE, are analyzed by one-way ANOVA in
Figure 3, where all data passed the homogeneity of variance test.
Significant differences were discovered in the values of PRleft
(F = 4.955; p = 0.010), PRright (F = 2.735; p = 0.071), and PEleft
(F = 3.415; p = 0.038) between the three classes. Note that the
asterisk indicates high significance (p < 0.050), as does the following.
Comparing each pair of classes yields the following findings.

PRleft and PRright
Compared to Experts, Trainees (Δ = −1.80± 0.70; p = 0.011)

and Newbies (Δ = −2.07± 0.70; p = 0.004) have larger PR-
left values; However, Figure 3(PRleft) shows no significant
difference between Trainees and Newbies. The case of PRright

is similar: Trainees (Δ = −1.43± 0.66; p = 0.034) and Newbies
(Δ = −1.32± 0.62; p = 0.047) are not significantly different, while
both are larger than Experts, as diagnosed in Figure 3(PRright).

PDleft
Newbies’ PDleft (Δ = −1.35± 0.70; p = 0.050) is significantly

larger than Experts’ PDleft. At the same time, Trainees’ PDleft did not
showa significant difference (Δ = −0.96± 0.70; p = 0.177) compared
to Newbies’ and Experts’ results, as reflected in Figure 3(PDleft).

PEleft
The relationship of the PEleft difference between

Experts, Trainees (Δ = −6.95± 2.90; p = 0.021), and Newbies
(Δ = −6.70± 2.90; p = 0.023) is the same as in the case of PRleft/right,
which can be verified by Figure 3(PEleft).

4.2 Muscle synergy extraction

Figure 4 instantiates the non-negative matrix factorization
(NMF) decomposition process of ten upper limb muscles. The basis
matrix of muscle activation W and the activation coefficient matrix
H are shown in Figure 4A.

Figure 4B evinces that the synergy W1 between the muscle
synergy vectorsWmainly reflects the activation of BRAD, BICS, and
BICL, whose synergies are greater than 0.3.W2 primarily comprises
DP, TM, INF, TRIL, TRILA, BICL, and BRAD. The dominant
composition elements of W3’s are DA, PM, TRILA, and TRIL. The
sEMG could be reconstructed by H and W, as manifested with the
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FIGURE 4
An example of extracting muscle synergies on ten upper limb muscles from Trainees. The sEMG data from ten upper limb muscles were processed by
non-negative matrix factorization (A), based on which synergy activation coefficients and muscle synergy vectors were used to reconstruct the sEMG
(B).

raw sEMG of ten muscles of the upper limbs in Figure 4B. Figure 5
revealed that after the number of synergies reaches three, the mean
VAF of each class exceeds 95%.

4.3 Intraclass muscle synergy extratcion

The colorized bars in Figure 6 indicate different subjects in
classes Experts (19 subjects), Trainees (30 subjects), and Newbies
(28 subjects), and the black bars represent the mean values
among each class for each muscle. PM has a low proportion in
both INF W1 and W2, while DP, TM, INF, and TRIL exhibit
low values in W3, found in all three classes. Figure 7 embodies
the Pearson correlation coefficients among the three classes for
synergies W1, W2, and W3. Figures 6, 7 show that the three classes
have the same muscle synergies patterns, occurring in the same
order.

4.4 Muscle synergy space

In addition to the three extracted muscle synergies elucidated in
Figure 6, Figure 8 presents the SCI values of the three classes, where

SCI(Experts) is 0.419± 0.138, SCI(Trainees) is 0.290± 0.070, and
SCI(Newbies) is 0.270± 0.087, respectively. The SCI value of experts
was significantly higher (p = 0.000,p = 0.001) than the values of
trainees and newbies, between which no significant difference
(p = 0.608) can be concluded.

4.5 The center of synergistic activities

Figure 9 exhibits the resulting CoA values and the interclass
comparison. CoAH1

, related to the flexion and extension of the
elbow, shows no significant differences between the three classes. A
similar case is CoAH3

, recruited during the pronation of the forearm
and shoulder. It should be noted that for CoAH2

, recruited during
supination of the forearm and shoulder, the activation of experts
changed to an earlier phase (p = 0.012,p = 0.011).

Figure 10 provides a variability comparison between the three
classes by STDvalues. Experts’ intraclass variability ofCoAH3

, that is,
standard deviation, is more pronounced than Trainees’ (p = 0.022)
and Newbies’ (p = 0.002), while there is no significant difference
between the latter two. As a point of comparison, in CoAH1

,
Experts’ STD is more evident than Newbies’ (p = 0.005), while an
insignificant difference is shown between Experts and Trainees.
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FIGURE 5
Mean percentage of variability accounted for (VAF) as a function
describing the number of extracted synergies. Three synergies were
identified for the three classes.

4.6 Correlation between manipulation
performance and analytical metrics

Figure 11 details the Pearson correlation coefficients between
manipulation performance metric and SCI/CoA/STD. In
general, the results of Experts often show significant negative
correlation values between the manipulation performance metrics
PRleft/PRright/PEleft/PEright and SCI/CoA.

4.6.1 Manipulation performance versus SCI
For Experts, PRleft, PRright, and PELeft in manipulation

performance metrics show high negative correlations with SCI
(−0.3823, −0.4128, and −0.3960), and PDleft has a positive,
close to zero correlation with SCI (0.0096). On the contrary,
newbies collectively have high positive correlations between
PRleft/PRright/PDleft/PELeft and SCI (0.3630, 0.4697, 0.4071,
and 0.3397). The absolute correlations of the trainees are
low (−0.005, −0.1142, −0.0739, −0.0405). The experimental
results are consistent with the important muscle learning
methodology (Alnajjar et al., 2013). Newbies’ muscle status W)
shows variability, which SCI reflects, whereas Experts tend to
stabilize.

4.6.2 Manipulation performance versus CoA
Newbies show negative correlations between the CoAH2

/CoAH3

values and the four manipulation performances, of which the r
values fell between −0.5718 and −0.1452, while the correlations
between CoAH1

and the four manipulation performances
are positive. Trainees’ manipulation-CoAH1

correlations are
significantly lower than Newbies, except for PRright, though still all
positive. Experts’ manipulation-CoAH1

correlations go the opposite,
all negative (r = −0.3200–−0.1663). No general pattern was found in
the remaining comparisons.

FIGURE 6
Composition of muscle synergies for the three classes. Three
synergies were extracted from all subjects and matched among the
classes. The colorized bars indicate different subjects. Note that the
numbers of subjects in the three classes are 19 (Experts), 30 (Trainees),
and 28 (Newbies). The black-bordered wide bar for each muscle
indicates the mean value.

4.6.3 Manipulation performance versus STD
(standard deviation of CoA)

The manipulation performance of Experts is positively
correlated with the standard deviation of CoA in H1–H3 (r =
0.0897–0.3609). Trainees’ STD values are essentially similar to
Experts’, except that the PDleft-STDH3

correlation is negative. For
Newbies, the correlations are a mixture of positive and negative
values, generally lower than Experts’ and Trainees’ values, except for
two PDleft-related correlations.
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FIGURE 7
The Pearson correlation coefficients (r) among the three classes for synergies W1, W2, and W3.

FIGURE 8
Significance results of the three classes’ spaces of muscle synergies
analyzed by nonparametric test. The vertical axes indicate the synergy
coordination index (SCI) values. The asterisks indicate high
significance (p < 0.05).

5 Discussion

Variability is a natural component of human movement. The
notion of muscle synergy variability contains a lower-dimensional
synergy space and time-dependent variables. Oriented towards
better operation, variability affects the performance of motor tasks.
As muscle synergy spaces are gradually optimized, movement
performance will improve.

Based on the muscle synergy analysis of joystick manipulation
in three classes of maneuvering experience, this study reveals the
correlation between manipulation performance and muscle synergy
variability, reflected by SCI and the standard deviation of CoA.

5.1 Structure of muscle synergies

The synergy structure corresponds to the synergy number,
of which the patterns are related to the task. Consistency is
demonstrated in different individuals. In this study, three muscle
synergies were investigated, consistent with previous studies. Three
to five muscles work together in the three-dimensional force
generation of the upper extremity (Coscia et al., 2014). Four to five
synergies can reconstruct the activation patterns of up to 19 muscles
recorded during point-to-point reaching movements or forearm
postures with different loads (d’Avella et al., 2003). In comparison,
three synergies are sufficient to reconstruct multijoint movements
performed in the horizontal plane (Roh et al., 2012).The consistency
of the synergy number could be affected by individual differences
such as muscle size, strength, subcutaneous fat thickness, and
measurement electrode position, which is also in line with previous
work. In addition to the physiological factors mentioned above, the
synergy number may also be influenced by sEMG pre-processing.
The variance accounted for (VAF) criterion is sensitive to the low-
pass cut-off frequency, with higher cut-offs resulting in lower VAF
(Kieliba et al., 2018).

The pattern of muscle synergies studied in this work is
qualitatively similar to those underlying three-dimensional force
generation (Roh et al., 2012). Their flexion pattern consisting of
BRAD and BI with DP activity is similar to W1 identified in
our experiments, while their flexion pattern comprised of TRILA,
TRIL, and PM is similar to the W3 (see Figure 4). Figure 6
exhibits that neuromuscular strategies remain the same in the
three classes, interpreting that joystick manipulation experience
does not cause variations in the pattern of muscle synergies.
Previous studies on lifting or shoulder movement had similar
results: Muscle synergy is consistent between experts and normal
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FIGURE 9
Center of activity (CoA) analysis for muscle synergy. Left: CoAHi

among subjects across the whole experiment, where the averaged CoAHi
values of

subjects lie in the polar coordinate, and the polar directions denote the relative time over each trial cycle with clockwise time progression; Right:
significance results of the three classes’ CoAHi

s analyzed by nonparametric test, where the vertical axes indicate CoAHi
values. The asterisks indicate

high significance (p <0.05).

FIGURE 10
Variability analysis for muscle synergy. The vertical axes indicate standard deviation (STD) values. The asterisks indicate high significance (p < 0.05).

people during lifting (Zhao et al., 2021) or shoulder movement
(Turpin et al., 2020). In general, the structure of the muscle synergy
was influenced by biomechanics and task constraints (Roh et al.,
2012).

5.2 Muscle synergy variability

Muscle synergy spaces vary with training. Previous studies
have suggested that muscle synergies may be formed by adaptive

processes related to the individual’s experience. The activity of the
primary motor cortex is adapted with training, associated with
changes in either the amplitude of activation or the composition
of the correlated synergy. As a result of maintaining balance, the
body will achieve a stable pattern of muscle synergy and variable
activation after training (Alnajjar et al., 2013). CNS searches for the
most appropriate synergy space region, evoking various strategies
by tuning W. In such a search stage, low stability of W is observed.
The modulation of the muscle synergy composition will develop
to a stable state during skill learning (Kargo and Nitz, 2003)
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FIGURE 11
Three classes’ heatmaps of the Pearson correlation coefficients between manipulation performance metrics and synergy coordination index (SCI)/the
center of activity (CoA)/CoA’s standard deviation (STD).

(see Figure 8). Experts showed higher SCI, representing smaller
muscle synergy spaces and more excellent stability. The relatively
concentratedmuscle synergy spaces observed among experts should
be explained by their long-term maneuvering experience, which
enables their CNS to create optimal sets of efficient behaviors by
optimizing the size of the synergy space in the appropriate region
(Alnajjar et al., 2013).

In addition to space properties, the variability of temporal
activation is also affected by training. Previous studies have shown

that CoA changes with walking speed (Kibushi et al., 2018b), load
(Labini et al., 2011; Sylos-Labini et al., 2014), and cerebellar ataxia
(Martino et al., 2014), among others. This study reveals a significant
shift in CoAH2

between Experts and other subjects (see Figure 9).
Literature showed that during the bench press, experts’ variability of
the coactivation coefficient is higher than normal subjects’, while the
muscle coactivation vector shows low variability (Kristiansen et al.,
2015). In our study, Experts showed higher variability (STD) in
CoAH3

, which contributed to the pronation of the forearm and
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shoulder to acquire better position accuracy of the left position
(see Figure 10): Moreover, Experts’ variability (STD) in CoAH1

is
also more obvious. After learning, W becomes more stable in a
particular region and smaller, and the constraint on the variability
of H gradually eases (Alnajjar et al., 2013).

5.3 Significant negative correlation
between manipulation performance
metrics and muscle synergy variability

A smaller synergy space is often used for a better performance,
which can answer why the coordinated movements respond to
disturbance (Alnajjar and Shimoda, 2017). In this study, Figure 11
evinces that the stability of the muscle synergy space is positively
correlated with themanipulating error in the novice stage (Newbies)
and negatively correlated in the veteran stage (Experts). On Experts,
the smaller the synergy space, the better the performance. In
contrast, Newbies are in the search stage of W, so the larger the
synergy space, the better the performance.

The CNS learning model suggests that the CNS attempts
to reduce the degrees of freedom of the resulting motions by
restricting the variability of the synergy coefficient matrix H)
during the search stage of W and simplifies the handling of its
high temporal variability (Alnajjar et al., 2013). Therefore, Newbies’
correlation between CoA and manipulation performance is more
significant than that of the other two classes. In the Experts and
Trainees classes, no significant correlation is detected between CoA
and manipulation performance. Consistent with previous studies,
manipulation performance can reflect proficiency degree: Once a
certain proficiency level is reached, the body’s restrictions onmuscle
activation will be lifted, endowing a complete utilization of the
body’s potency (i.e.,W variability decreases,H variability increases)
(Alnajjar et al., 2013).

Expert’s and Trainees’ variability (STD) of CoAH1
and CoAH3

is more pronounced than Newbies’ (see Figure 10). Although
muscle activation variability decreased with increasing training
degrees interclass-wise, a positive correlation can be found between
variability and manipulation performance intraclass-wise. The
intraclass analysis discloses that correlation values increase as
experience improves and that the significance levels of the three
classes are low. Research has ascertained that many compensatory
solutions exist for different motor tasks and that various solutions
can generate the same movement (Ting and Macpherson, 2005;
McKay and Ting, 2008). The CNS adjusts motor impedance by
activating antagonistic muscles to minimize the interference effect
caused by load, thus improving movement accuracy (Burdet et al.,
2001; Franklin et al., 2007).

6 Conclusion

This article analyses manipulation performance and muscle
synergy in three classes of subjects with different maneuvering
experiences. Different levels of experience and training lead to
apparent differences in the space size of W and the variability of
H. The precision of the manipulation is related to the variability
of muscle synergy. Long-term training compresses muscle synergy

space, which enhances muscle manipulation performance. Experts
have significantly higher muscle synergy space stability and
activation variability than the other two classes. Experts’ and
Trainees’ correlation values between manipulation performance
and the standard deviation of CoA are more significant than
Newbies’.

This work has designed experiments, grouped 77 subjects,
collected multimodal data, and conducted various experimental
analyses, all of which have informed subsequent research. Our
findings and validations are looked to for progressive practical
applications that can provide important references for the
development of software to aid pilot training, such as tips
and training procedures to reduce manipulation errors as well
as training result analysis and evaluation, which can improve
efficiency, save costs, and potentially increase the safety of
flight.
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