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Post-translational modifications refer to the chemical alterations of proteins
following their biosynthesis, leading to changes in protein properties. These
modifications, which encompass acetylation, phosphorylation, methylation,
SUMOylation, ubiquitination, and others, are pivotal in a myriad of cellular
functions. Macroautophagy, also known as autophagy, is a major degradation
of intracellular components to cope with stress conditions and strictly regulated
by nutrient depletion, insulin signaling, and energy production in mammals.
Intriguingly, in insects, 20-hydroxyecdysone signaling predominantly stimulates
the expression of most autophagy-related genes while concurrently inhibiting
mTOR activity, thereby initiating autophagy. In this review, we will outline post-
translational modification-regulated autophagy in insects, including Bombyx mori
and Drosophila melanogaster, in brief. A more profound understanding of the
biological significance of post-translational modifications in autophagymachinery
not only unveils novel opportunities for autophagy intervention strategies but also
illuminates their potential roles in development, cell differentiation, and the
process of learning and memory processes in both insects and mammals.
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Introduction

Autophagy is a universally conserved catabolic mechanism present in all eukaryotic cells.
This process facilitates the degradation of intracellular entities, such as damaged organelles
and proteins, by transporting them to lysosomes or vacuoles. The primary objective of
autophagy is to recycle cytoplasmic materials during environmental stress conditions
(Maiuri et al., 2007; Klionsky et al., 2021). In addition to its role in cellular renewal,
metabolism, physiology, inflammation, and homeostasis, autophagy also significantly
influences the regulation of the immune response and contributes to our understanding
of the pathogenesis of human disorders (Mizushima and Levine, 2010; Rabinowitz and
White, 2010; Levine et al., 2011). Based on the delivery pathways to the lysosome, autophagy
is categorized into three primary types: macroautophagy, microautophagy, and chaperone-
mediated autophagy (Klionsky and Emr, 2000). Furthermore, autophagy is strictly regulated
by conditions such as nutrient starvation, energy signaling, cellular stresses, and virus
infection in mammals and yeast (Ravanan et al., 2017; Dikic and Elazar, 2018; Hua et al.,
2019; Mao et al., 2019). However, in insects, such as B. mori (Bombyx mori) and D.
melanogaster (Drosophila melanogaster), a unique regulator of autophagy during
metamorphosis phases is 20E (20-hydroxyecdysone), a steroid hormone synthesized
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from dietary cholesterol. 20E either induces the expression of Atgs
(autophagy-related genes) or inhibits mTORC1 activity (McPhee
and Baehrecke, 2009; Li et al., 2016; Guo et al., 2018; Li et al., 2019;
Dai et al., 2020). Macroautophagy, commonly referred to autophagy,
involves the biogenesis of autophagosomes, which is orchestrated by
a series of Atgs (Tian et al., 2013; Klionsky et al., 2021). These Atgs
were originally identified in Saccharomyces cerevisiae and are highly
conserved across species, from insects to mammals (Chang and
Neufeld, 2009; Araki et al., 2013; Tian et al., 2013; Tettamanti and
Casartelli, 2019). The maturation of autophagosomes involves their
fusion with the lysosome, leading to the formation of the
autolysosome, which elicits the digestion of cellular components
(Klionsky et al., 2021). Recently, several PTMs (post-translational
modifications) have been reported in addition to acetylation/
deacetylation, phosphorylation/dephosphorylation, ubiquitination/
deubiquitination, and other modifications, all of which play a role in
regulating autophagic activities in yeast, insects, and mammals
(Popelka and Klionsky, 2015; Xie et al., 2015; Wang and Wang,
2019). However, it is worth noting that the accuracy of PTMs in
regulating autophagy occurrence can vary among different species
(Yi et al., 2012; Banreti et al., 2013).

The silkworm, B. mori, belonging to the Lepidoptera order,
holds significant commercial value in the silk industry and serves as
a representative model insect for agricultural and genetic research
(Li et al., 2016; Li et al., 2019; Dai et al., 2020). Beyond its economic
importance, B. mori provides a wide range of cellular and molecular
tools, making it indispensable for the study of autophagy during
metamorphosis and its role in post-embryonic development (Xie
et al., 2016; Guo et al., 2018; Montali et al., 2019). On the other hand,
the fruit fly, D. melanogaster, a dipteran insect, has become one of
the favored models in cell and developmental biology due to its short
reproductive cycle, robust genetics, cost-effective maintenance, and
ease of manipulation (Rubin, 1988). In D. melanogaster, tissues such
as the midgut, intersegmental muscles, and fat body undergo
programmed cell death, with autophagy playing a pivotal role in
their degradation and regeneration (McPhee and Baehrecke, 2009;
Guo et al., 2019; Shi and Tong, 2022). This organism also provides a
genetically tractable system for exploring the role of autophagy in
human disease models, including Parkinson, Alzheimer, and Pick’s
disease (Arias, 2008; Chang and Neufeld, 2009; Chanu and Sarkar,
2020; Denton et al., 2020). Furthermore, it has been reported that the
protective role of spermidine, an endogenous polyamine, against
age-induced memory impairment has been elucidated using the D.
melanogaster model. This work has revealed that age-related
memory decline can be alleviated through spermidine treatment
and genetic enhancements to polyamine levels. The underlying
mechanism appears to be linked to autophagy-a cellular cleanup
process. These findings suggest that a diet rich in polyamine-
containing foods may offer a potential therapeutic approach to
counteract age-related dementia. However, it is crucial to conduct
further research to validate these findings beyond the fruit fly model
(Sigrist et al., 2014).

In this review, we will delve into the PTMs that play a role in
regulating autophagy in insects, with a particular emphasis on B.
mori and D. melanogaster. Additionally, we will present novel
perspectives on the intricate interplay between these sophisticated
PTM mechanisms and the processes of learning and memory in
insects. Understanding how these PTMs regulated autophagy will

not only illuminate the fundamental mechanisms underlying
autophagy in insects but also provide unique insights into the
processes of development and cell differentiation, both in insects
and mammals.

PTMs mediated autophagy in B. mori
and D. melanogaster

Acetylation and deacetylation

Histone acetyltransferases (HATs) and histone deacetylases
(HDACs) are enzymes responsible for catalyzing acetylation and
deacetylation of lysine residues on histone and non-histone proteins,
respectively (Ropero and Esteller, 2007; Chen et al., 2015).
Specifically, HATs transfer an acetyl group from acetyl-coenzyme
A to the ε-amino group of an internal lysine residue, while HDACs
reverse these reactions (Figure 1). In mammals, there are
13 identified HATs, categorized into three types based on their
structure and function: p300 (E1A binding protein p300), GCN5
(General control non-derepressible 5), and the MYST19 family
(Sapountzi and Côté, 2011; Drazic et al., 2016; Narita et al.,
2019). HDACs are further classified into several classes: class I,
IIa, IIb, and IV enzymes are zinc-dependent histone deacetylases,
while class III enzymes are NAD+-dependent sirtuins (Yang and
Seto, 2008; Haberland et al., 2009). Crucially, both HATs and
HDACs play pivotal roles in regulating various cellular processes,
including replication, DNA damage repair, cell cycle, apoptosis,
angiogenesis, and autophagy (Narita et al., 2019). Current research
indicates that HATs and HDACs are integral to autophagy
regulation, influencing it at multiple stages (Fullgrabe et al., 2013;
Huang et al., 2015). This review delves into the regulation of
autophagy in insects through acetylation and deacetylation
modifications.

The silk moth B. mori exhibits pronounced autophagy during its
molting and metamorphic stages, particularly in the silk gland and
fat body (Tian et al., 2013; Xie et al., 2016; Li et al., 2020). The
initiation and completion of autophagosome formation involve the
Atg5–Atg12–Atg16L1 ubiquitin-like systems and the protein light

FIGURE 1
Acetylation/deacetylation pathways in eukaryotes.

Frontiers in Physiology frontiersin.org02

Wu et al. 10.3389/fphys.2023.1281555

https://www.frontiersin.org/journals/physiology
https://www.frontiersin.org
https://doi.org/10.3389/fphys.2023.1281555


chain 3 (LC3)/Atg8-PE (phosphatidylethanolamine) (Ichimura
et al., 2000; Kaiser et al., 2012; Schaaf et al., 2016). The LC3/
Atg8-PE conjugation is primarily catalyzed in sequence by Atg4,
Atg7, Atg3, and Atg8 (Schaaf et al., 2016). Wu et al. (2021a)
emphasized that the autophagy regulation through acetylation/
deacetylation is activated by Atg proteins. This evidence
preliminarily suggests that acetylation of Atg plays a role in
autophagy regulation in the silkworm. However, these studies do
not fully elucidate the regulation of autophagy. Are there additional
genes involved? What other specific regulatory effects exist?
Answers to these questions can provide a deeper understanding
of the role acetylation plays in autophagy. In the HATs class,
P300 mediates acetylation that sequesters components of the
Atg8-PE ubiquitin-like system in the nucleus, consequently
hindering the process of autophagy (Narita et al., 2019). In
contrast, HDAC1/Rpd3 (histone deacetylase 1/reduced potassium
dependency 3), a class I enzyme that includes zinc-dependent
histone deacetylases, mediates deacetylation (Haberland et al.,
2009; Narita et al., 2019). This deacetylation process leads to the
nucleo-cytoplasmic translocation of the Atg8-PE ubiquitin-like
system components, including Atg4, Atg7, Atg3, and Atg8,
thereby promoting autophagy (Wu et al., 2021a). Within the
intricate tapestry of cellular regulation, the mechanism through
which HDAC1/Rpd3 overexpression enhances autophagy remains
consistent between insects and mammals. However, in a striking
divergence, yeast intensifies starvation-induced autophagy upon the
deletion of deacetylase Rpd3, highlighting the intricate nuances of
autophagic processes across diverse species (Yi et al., 2012; Huang
et al., 2015). Despite the widespread recognition of p300 and
HDAC1 in regulating acetylation, there is a notable scarcity of
studies investigating their specific roles in autophagy post-
acetylation. Consequently, in-depth research in this area is
imperative. Another study has revealed that the acetylation of
Atg8, a B. mori counterpart of yeast Atg8, is believed to impede
the initiation of autophagy during periods of starvation. Specifically,
following BmNPV infection, the K13 site of Atg8 undergoes
acetylation. Studies utilizing acetylation-mimic K13Q or
deacetylation-mimic K13R mutants have demonstrated that this
acetylation at K13 inhibits Atg8-PE formation, particularly after
EBSS treatment, consequently disrupting the initiation of autophagy
(Xue et al., 2019). Furthermore, this acetylation diminishes Atg8’s
interaction with Atg7, potentially affecting Atg8-PE conjugation. In
essence, the silk moth B. mori undergoes significant autophagy
during specific life stages, with the process intricately regulated
by various proteins and enzymes. The acetylation and deacetylation
of these proteins are pivotal in the initiation and progression of
autophagy. While some mechanisms are conserved across species,
others, such as the acetylation of Atg8, have unique implications in
B. mori, affecting the onset of autophagy under certain conditions.
The Atg8/LC3/GABARAP family members are ubiquitin-like
proteins essential to autophagy. They covalently attach to
phagophore membranes, playing roles in phagophore elongation
and cargo recognition. Importantly, the lipid conjugation of Atg8/
LC3/GABARAP is crucial for the formation of
autophagosomes–lysosomes (Klionsky et al., 2021). Atg8 serves as
a marker for autophagy in insects (Franzetti et al., 2012; Tian et al.,
2013; Xie et al., 2016). Additionally, Drosophila’s Atg8a protein,
analogous to mammalian LC3, orchestrates autophagy by

interacting with the transcription factor Sequoia, YL-1 (a nuclear
acetyltransferase component), and the deacetylase Sir2 (silent
information regulator 2). The latter modulates Atg8a’s acetylation
status in response to nutrient conditions (Jacomin et al., 2020). It has
also been reported that high pH induces the conversion of Atg8-PE
in B. mori Bme cells rather than amino acid starvation (Gai et al.,
2013). D. melanogaster species possess two Atg8 homologs, Atg8a
and Atg8b (Jipa et al., 2021). While lipidated Atg8a is essential for
autophagy in D. melanogaster, its non-lipidated form plays a critical
role in programmed larval midgut elimination and viability (Bali
and Shravage, 2017). In contrast, Atg8b is exclusively found in the
male germline and does not impact autophagy. Non-lipidated Atg8b
in the male germline is vital for fertility (Jipa et al., 2021). The
previously mentioned research has illuminated the significant
influence of acetylation on genes that regulate autophagy.
However, further exploration is necessary to determine whether
individual genes or the collective regulation of gene groups trigger
autophagy. These insights have substantial implications, particularly
in agricultural production, where site-specific gene modification and
multi-target auxiliary control therapies are paramount.

Acetylation and deacetylation not only modulate autophagy-
related proteins but also regulate a wider range of proteins involved
in autophagy regulation. For example, TFEB (transcription factor
EB), which orchestrates the expression of genes crucial for
autophagosome formation and lysosome production, plays an
integral role in lysosomal biogenesis and activation (Settembre
et al., 2011; Martini-Stoica et al., 2016). In D. melanogaster, the
acetyltransferase GCN5 acetylates TFEB at K274 and K279,
disrupting TFEB dimerization and its binding to target gene
promoters, thereby inhibiting autophagy and lysosome biogenesis
(Wang et al., 2020). These findings collectively emphasize the
indispensable role of acetylation and deacetylation in the initial
regulation of autophagy. Furthermore, AcCoA (acetyl-coenzyme A),
identified as a metabolic suppressor of autophagy (Lu and
Thompson, 2012; Kaelin and McKnight, 2013), has been shown
to enhance the clearance of autophagic proteins and extend lifespan
when knocked down in D. melanogaster (Eisenberg et al., 2014).
Another study revealed that in wild-type Drosophila (w1118), AMI
(age-related memory impairment) manifests as diminished learning
by middle age. Through intricate in vivo, DNA microarray, and
behavioral analyses, the study identified mAcon1 (mitochondrial
Acon1) as a key factor. While its expression decreased with age,
neuronal overexpression extended lifespan and alleviated AMI. This
change was associated with notable increases in acetyl-CoA and
citrate levels, indicators linked to autophagy. Additionally, there was
a distinct correlation between autophagy activity, as measured by
shifts in Atg8a-II and p62, and mAcon1 levels. This was further
emphasized by an inverse connection with the presynaptic scaffold
protein Bruchpilot, ultimately revealing that mAcon1’s modulation
of learning and AMI operates through autophagy/mitophagy-
mediated neural plasticity (Cho et al., 2021). The enzyme
ATP13A2, encoded by the ATP13A2 gene, orchestrates a protein
of the lysosomal transmembrane 5 P-type ATPase family (Ramirez
et al., 2006; Tan et al., 2011). This leads to lysosomal abnormalities,
mitochondrial dysfunction, and α-synuclein aggregation, thereby
impacting autophagy (Grunewald et al., 2012; Usenovic and Krainc,
2012; Tsunemi and Krainc, 2014; Wang et al., 2019). In ATP13A2-
deficient cells of D. melanogaster, HDAC6 activity was reduced,
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resulting in increased acetylation and disrupted
autophagosome–lysosome fusion (Wang et al., 2019) (Table 1).
From another perspective, the relationship between
autophagosome function and their respective membrane sites
requires further examination. For example, will the ability of
autophagosomes to perform autophagy change due to alterations
in different organelle membranes and binding sites? This area of
research is ripe for exploration. Spermidine, a natural polyamine,
has been linked to lifespan extension in flies and worms (Fabrizio
et al., 2004; Pucciarelli et al., 2012; Yue et al., 2017). It inhibits HAT
activity, leading to the epigenetic deacetylation of histone H3. This,
in turn, enhances autophagy, suppresses necrosis, and promotes
longevity (Eisenberg et al., 2009). These investigations underscore
the intricate role of deacetylation as an essential process for

regulating autophagy and, consequently, controlling cellular
functions. The CREB (cAMP response element binding protein),
which includes the CBP (cyclic adenosine monophosphate response
element binding protein) and P300, often referred to as the CBP/
P300 complex, emphasizes the significance of acetyltransferases CBP
and P300 (Das et al., 2009). They are considered crucial in
transcriptional regulation, acting as transcription factors.

In summary, protein acetylation and deacetylation are
widespread in insects and exert significant influence over
fundamental cellular processes. While the aforementioned
questions remain unanswered definitively, their impact on
autophagy holds profound implications for the entire insect
lifecycle.

Phosphorylation and dephosphorylation

Phosphorylation, a dynamic and reversible process (Figure 2), is
catalyzed by protein kinases such as AMPK (AMP-activated protein
kinase), PI3K (class III phosphatidylinositol-3 kinase), PKC (protein
kinase C), andmTOR (mammalian target of rapamycin) (Qian et al.,
2017; Wang et al., 2018; Melick and Jewell, 2020). It involves the
attachment of a phosphoryl group to a protein, primarily affecting
several amino acids, including Ser (serine), Thr (threonine), Tyr
(tyrosine), His (histidine), and Asp (aspartate). Conversely, protein
phosphatases are responsible for dephosphorylating proteins (Kim
et al., 2011; Denton et al., 2020). Through its modulation of protein
function, subcellular localization, and cell signaling,
phosphorylation plays a pivotal role in regulating life processes
(Singh et al., 2017). In this review, we delve into how
phosphorylation and dephosphorylation mediate autophagy in
insects, emphasizing the role of autophagy-associated proteins
and signaling pathways in autophagy initiation and progression.

In B. mori and D. melanogaster, the Atg1 kinase complex,
represented by three mRNA isoforms due to alternative splicing,
plays a pivotal role in initiating autophagy (Li et al., 2019). This
complex responds effectively to reduced insulin signaling, extending
lifespan, and highlighting the significance of autophagy in insect
longevity. Notably, the phosphorylation of Atg1 by AMPK,
especially at Ser269 and Ser270, is essential for autophagy
initiation in both species (Li et al., 2022; Zhao et al., 2023).

TABLE 1 Acetylation and deacetylation involved in autophagy.

HAT Target protein Acetylation site HDACs Impact on autophagy Species

P300 Atg3 K94, K195 HDAC1 Down; Wu et al. (2021a) B. mori

P300 Atg4 K237, K269 HDAC1 Down; Wu et al. (2021a) B. mori

P300 Atg7 Unknown HDAC1 Down; Wu et al. (2021a) B. mori

Unknown Atg8 K13 Unknown Down; Xue et al. (2019) B. mori

P300 Atg8 K6, K13, K29, HDAC1 Down; Wu et al. (2021a) B. mori

K24, K26, K28

GCN5 TEFB K274, K279 Unknown Down; Wang et al. (2020) D. melanogaster

Unknown Tubulin, cortactin Unknown HDAC6 Down; Wang et al. (2019) D. melanogaster

Spermidine Histone H3 Unknown Unknown Down; Wang et al. (2019) D. melanogaster

FIGURE 2
Phosphorylation/dephosphorylation pathways in eukaryotes.
Note: PKG, cGMP-protein kinase; PKA, protein kinase A; PKC, protein
kinase C; S6K, ribosome S6 kinase; CaMK, calmodulin-dependent
protein kinase; DNA-PK, DNA-dependent protein kinase; PTP,
protein tyrosine phosphatase; PSP, protein serine phosphatase; PThrP,
protein threonine phosphatase; DSP, dual-specificity phosphatase;
and TK, tyrosine kinase.
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AMPK-mediated phosphorylation of Atg1 is a critical step for
inducing autophagy and is evolutionarily conserved among
insects. This conservation provides insights into how various
organisms regulate ULK1/Atg1 phosphorylation to induce
autophagy (Papinski and Kraft, 2016). The autophagy-related
protein ATG16L1 is crucial for autophagosome biogenesis
(Cadwell et al., 2008). Depletion of Ptpmeg2 in D. melanogaster
impairs autophagosome formation and autophagic flux (Chou et al.,
2021). Research has observed that Ptpmeg2 co-localizes with
ATG16L1 and mediates the dephosphorylation of VTI1B. As a
substrate target of Ptpmeg2, this promotes ATG16L1 precursor
fusion and autophagosome formation during starvation-induced
autophagy (Wang et al., 2016; Chou et al., 2021). Additionally,
activated Atg1 can phosphorylate Atg13, Atg17, and itself at
positions T226 and S230. Consequently, the phosphorylation
state of Atg1 promotes autophagy initiation and facilitates the
formation of the Atg1-Atg13-Atg17 complex, which recruits
other proteins for phagophore assembly site formation in D.
melanogaster (Chang and Neufeld, 2009; Davies et al., 2015). By
broadly summarizing the relationship between Atgs and the
functional mechanisms of these proteins, the pivotal role of
phosphorylation becomes evident, offering a forward-looking
perspective on autophagy regulation.

Beyond modifications to the Atgs, other factors have been
identified as integral to autophagy regulation. Notably, Tip60
(Tat-interactive protein 60 kDa), a prominent histone
acetyltransferase from the MYST family and a member of the
nuclear multimeric protein complex, has recently gained
attention for its acetylation capabilities. This enzyme is involved
in various cellular processes, including the cell cycle, apoptosis,
autophagy, and chromatin remodeling, suggesting a novel pathway
for autophagy regulation (Ikura et al., 2000; Cheng et al., 2019; Li
and Rasmussen, 2020). Starvation-induced AMPK activation leads
to the phosphorylation of Tip60 at Ser99, which is essential for
autophagy induction in B. mori. This mechanism is conserved in
lepidopterans and mammals but may not be in other insects (Wu
et al., 2020). 20E plays a crucial role in promoting programmed cell
death (PCD) by modulating PGK1, a key glycolytic enzyme (Matsui
et al., 2012). During metamorphosis, 20E orchestrates a decline in
glycolysis and PGK1 expression. Intriguingly, 20E-driven
acetylation of PGK1 triggers PCD. Knockdown of
phosphorylated PGK1 during the feeding stage results in
suppressed glycolysis and smaller pupae. Insulin induces
PGK1 deacetylation via HDAC3, while 20E prompts
PGK1 acetylation at K386 through ARD1, stimulating PCD
(Kang et al., 2023). This intricate interplay between 20E and
insulin in regulating PGK1 acetylation underscores a profound
connection with autophagy (Kang et al., 2023). Rpd3/
HDAC1 may play a role in autophagy regulation, but its pathway
requires further exploration. Notably, cholesterol, 27-
hydroxycholesterol, and 20E regulate the dephosphorylation of
Rpd3/HDAC1 homologs at the serine392, serine421, and
serine423 site through MTOR activity and its nucleo-cytoplasmic
shuttling, promoting autophagy in B. mori and mammals. This
suggests potential therapeutic targets for neurodegenerative diseases
such as Parkinson’s and Alzheimer’s in humans (Wu et al., 2021b).
Additionally, 20E was also found to upregulate the BmAtg13 gene
expression and induce autophagy in B. mori (Li et al., 2020). Further

studies are required to investigate the potential modification of
BmAtg13 sites. Research has shown that impaired PINK1/parkin-
mediated mitophagy is a potential molecular basis for mitochondrial
abnormalities in Parkinson’s disease (De Rijk et al., 1995; Vives-
Bauza et al., 2010; Koyano et al., 2014). In D. melanogaster, PINK1-
mediated Drp1-S616 phosphorylation induces autophagy, rescuing
PINK1 deficiency-associated phenotypes (Han et al., 2020).
Collectively, the role of phosphorylation in autophagy regulation
is emerging as a promising research direction. Interestingly, the Rag
GTPase RagC, a component of the Rag heterodimer, plays a key role
in cell growth regulation (Tee et al., 2022). RagC phosphorylation
suppresses starvation-induced autophagy in D. melanogaster, acting
as a positive regulator for mTORC1 activity (Yang et al., 2019).
Studies have also revealed that Cdk5, a member of the cyclin-
dependent kinases family, is a post-mitotic kinase essential for
maintaining neuronal health (Dhavan and Tsai, 2001; Dhariwala
and Rajadhyaksha, 2008; Pozo and Bibb, 2016). The direct
connection between RagC and Cdk5 in regulating autophagy is
not evident, but their shared pathways suggest a potential role in
autophagy. Cdk5-induced phosphorylation of Acinus at the serine
437 site, primarily a nuclear protein in D. melanogaster, promotes
starvation-independent basal autophagy and responses to certain
neurodegenerative challenges, confirming a closer link between
Cdk5 and autophagy (Nandi et al., 2017) (Table 2). On the other
hand, defective brain insulin signaling has been suggested as an early
event in Alzheimer’s disease and autophagy (Schnier et al., 1991;
Triani et al., 2018), offering a novel perspective on understanding
the broad relationship between autophagy and other diseases. In D.
melanogastermodels of autophagy, particularly those expressing the
2N4R-Tau, and in neuroblastoma cells, the downstream effects of
the insulin receptor signaling cascade lead to tau
hyperphosphorylation at AT8 and PHF1 (PHD finger protein 1)
residues (Goncalves et al., 2019). This process is influenced by the
interplay of AKT, glycogen synthase kinase-3β, and extracellular
regulating kinase, ultimately resulting in aggregation and autophagic
defects (Chatterjee et al., 2019). Additionally, the D. melanogaster
homolog of the human cmyc proto-oncogene has been shown to
regulate the phosphorylation status of tauV337M, inducing
autophagy (Chanu and Sarkar, 2020). Intriguingly, treatment
with β-guanidinopropionic acid, a creatine analog (Reznick and
Shulman, 2006; Mukhina et al., 2008), significantly elevated the
expression of phospho-T172-AMP-activated protein kinase levels,
which, in turn, led to a notable upregulation of the Atg8 protein,
inducing autophagy and extending the lifespan of D. melanogaster
(Yang et al., 2015). JNK or c-Jun N-terminal kinases are a prominent
class of protein kinases. These enzymes activate the transcription
factor c-Jun, which is a crucial component of the AP-1 transcription
factor complex (Zhou and Boutros, 2020). They modify proteins by
chemically adding phosphate groups. The JNK pathway is well-
known for triggering cytoprotective responses, including autophagy
in D. melanogaster, showcasing a meticulous regulation of
autophagy and offering a fresh perspective (Wu et al., 2009;
Brock et al., 2017). JNK opposes insulin signaling, activates the
FOXO (Forkhead box protein O), and triggers cytoprotective genes,
thereby protecting cells from various stressors (Wang et al., 2005;
Kang et al., 2012). Furthermore, JNK signaling in muscular and
neural tissues also plays a role in autophagy regulation. Flies with
enhanced JNK activity in Drosophila exhibit increased stress
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resilience and longevity. This suggests that JNK signaling can
decelerate aging and extend lifespan by promoting autophagy
and lysosomal degradation systems, which aid in clearing out
damaged protein aggregates (McEwen and Peifer, 2005; Wu
et al., 2009; Zeng and Hou, 2015).

In conclusion, phosphorylation modifications are instrumental
in regulating autophagy in both B. mori and D. melanogaster. These
modifications impact various stages of autophagy, including
initiation, recognition, execution vesicle formation,

autophagosome–lysosome fusion, degradation, and the regulation
of other substrates. A deeper comprehension of the interplay
between phosphorylation modifications and autophagy has the
potential to yield novel insights into research on development
and cell differentiation in both humans and insects.

Ubiquitination and deubiquitination

Ubiquitination is a post-translational modification present in all
eukaryotic organisms. It entails the covalent attachment of
ubiquitin, a small protein comprising 76 amino acids, to cellular
proteins. Remarkably, this protein is highly conserved across
mammals, yeast, and plants (Hershko and Ciechanover, 1998;
Varshavsky, 2017). The ubiquitination process is orchestrated by
three classes of enzymes: E1 (activation), E2 (conjugation), and E3
(ligation) (Shaid et al., 2013; Gomez-Diaz and Ikeda, 2019)
(Figure 3). Ubiquitin itself possesses seven lysine residues and an
N-terminal methionine residue, enabling it to bind to another
ubiquitin molecule (Ikeda and Dikic, 2008). Beyond controlling
physiological and pathological cellular events (Latham and Dent,
2007; Popovic et al., 2014; Hu and Sun, 2016), ubiquitination and
deubiquitination also play pivotal roles in governing essential
cellular processes. These processes encompass gene transcription,
cell migration and differentiation, autophagy, DNA repair,
apoptosis, virus budding, and receptor endocytosis (Amit et al.,
2004; Latham and Dent, 2007; Hu and Sun, 2016; Schwertman et al.,
2016; Grumati and Dikic, 2018; Islam et al., 2018; Rape, 2018; Oh
et al., 2020).

p62/SQSTM1 (p62/Sequestosome-1) serves as a key adapter that
facilitates the degradation ubiquitinated proteins via the autophagic
process. Atg8 homologs are essential for p62-mediated autophagic
degradation (Islam et al., 2018). In the lepidopteran insect B. mori,

TABLE 2 Phosphorylation and dephosphorylation involved in autophagy.

Protein kinase Target
protein

Phosphorylation
site

Protein
phosphate

Impact on autophagy Species

AMPK Atg1 S269, S270 Unknown Up; Zhao et al. (2023) B. mori

AMPK Tip60 S99 Unknown Up; Wu et al. (2020) B. mori

mTOR Rpd3/HDAC1 S392, S421, S423 Unknown Up; Wu et al. (2021b) B. mori

AMPK Atg1 S269, S270 Unknown Up; Zhao et al. (2023) D. melanogaster

mTORC1 TFEB Unknown Unknown Down; Wang et al. (2020) D. melanogaster

PINK1 Drp1 S616 Unknown Up; Han et al. (2020) D. melanogaster

Unknown VTI1B Unknown Ptpmeg2, Up; Chou et al. (2021) D. melanogaster

ATG16L1

Atg1 Atg1 T226, S230 Unknown Down; Chang and Neufeld, (2009); Davies et al.
(2015)

D. melanogaster

mTORC1 RagC S21 Unknown Down; Yang et al. (2019) D. melanogaster

Cdk5 Acinus S437 Unknown Up; Nandi et al. (2017) D. melanogaster

HDAC3 ARD1 Y194 PGK1 Up; Kang et al. (2023) Helicoverpa
armigera

FIGURE 3
Ubiquitination/deubiquitination pathways in eukaryotes.
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p62 bodies consist of PB1 (Phox and Bem1p) and UBA (ubiquitin
associated) domains, which are essential for binding and forming
p62 bodies. Interestingly, the AIM motif of p62 has the capability to
self-associate independently of the PB1 or UBA domain. As
previously mentioned, Atg8, which plays an indispensable role in
regulating autophagy, is found universally in all eukaryotes (Li and
Zhang, 2019; Wang et al., 2021b). In B. mori, Atg8’s structure
includes an ubiquitin-fold domain at its C-terminus and two
additional helices at the N-terminus. This structure is conserved
from yeast to mammals. Notably, Atg8 plays a pivotal role in the
Atg8-PE ubiquitin-like conjugation system, essential for
autophagosome formation in eukaryotes (Hu et al., 2010).
PINK1 is a kinase imported into mitochondria. It activates the
E3 ubiquitin ligase known as Parkin, which in turn facilitates the
selective autophagy of damaged mitochondria (Eiyama and
Okamoto, 2015; Lazarou et al., 2015; Nguyen et al., 2016). In D.
melanogaster, PINK1’s phosphorylation of ubiquitin at serine
65 initiates Parkin’s E3 ubiquitin ligase activity, recruiting Parkin
to mitochondria and inducing selective autophagy (Kane et al.,
2014). p62 serves as a prototype autophagy adapter protein and
facilitated the transports ubiquitinated cargo for subsequent
autophagic degradation (Nezis et al., 2008; Johansen and Lamark,
2011). In D. melanogaster, enhancing p62 levels during midlife
promotes mitochondrial fission, mediates mitophagy, and
enhances both mitochondrial function and the lifespan of older
flies (Aparicio et al., 2019). VDAC1 (voltage-dependent anion
channel protein 1), anchored to the outer mitochondrial
membrane, is vital for regulating mitophagy and apoptosis in
Parkinson’s disease (Bayrhuber et al., 2008; Geisler et al., 2010;
Shoshan-Barmatz et al., 2020). In D. melanogaster, VDAC1 exists in
two different forms: polyubiquitination and monoubiquitination. In
its polyubiquitination form, VDAC1 impedes Parkin-mediated
mitophagy. However, in its monoubiquitination form at the
K274R site, defective VDAC1 induces apoptosis by augmenting
mitochondrial calcium uptake through the mitochondrial calcium
uniporter channel (Ham et al., 2020). The USP7 (ubiquitin-specific
protease 7), a deubiquitinating enzyme, plays a role in repairing
DNA damage and various cancers and organism development
(Zlatanou et al., 2016; Su et al., 2018; Pozhidaeva and Bezsonova,
2019; Zhao et al., 2021). Knockdown of USP7 in D. melanogaster
leads to increased ubiquitination of proteins and monoubiquitin.
This indicates that the USP7 is necessary to maintain D.
melanogaster’s normal lifespan by regulating both autophagy and
ubiquitin signaling pathways (Cui et al., 2020). Deubiquitinating
enzymes, which remove ubiquitin from proteins, are essential
regulators of ubiquitin-dependent processes (Clague et al., 2012).
As mentioned earlier, the FOXO in JNK signaling was also reported
to promote damaged protein clearance through the autophagy/
lysosome system, enhancing muscle function and lifespan (Wang
et al., 2005; Kang et al., 2012). This study suggested that muscle-
based FOXO/4E-BP signaling reduces feeding and insulin release,
subsequently delaying protein aggregate accumulation in various
tissues with age (Demontis and Perrimon, 2010). Interestingly,
minocycline, when administered to aging Drosophila, emerges as
a potent agent for improving proteostasis, a crucial component of
cellular health. This enhancement is intricately linked to the
upregulation of autophagy genes, with the autophagy/lysosomal
pathway in Drosophila muscles acting as the primary mediators

of this protective effect through the FOXO-Hsp70 axis (Lim and
Hyun, 2022). Furthermore, UBQLN (ubiquilin) plays a pivotal role
in cellular proteostasis due to its role in the ubiquitin proteasome
system and autophagy. Mutations in UBQLN2 have been linked to
amyotrophic lateral sclerosis and its variant with frontotemporal
lobar dementia (ALS/FTLD) (Gilpin et al., 2015). Drosophila
possesses a dUbqn (UBQLN homolog) akin to UBQLN1 and
UBQLN2. This study has revealed that depletion of dUbqn leads
to the accumulation of polyubiquitinated proteins accumulation and
morphological tissue anomalies, with specific neural defects
correlating with hindered locomotion, learning, and memory.
This illuminates the impact of proteostasis disruption in
neurodegenerative diseases and offers a promising Drosophila
model for ALS and FTLD therapeutic exploration (Jantrapirom
et al., 2018).

In essence, the ubiquitin-mediated autophagy process is a
critical cellular mechanism that ensures the timely degradation
and recycling of cellular components. Its dysregulation can have
profound implications for cellular health and function. By delving
deeper into the intricacies of this pathway and its involvement in
disease pathology, researchers can lay the foundation for innovative
therapeutic approaches applicable to a variety of diseases in both
humans and insects. The potential for targeted treatments that
modulate this pathway offers hope for improved patient
outcomes and an improved quality of life for those affected by
diseases associated with autophagy dysregulation.

Others

Protein lipidation is a crucial post-translational modification
that attaches lipids to proteins, thereby influencing their membrane
localization and function (Chen et al., 2018; Czuba et al., 2018). This
modification holds particular significance in the context of
autophagy, a cellular degradation process. In the B. mori, the
lipidation of the BmAtg8 is essential for the degradation of
p62 bodies, a process mediated by autophagy (Ji et al., 2017).
The membrane localization of these proteins is governed by their
covalent modifications with distinct lipids. In addition, studies have
shown that the lipidation of BmAtg8, specifically BmAtg8-PE, is
essential for the autophagic degradation of p62 bodies in Bombyx
cells. Moreover, the lipidation of BmAtg8 does not influence the
interaction between p62 and BmAtg8 (Ji et al., 2017). This leads to
interactions with other proteins, consequently affecting their
conformation, stability, membrane association, and localization
(Resh, 2013; Maeda et al., 2019; Ragland et al., 2020). The
broader implications of protein lipidation extend beyond
autophagy, as it can reshape protein, enhance their stability, and
alter their interactions with various cellular components. This can
have profound effects on cellular processes and has been linked to
various diseases. For instance, abnormalities in protein lipidation
can contribute to neurological disorders, metabolic diseases, cancers,
and a range of other conditions (Chen et al., 2016).

Hypusination is a unique post-translational modification
wherein the amino acid lysine undergoes transformation into the
atypical amino acid, hypusine, in eukaryotic organisms (Cooper
et al., 1983). The significance of hypusination is further accentuated
by its occurrence in a specific protein, the eIF5A (eukaryotic

Frontiers in Physiology frontiersin.org07

Wu et al. 10.3389/fphys.2023.1281555

https://www.frontiersin.org/journals/physiology
https://www.frontiersin.org
https://doi.org/10.3389/fphys.2023.1281555


initiation factor 5A) (Schnier et al., 1991). The role of eIF5A is
pivotal in protein synthesis, and the presence of hypusine is believed
to be essential for its function in D. melanogaster (Patel et al., 2009).

Histone methylation significantly influences the transcriptional
status of genes. This modification is site-specific and can be reversed
by histone lysine methyltransferases and lysine demethylases
(Latham and Dent, 2007). Methylation of histone 3 lysine 4,
lysine 36, and lysine 79 can activate transcription, whereas
methylation of lysine 9 and lysine 27 is associated with the
repression of transcription (Islam et al., 2011; Sanli et al., 2011).
In D. melanogaster, the histone H3 lysine 27 trimethylation
demethylase dUTX is essential for hormone-mediated
transcription. It interacts with the ecdysone receptor, a nuclear
hormone receptor complex, and regulates apoptosis and
autophagy genes during ecdysone-driven PCD in salivary glands
(Denton et al., 2013). This offers insights into the molecular
mechanisms underlying autophagy modulation by histone
methylation.

Conclusion

Protein modifications play crucial roles in fundamental cellular
physiological processes, including cell survival, autophagy, apoptosis,
gene transcription, DNA repair, stress response, and genome stability
(Lu andGao, 2017; Han et al., 2018; Heo, 2019; Singh andOstwal, 2019;
Wang and Wang, 2019). Autophagy, a self-digestive and dynamic
mechanism, is responsible for degrading long-lived proteins and
malfunctioning organelles via lysosomal pathways (Klionsky et al.,
2021). Furthermore, the autophagic process, which is essential for
maintaining cellular homeostasis, plays a vital role in ensuring cell
survival. Dysregulated autophagy patterns have been documented in
various pathological conditions in eukaryotes, such as muscular
disorders, cancer, tumorigenesis, aging, and neurodegeneration
(Mizushima and Levine, 2010; Levine et al., 2011). Increasing
evidence underscores the role of protein modifications throughout
the autophagic process, from initiation to nucleation, elongation,
completion, fusion, and even in the regulation of degradation and
efflux of autophagic substrates (Wang andWang, 2019). In this review,
we emphasized the significance of PTMs such as acetylation/
deacetylation, phosphorylation/dephosphorylation, ubiquitination/
deubiquitination, lipidation, and methylation/demethylation in the
regulation of autophagy in both B. mori and D. melanogaster.
Several questions about insect autophagy remain unanswered and
warrant further investigation: 1. Is there an intersection between
PTMs that regulate autophagy in insects? 2. Do other PTMs, such
as palmitoylation, lysine crotonylation, succinyllysine, and 2-
hydroxyisobutyryl lysine, exert an influence on autophagy in insects?
3. Can high-resolution mass spectrometry and protein chips be used to
measure and monitor PTMs in autophagy? 4. What are the effects of

PTMs on structural modifications of proteins that regulate autophagy?
5. Why do PTMs that influence autophagy vary among different
species? 6. What are the essential enzymes responsible for specific
PTMs in insects? 7. Is it essential to discover new inhibitors/activators to
target autophagy-related PTMs, with the aim of either restoring or
inhibiting autophagy? 8. While Beclin 1/Atg5 is known to regulate
autophagy associated with learning andmemory in rats (Xu et al., 2016;
Wang et al., 2021a), how do Atgs influence learning and memory in
insects? A comprehensive understanding of PTMs in the autophagy
regulation is imperative. Exploring the roles and mechanisms of PTMs
not only provides profound insights into the regulation of autophagy
processes but also underscores the significance of understanding the
upstreampathways that influence PTMs. This knowledgewill be pivotal
in the development of pharmaceutical interventions targeting
autophagy.
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