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Long-duration spaceflight can have adverse effects on human health. One of the
most common ocular conditions experienced by astronauts is dry eye disease
(DED). Symptoms of DED include feelings of eye irritation, eye strain, foreign body
sensation and blurred vision. Over 30% of International Space Station expedition
crew members reported irritation and foreign body sensation. We reviewed the
current literature on the prevalence and mechanisms of DED in astronauts and its
potential implications for long-duration spaceflight, including the influence of
environmental factors, such as microgravity and fluid shift on tear film physiology
in space. DED has negative effects on astronaut performance, which is why there is
a need for further research into the pathophysiology and countermeasures. As an
in-flight countermeasure, neurostimulation seems to be among the most
promising options.
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1 Introduction

Upon return to Earth, over 30% of International Space Station (ISS) expedition crew
members and approximately 15% of shuttle crew members reported experiencing signs or
symptoms of dry eye disease (DED) while in space (Gibson and Duncan, 2009; Reschke et al.,
2016). DED is an umbrella term encompassing a variety of diseases affecting the ocular
surface with tear film dysfunction and inflammation as their shared feature (Aggarwal and
Galor, 2018). Common symptoms include eye strain, burning or stinging, grittiness,
itchiness, redness, sensitivity to light, and blurry and reduced vision, all of which are
frequently reported by astronauts (Szczotka-Flynn et al., 2019; Meer et al., 2023). In the US, a
recent meta-analysis estimated a DED prevalence of 8.1% for the entire population (McCann
et al., 2022). Given the medical testing and excellent health of spaceflight participants prior to
flights, the high incidence of DED might be related to the microgravity exposure. Sleep and
mood disorders associated with DED have been reported on Earth (Ayaki et al., 2016;
Kitazawa et al., 2018; Zhou et al., 2022), and are also both known to affect crew performance
(Wu et al., 2018; Stuster, 2021). Thus, on long-duration flights, DED will need to be
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addressed because visual acuity and comfort are critical for
performing space-related tasks. However, the pathophysiology of
DED in microgravity and possible countermeasures are unknown.
Despite its high incidence and operational relevance, DED was not
mentioned in the latest consensus paper concerning the directions to
identify risks and mitigation strategies for ocular changes in human
spaceflight (Seidler et al., 2022). For these reasons, the aim of the
present review paper was to summarize the current evidence for the
clinical relevance, pathophysiology, and possible countermeasures
of DED in microgravity.

2 Physiology of the tear film

The tear film is a thin fluid film covering the cornea and bulbar
conjunctiva. The three main tear film components are mucins,
water, and lipids (Yokoi et al., 2014). The mucins are embedded
in the apical membrane of ocular surface cells and are also secreted
into the tear film by specialized conjunctival goblet cells (Spurr-
Michaud et al., 2007; Hodges and Dartt, 2013). The aqueous portion
of the tear film comprising a mixture of proteins, water, and ions is
secreted by the lacrimal glands (Green-Church et al., 2008) and the
lipids are secreted by glands (Meibomian glands) in the eyelids
(Bron et al., 2004). Besides maintaining sharp vision, the tear film
keeps the eye healthy by providing microbial protection and
nutrients (McDermott, 2013).

3 Tear film dynamics and effects of
microgravity

3.1 Tear film structure

In the scientific community, current consensus is that the tear
film should be regarded as a whole, rather than three separate layers
(Georgiev et al., 2019). Together, the three layers combined enable
the final tear film to be only ~ 3 µm thick, and to cover a relatively
vast area (~2 cm2; or ~2 × 108µm2) without collapsing (Tsubota and
Nakamori, 1995). This means that molecular rather than
gravitational forces dominate its spread and stability (Jones et al.,
2005). However, gravity is likely to have a direct impact on the tear
menisci, i.e., the thin bands of tear fluid between the eyeball and lid
margins. Gravitational effects cause a steepened curvature and lower
tear volume in the upper meniscus and vice versa in the lower
meniscus (Su et al., 2015; Maki et al., 2020). It is, however, unclear
whether changes in tear film components in space are responsible
for the DED complaints reported by astronauts. Neither tear film
sampling of astronauts, nor analyses of tear film spread have been
performed to date.

3.2 Blinking

Blinking is a cycle of movement that helps to distribute and
remove the tear film. The opening part of the blink cycle is
responsible for spreading the aqueous and meibum (lipid) to
form an even tear film over the eye (Harrison et al., 2008). The
closing phase of a blink (~100 ms) is faster than the opening phase

(~200 ms) (Kwon et al., 2013; Mak et al., 2016; Rodriguez et al., 2018;
McMonnies, 2021). Tear film spreading is completed in ~1 s after
cessation of the upstroke of the blink (Ring et al., 2012). During the
open-eye part of the blink cycle, the tear film evidently forms a gel
and becomes isolated from the reservoir of tears in the upper and
lower tear menisci (Miller et al., 2002; Yokoi et al., 2014; Georgiev
et al., 2019). Lubricity between the eyelid and ocular surface in part is
maintained by specialized stratified epithelium that covers the lid
margin at the point of closest contact (lid wiper). Changes to this
region of the eyelid have been associated with signs of poor tear film
performance (Korb et al., 2005).

The fast-closing part of the blink cycle is needed to fluidize the
tear film because it shows non-Newtonian viscosity i.e., the higher
the shear force the less viscous the tears (Pult et al., 2015b; Arshinoff
et al., 2021; Recchioni et al., 2022). Blinking also cleans the ocular
surface by removing tears via the tear menisci into the puncta,
lacrimal canaliculi and lacrimal sac (McDonald and Brubaker,
1971). Dust and microbe removal from the eye surface is likely
to be even more important in microgravity where large dust particles
and dense objects such as metal filings do not settle (Haines et al.,
2019; Jahn et al., 2021). In fact, astronauts commonly report corneal
foreign bodies (Meer et al., 2023).

Blink speed, frequency and fullness contribute to normal tear
film formation. Studying the nature of blinking is difficult because of
differences in defining a complete/full blink (Collins et al., 2006; Pult
et al., 2013; Wang et al., 2018) and blink frequency varies with
alertness, conversation, the nature of visual task being undertaken,
mood, sex, and ethnicity (Yolton et al., 1994; Tsubota et al., 2002;
Himebaugh et al., 2009; Wang and Craig, 2019). Natural blinking
changes upon conscious command, and the characteristics of
purposeful blinking are very individual (McMonnies, 2020).
Eyelid contact in full blinks compresses the Meibomian glands,
increases secretion and spreads oils onto the eyelid margins (Korb
et al., 1994). Nevertheless, as little as 10% of blinks need to have the
lids fully touching along their length (full in amplitude), to maintain
a stable tear film (Shew et al., 2022). Mathematical and analog
models of blinking have not been able to predict all the clinical
observations (Braun and Fitt, 2003; Pult et al., 2015a). While it is
known that being in microgravity significantly affects gaze behavior
via the vestibular system, blink behavior has not yet been studied
(Clément, 2011; Reschke et al., 2016). Given the above, we
hypothesize that if blinking remains normal the tear film should
form properly in microgravity.

3.3 The effect of cephalad fluid shift (CFS) on
the tear film

In microgravity, fluid redistributes from the lower half of the
body to the head causing tissue swelling and increases in intraocular
and cranial pressure (Nelson et al., 2014). The effects of cephalad
fluid shift (CFS) have been well studied in relation to retinal
thickness, axial length, anterior chamber depth, and refraction,
and the changes to eye health have been labeled as spaceflight-
associated neuro-ocular syndrome (SANS) (Lee et al., 2020; Macias
et al., 2020). CFS also causes swelling of the eyelids and an upward
shift in eyebrow position (Schneider et al., 2016; Karlin et al., 2021).
Thereby, the nasolacrimal drainage apparatus is affected. Swelling of
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the eyelids may change the pressure that they exert onto the ocular
surface (lid wiper), and the size and shape of the tear menisci; both
could influence the spread of the tear film (Yamamoto et al., 2016;
van Setten, 2020). Swelling will affect tear drainage because normally
in the open eye, the upper and lower canaliculi are relaxed and fill
with aqueous. The common canaliculus is constricted and then,
during a blink, the aqueous flows into the common canaliculus
because the upper and lower canaliculi constrict and the common
canaliculus relaxes (Kakizaki et al., 2013). From there, the tears flow
into the lacrimal sac which is surrounded by a cavernous body. It is
rich in a vascular plexus that is important for regulating tear-outflow
by dilating and constricting (Paulsen et al., 2000; Ayub et al., 2003).
CFS is expected to change the vascular plexus of the cavernous body
resulting in functional nasolacrimal duct obstruction and tear
retention. Tear drainage from the lacrimal sac to the inferior
meatus of the nose is also affected by gravity (Chavis et al., 1978;
Sahlin and Chen, 1997). Insufficient drainage means the tear film is
not replaced leading to the accumulation of toxins and
inflammatory agents (Pflugfelder et al., 2002; de Paiva and
Pflugfelder, 2004). Partial gravity (e.g., Moon or Mars gravity) is
expected to induce similar changes but to a lesser degree.

4 Evaluation of tear film problems in
space

Diagnosing tear film disorders on Earth has proven to be
cumbersome because the tear film is complex, invisible, and
small in volume. Sampling and bright light causes reflex tearing,
and there is discordance between signs and symptoms of DED
(Behrens et al., 2006; Sullivan et al., 2014; Bartlett et al., 2015;
Wolffsohn et al., 2017), e.g., symptoms have been associated with
non-ocular pain, depression, and post-traumatic stress disorder
(Galor et al., 2015). Moreover, different clinics vary in their cut-
off values to distinguish a normal tear film from an unhealthy one.
Consequently, diagnosis is often uncertain and inconsistent. To
minimize this problem, the TFOS DEWS II (Dry Eye Workshop)
expert panel recommended an initial questionnaire, followed by
tests for any one of three possible markers of a loss of tear film
homeostasis (tear film stability, hyperosmolarity or corneal
staining). Some examples are non-invasive breakup time
(NIBUT), osmolarity, and ocular surface staining with fluorescein
and lissamine green (Wolffsohn et al., 2017). A slit lamp is used for
many of these tests, and it can be used for evaluating other ocular
tissues (cornea, iris, lens, retina). However, the availability of
diagnostic and treatment tools will be limited in long-haul
spaceflights due to payload (volume and mass) and opportunities
to replace diagnostic products or treatments are scarce.

The current diagnostic equipment on the ISS includes an
ophthalmoscope with downlink video function as well as a blue
light filter and fluorescein strips. A slit lamp is not available, but
astronauts are trained to use an ophthalmoscope to perform a
complete primary ocular examination with lid eversion. Fluid
shift may confound the diagnosis due to congestion of
conjunctival blood vessels, causing “red eye” (Marshburn et al.,
2019). Installing more advanced ocular surface diagnosis technology
on the ISS or on future spaceships and stations would present a
challenge. Automated NIBUT (non-invasive tear breakup time), tear

film interferometry and osmolarity test devices are too bulky or use
disposables and are therefore unsuitable for being part of the
payload. Rather, small, multipurpose systems and self-
administered testing should be considered. Infrared imaging, for
example, has shown potential as a non-invasive and disposable-free
diagnostic tool and has already been used on the ISS for other
purposes (Howell et al., 2008; Shah and Galor, 2021). Screen and
smartphone-based tests for blinking and evaluating the eye are
developing rapidly, and some of these could be considered as
they become available (Wolffsohn et al., 2018; Okumura et al., 2022).

5 Treatment of tear film problems in
space

Eyedrops are the most common form of treatment for tear
problems on Earth (Jones et al., 2017). These will be inappropriate
for long-haul spaceflights because of payload and use-by dates. The
application of eyedrops in microgravity would also be a major issue
because “dropping” them into the eye is challenging. The fluid must be
“wicked” into the eye using surface tension forces by making direct
contact with the dropper bottle, thus contaminating the bottle in the
process. Ointments and gels are easier to apply and are currently in use
on the ISS for eye infections but would impair vision when used for
lubrication. Therefore, other methods related to restoring the
physiology of the tear film should be used. One possible option is

FIGURE 1
Application of iTear100 neurostimulation system.

Frontiers in Physiology frontiersin.org03

Ax et al. 10.3389/fphys.2023.1281327

https://www.frontiersin.org/journals/physiology
https://www.frontiersin.org
https://doi.org/10.3389/fphys.2023.1281327


ocular neurostimulation. While early devices used electricity and
disposables (TrueTear, Allergan Inc.), current technology (iTear100,
Olympic Ophthalmics Inc.; Figure 1) externally stimulates the
nasociliary nerve through vibration to immediately induce
lacrimation and potentially Meibomian gland secretion (Farhangi
et al., 2019; Ji et al., 2020). This means that one device could be
used by the entire crew. Other “low tech” treatments which have
proven effective on Earth are blink exercises, heating and massage of
Meibomian glands, and cleaning the area around the eyes (Bitton et al.,
2019; McMonnies, 2021). However, unlike neurostimulation these
need to be repeated on a regular basis to start providing relief.

6 Environmental hazards associated
with space travel

The interior of spacecraft and space stations are likely to have an
impact on the tear film. This is because of strong air currents (air
exchanged 45–77 times per hour in crew quarters) coupled with a
relative humidity of about 60% (ISS), increased CO2 exposure,
artificial lighting, cosmic radiation, and extensive screen work
(Gamus et al., 1994; Scull et al., 1998; Uchino et al., 2013; Stenger
et al., 2017; Georgescu et al., 2021) which increase tear film
evaporation and inflammation of the ocular surface. These factors
need to be addressed to minimize the risk of ocular surface damage.

Astronauts are either inside a spaceship or space station, or in
special extravehicular activity (EVA) suits with no opportunity to
move to a different environment. That way, they are constantly
exposed to aerosols and bioaerosols (airborne particles containing
microbes such as bacteria, fungi, and viruses) which accumulate in
the cabin (Harrad et al., 2023). Larger particles which would settle
out on Earth also harbor higher concentrations of microbes (Haines
et al., 2019). Furthermore, there is research pointing towards
alterations of virulence of pathogens in microgravity (Velez
Justiniano et al., 2023).

On the ISS, high-efficiency particle air filters remove particles with
a minimum efficiency of 99.97%, which diminishes the chance of
these particles entering astronauts’ eyes. The ISS also has eye-wash
devices available to flush debris from the eye (James and Ryder, 2019).

On Earth, extensive use of visual display terminals (VDT), such as
computer screens, is a major cause of DED. VDT use adversely affects
blinking and Meibomian glands, NIBUT, ocular comfort and causes
signs of ocular surface damage (Fjaervoll et al., 2022). Breaks from using
screens and blink exercises could provide relief (Wolffsohn et al., 2023).

Sleep is needed for the ocular surface to regenerate (Li et al.,
2022). Lack of sleep or poor sleep quality are risk factors of DED
(Ayaki et al., 2016; Galor et al., 2023). Astronauts often report
difficulty falling asleep and staying asleep, and disruptions to their
circadian rhythms. This is mainly due to the lack of a natural day-
night cycle, as well as the noise and lighting conditions (especially
blue light). To mitigate these issues, astronauts typically follow a
carefully designed sleep schedule and may use sleep aids such as eye
masks and earplugs (Allen et al., 2016; Barger et al., 2020). Recently,
dynamic solid-state lighting was installed on the ISS as a
countermeasure for circadian misalignment and sleep disruption
(Brainard et al., 2016; Rahman et al., 2022).

In addition to sleep disorders, behavioral and mood disorders
occur with increasing mission length (Clement et al., 2020). They are

associated with dry eye and vice versa, though the exact mechanism
is yet to be determined. One possible mechanism is that symptoms
of DED affect the daily lives of patients, thus affecting their mood
(An and Kim, 2022; Tsai et al., 2022; Galor et al., 2023). The
management of mood disorders in space is complex and ranges
from astronaut selection as a preventative measure to in-flight
private videoconferences with behavioral health specialists (Sipes
et al., 2021).

7 Discussion

Current evidence suggests that DED will be an issue during
long-haul spaceflights, and it will need to be addressed to prevent
potential consequences for astronaut health and performance.
Experience from ISS crew indicates that ~30% of astronauts are
affected (Reschke et al., 2016), and this warrants systematic
investigation that includes the type of DED afflicting astronauts,
identification of factors contributing to it, and modes of treatment
suitable for space travel. Blinking behavior and tear film dynamics
could be studied on a parabolic flight to uncover immediate effects of
microgravity. Long-term effects, on the other hand, could be
investigated by performing tear film sampling on astronauts in
addition to blink and tear film tests.

With NASA planning a return to the Moon as soon as 2024, the
potential dangers of the lunar environment need to be accounted for
(Smith et al., 2020). Extraterrestrial dust is a potential threat, e.g., acute
exposure to lunar dust causes ocular irritation (Meyers et al., 2012) but is
not directly toxic. Lunar dust tends to be especially jagged due to the
absence of weathering (James and Kahn-Mayberry, 2011; Pohlen et al.,
2022;Miranda et al., 2023). In theApollomissions, numerous astronauts
reported ocular erythematous and watery eyes with decreased vision
after exposure to lunar dust following its introduction to the lunar
module upon return from EVAs (Scheuring et al., 2008). Martian dust is
potentially a bigger threat to ocular health because it contains reactive
perchlorates (Davila et al., 2013; Crotts, 2014).

Goggles could be worn by astronauts when acute exposure is
expected. Once exposed, while eye irrigation would help, repeated
irrigation, e.g., after every EVA, would most likely remove the
protective mucin cover of the ocular surface increasing the risk
of DED and infection (Naderi et al., 2020). However, 1 month of
daily eye irrigation with a commercial eye wash solution containing
vitamins, chondroitin sulfate and other supplements did not show
detrimental effects (Yazu et al., 2019). It is yet to be determined if
repeated flushing with recycled water as used in the ISS would have
any detrimental effects on eye health (Straub et al., 2013).
Alternatively, neurostimulation (see above) to promote tearing
and natural flushing would be a possibility worth investigating.

In conclusion, there are still significant knowledge gaps when it
comes to ocular surface health in space. These should be addressed
by future research.
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