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Purpose: Currently, there is no interventional approach to increase the intensity of
SuryaNamaskar a popular hatha yoga sequenceusedworldwide. Therefore, this study
investigated how tempo-based high-intensity interval cardio yoga (HIICY) and
traditional interval hatha yoga (TIHY) affects cardiometabolic fitness in active adults.

Methods: Twenty physically active male and female individuals were randomly
separated into HIICY (5 males, 5 females, 1.5 s tempo) and TIHY (5 males,
5 females, 3 s tempo) groups. The intervention included twelve exercise
sessions for 4 weeks in both groups. Participants conducted a ramp test to
determine their maximal oxygen uptake ( _VO2max), maximal velocity at _VO2max

(v _VO2max), and maximal heart rate (HRmax). Afterward, they performed a 10-min
high-intensity cardio yoga test (HICYT) to determine heart rate (HRpeak and
HRmean), oxygen uptake ( _VO2peak and _VO2mean), respiratory exchange ratio
(RER), blood lactate concentrations (La−peak and ΔLa−), fat and carbohydrate
oxidations (FATox, CHOox), and energetic contributions (oxidative; WOxi,
glycolytic; WGly, and phosphagen; WPCr, total energy demand; WTotal).

Results: _VO2max and v _VO2max showed time and group × time interactions (p <0.01,
p < 0.0001, p < 0.001, respectively). _VO2max after HIICY was significantly higher
than in pre-testing and following TIHY (p < 0.001, p < 0.0001, respectively).
_VO2peak, _VO2mean, RER, HRpeak, and HRmean during the 10-min HICYT showed
significant time effects (p < 0.05). ΔLa− indicated a group × time interaction (p <
0.05). Group x time interaction effects for FATox at the fourth and sixth minute
were observed (p < 0.05, respectively). Absolute (kJ) and relative (%) WOxi, WGly,
and WTotal showed time and group × time interaction effects (p < 0.05, p < 0.01,
respectively). Furthermore, %WGly was reduced following HIICY (p < 0.05).
Additionally, _VO2max and v _VO2max were highly correlated with WOxi in kJ (r =
0.91, 0.80, respectively). Moderate to high correlations were observed among
CHOox, FATox, and absolute _VO2max (r = 0.76, 0.62, respectively).

Conclusion: A 4-week period of HIICY improved cardiometabolic fitness,
oxidative capacity, and metabolic flexibility compared with TIHY, in physically
active adults. Therefore, HIICY is suitable as HY-specific HIIT and time-efficient
approach for relatively healthy individuals.
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Introduction

The World Health Organization’s (WHO) definition of
“physical inactivity” refers to the failure to meet recommended
levels of weekly physical activity. This guideline consists of at least
150 min of moderate-intensity or 75 min of high-intensity aerobic
activity per week (Santos et al., 2023). It is now well appreciated that
physical inactivity is the fourth leading cause of death and has been
reported to contribute to multiple chronic diseases including insulin
resistance, type 2 diabetes mellitus, obesity, metabolic and endocrine
diseases (Balakumar et al., 2016; Kerr and Booth, 2022). The global
economic burden of non-communicable diseases associated with
lack of physical activity was estimated to be between US$ 53.8 and
67.5 billion as of 2016 (Scheltens et al., 2021; Santos et al., 2023). One
increased metabolic equivalent of task (1 MET = _VO2

3.5 mL·kg−1·min−1) at the maximal aerobic capacity was related to
13% and 15% risk reductions for all-cause mortality and coronary
heart/cardiovascular disease respectively in males and females
(Kodama et al., 2009). Furthermore, the prevalence of metabolic
diseases was reduced by 6.3-fold in males and 4.9-fold in females.

Cardiorespiratory fitness consists of a wide range of parameters
between an aerobic base and maximal aerobic exercise capacity,
which represents maximal aerobic performance and the functional
capacity of numerous bodily systems. These can be determined by
maximal oxygen uptake ( _VO2max) (Kodama et al., 2009; Meyler
et al., 2021; Yang et al., 2022a; Hwang et al., 2022). _VO2max is a
crucial indicator for maximal aerobic performance and
cardiorespiratory function in different individuals and athletes,
and also provides detailed insights into inter-individual
prescriptions in exercise physiology and sports science (Bosquet
et al., 2002; Wisløff et al., 2007; Niemeyer et al., 2021). Moreover,
WHO considers _VO2max as one of the valuable indicators or markers
for cardiorespiratory fitness or health, and it is strongly associated
with better physical performance. Epidemiological data from
previous studies revealed that having a proportionally high
_VO2max is a potent sign of health and life expectancy in all age
groups (Ross et al., 2016; Udhan et al., 2018). Furthermore, exercise-
induced acute cardiorespiratory adaptations enhance the ability of
the cardiovascular system to meet the demands of skeletal muscle
exercise, via increases in pulmonary ventilation, heart rate, stroke
volume, and cardiac output with moderate increases in systolic
blood pressure, peripheral vasoconstriction, and vasodilation
(Weiner and Baggish, 2012; Predel, 2014).

In terms of improving _VO2max, the most effective intervention is
high-intensity interval training (HIIT) (Buchheit and Laursen,
2013a; Batacan et al., 2017; MacInnis and Gibala, 2017; Sabag
et al., 2022; Jacob et al., 2023). It is well known that HIIT
protocols can maximally induce the oxygen uptake and
utilization system for more than 85% of _VO2max or peak oxygen
uptake ( _VO2peak) and thus provide the most effective stimulation to
increase _VO2max (Buchheit and Laursen, 2013a; Buchheit and
Laursen, 2013b; Sheykhlouvand et al., 2018).

HIIT prescription is used as an alternative physical exercise for
those who do not have enough time contemporary people and is
also consistently ranked in the top 10 fitness trends of the
American College of Sports Medicine (ACSM) (Sabag et al.,
2022; Kercher et al., 2023). Previous studies have reported that
HIIT is efficient at developing the three energy systems utilized in

humans in a time-efficient manner, which includes active or
passive recovery following repeated rounds of exercise. HIIT
protocols are designed to reach an exercise intensity such
as >90% of maximal heart rate (HRmax), the second ventilatory
threshold (>VT2), over the second lactate threshold (>4 mmol·L-1;
zone 3: high-intensity exercise), and >85% of _VO2max and _VO2peak

(Jamnick et al., 2020; Protzen et al., 2020).
In terms of metabolism, metabolic flexibility is defined as the

ability to rapidly convert to generate adenosine triphosphate (ATP)
from efficient fat and carbohydrate utilization based on
physiological demands (Goodpaster and Sparks, 2017; Galgani
et al., 2022). Efficient metabolic flexibility is essential to prevent
metabolic diseases directly related to physical inactivity-induced
mitochondrial dysfunction (San-Millán and Brooks, 2018; Yang
et al., 2022a). HIIT increases metabolic flexibility, which indicates
a strong relationship with metabolic health parameters such as
insulin sensitivity and mitochondrial respiratory capacity
(Aparecido et al., 2022).

In this regard, yoga is a mind-body practice consisting of
physical postures (Asana), breathing techniques (Pranayama),
and meditation (Dhyana) (Patwardhan, 2017). Notably, yoga is
one of the most practiced complementary or alternative exercise
interventions to achieve optimal physical and mental health (Udhan
et al., 2018; Khoshnaw and Ghadge, 2021). Furthermore, hatha yoga
(HY) is becoming increasingly popular in the United States and
Europe as an alternative form of physical activity that can support
individuals to reach globally recommended levels of physical activity
(Larson-Meyer, 2016). The main goals of HY are to enable
practitioners to improve body, breath, and spirit states and to
“prepare a healthy mind and body to immerse oneself in
meditation for self-realization” (Schmalzl et al., 2015). A specific
set of 19 asanas called Surya Namaskar B (Sun Salutations, SS)
includes the vinyasa system and is one of the most basic and
representative sequences in many styles of yoga classes worldwide
(Papp et al., 2016; Brinsley et al., 2022).

The average metabolic cost during HY focusing on various
postures, alignments, and breathing for different times is less than
3 METs and show results similar to walking on a treadmill at
3.2 km·h−1 (Hagins et al., 2007; Larson-Meyer, 2016). However,
HY (Surya Namaskar) lasts at least 10 min and can contribute
sufficiently intense physical activity to improve an individual’s
cardiorespiratory fitness with 4-6 METs, corresponding to ACSM’s
moderate-to-high-intensity physical activity guidelines (Hagins et al.,
2007; Mody, 2011; Larson-Meyer, 2016; Potiaumpai et al., 2016). A
recent study by Lee et al. (2021) reported that HY, which consisted of
1.5 s for each asana and lasted for 10 min, could be used as HIIT in
physically active individuals. The results of this study showed %
HRpeak of HRmax, %HRmean of HRmax, METs of _VO2peak and _VO2mean,
and blood lactate concentrations (La−) values during high-intensity
HY (HIHY), that reached 95.6%, 88.7%, 10.54, and 8.67 METs, and
8.31 mmol·L−1 La−, respectively. This HIHY indicated suitable levels
for HIIT. However, no interventional approach to HIHY was
performed in this study. It was unclear therefore, whether high-
intensity interval cardio yoga (HIICY) as HIHY could improve
_VO2max, energetic contributions, and metabolic flexibility in
physically active individuals.

Therefore, the aim of the study was to investigate how at least 4-
week tempo-based HIICY and traditional interval hatha yoga
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(TIHY) practices affected cardiometabolic fitness parameters, such
as _VO2max, energetic contributions, and metabolic flexibility.

Materials and methods

Participants

The sample size for the study was calculated using G*Power
software version 3.1.9.4 (Heinlich Heine University, Düsseldorf,
Germany) which considered: effect size = 0.3, alpha error
probability = 0.05, and statistical power = 0.8. The effect size was
determined based on previous studies (Astorino et al., 2012;
Ormsbee et al., 2015; Lee et al., 2021). The total required sample
size was calculated to be twenty participants assuming a 10%
dropout rate (n = 20). Participants were randomly separated into
two tempo-based HY groups: ten physically active individuals were
assigned high-intensity interval cardio yoga (1.5 s tempo HIICY; five
males and five females) and another 10 participated in traditional
interval hatha yoga (3 s tempo TIHY; five males and five females)
(Figure 1). All participants satisfied the minimum physical activity
standards per week based on WHO guidelines and had no pre-
existing cardiovascular, pulmonary, or metabolic diseases or
musculoskeletal disorders (Santos et al., 2023). All participants
were yoga beginners. Therefore, before the experiment began,
they learned the movement sequences with the yoga instructor
and quickly became familiar with the movements and sequences
through the qualified yoga instructor’s demonstrations during the

intervention. The participants maintained their previous physical
activity levels throughout the 4-week intervention period and
performed no additional training. Anthropometric measurements
of all participants were taken in the fasting state. The data were as
follows (mean ± standard deviation; SD): age 30 ± 5 years, height
169.6 ± 7.4 cm, body mass 66.8 ± 12.8, body fat 23.4% ± 7.5%, and
BMI of 23.0 ± 3.3 kg·m−2. The anthropometric data of HIICY and
TIHY groups were not significantly different (Table 1). Participants
were instructed not to change their diet during the intervention and
did not take any medication before and during pre- and post-tests
and abstained from nicotine and alcohol for 24 h prior to the testing.
This study was approved by the Institutional Review Board of CHA
University (IRB No. 1044308-202206-HR-031-02). The approved
protocols followed the ethical standards in the Declaration of
Helsinki. All participants signed informed consent forms.

Study procedure

All participants attended two laboratory visits for pre- and post-
testing between 4 weeks. Testing was performed at a temperature of
23°C and relative humidity of 50%. Anthropometric data of participants
were analyzed using an eight-electrode segmental multi-frequency
bioelectrical impedance analyzer (BIA: 20–100 kHz; InBody 270;
InBody Co. Ltd., Seoul, Republic of Korea). All participants rested
for 2 h after lunchtime and conducted a ramp test for _VO2max on a
treadmill (NR30XA, DRAX Corporation Ltd., Seoul, Republic of
Korea). Afterward, a high-intensity cardio yoga test (HICYT) (one

FIGURE 1
Study procedure. The pre-test including _VO2max (1.1) and HICYT (1.2) was conducted before the 4-week HIICY and TIHY training (2) commenced.
The same set-up was utilized for post-testing (3.1 and 3.2). All participants conducted the HICYT (n = 20) after the _VO2max test and were randomly
separated into HIICY (1.5 s tempo, n = 10,males 5 and females 5) and TIHY (3 s tempo, n = 10, males 5 and females 5) groups. Capillary bloodwas collected
from the earlobe (20 μL) before and at 1-min intervals (1st to 10th) after the 10-min HICYT. _VO2max; maximal oxygen uptake, HICYT; high-intensity
cardio yoga test, HIICY; high-intensity interval cardio yoga, TIHY; traditional interval hatha yoga. The numbers indicate the flow of the test procedures.
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set) was performed on the same testing day. _VO2max and HICYT post-
testing were conducted the same as pre-testing (Figure 1).

Maximal oxygen uptake ( _VO2max) test

The pre- and post-ramp tests were performed via continuous
incremental ramp protocols on a treadmill with the breath-by-
breath method using a portable gas analyzer (MetaMax 3B;
Cortex Biophysik, Leipzig, Germany). The gas analyzer was
calibrated before each test with 15% O2 and 5% CO2 (Cortex
Biophysik, Leipzig, Germany) and the turbine volume transducer
was calibrated using a 3-L syringe (Hans Rudolph, Kansas,
United States). An initial warm-up was conducted for 10 min by
running at 70% of the estimated HRmax (Helgerud et al., 2022). The
ramp protocol was applied for _VO2max determination based on a
previous study (Sperlich et al., 2015). The initial running speed was
9.0 km·h−1 at 2% inclination in 2 min. Then, the running speed was
increased by 0.72 km·h−1 every 30 s. The investigator verbally
encouraged participants to maintain effort for as long as possible
to evaluate their maximum aerobic performance seen as reaching a
“plateau”. The test was stopped when _VO2 plateau and respiratory
exchange ratio (RER) >1.0 were reached, or until volitional exhaustion
by the participant (Jurov et al., 2023; Wiecha et al., 2023). The plateau
was determined using the method (<2 mL·kg−1·min−1) that has been
explained in previous studies (Krustrup et al., 2005; Niemeyer et al.,
2021). Furthermore, _VO2max was determined as an averaged value of
oxygen uptake during the 15-s duration at the end of the plateau
(Midgley et al., 2007; Niemeyer et al., 2021;Wiecha et al., 2023). TheHR
data were recorded using a Polar H10 sensor (Polar Electro, Kemple,
Finland). HRmax was determined as values through the same section at
_VO2max (Krustrup et al., 2005). Finally, the absolute and relative
_VO2max, and velocity at _VO2max (v _VO2max) were determined (Billat
et al., 1996; Riboli et al., 2022).

High-intensity cardio yoga test (HICYT) and
4-week HIICY and TIHY interventions

After _VO2max testing, the participants were advised to continue
low-intensity jogging until blood lactate levels were below
2.0 mmol·L−1 (Schünemann et al., 2023). They wore a portable
gas analyzer and performed a high-intensity cardio yoga test
(HICYT) (one set) for 10-min to analyze highest oxygen uptake
( _VO2peak), metabolic flexibility (fat and carbohydrate oxidation;

FATox and CHOox) and contributions from the three-energy
system. Upon completion of the pre-test, all participants were
randomly assigned to either HIICY or TIHY groups. They
performed three interventional HIICY and TIHY sessions per
week over 4 weeks (a total of 12 sessions) (Costigan et al., 2015;
Schmitz et al., 2018) (Figure 1). All training sessions were performed
under the supervision of a qualified yoga instructor. For both
training sessions and HICYT sequences, the Surya Namaskar B
sequence was used which consisted of 19 SS physical exercises
(Asanas) (Figure 2). Tempo-based, each movement lasted 1.5 s
for HIICY and 3 s for TIHY using a metronome, respectively
(Lee et al., 2021). The entire duration for both styles was 30 min,
which consisted of 2 sets of 10-min (Sandbakk et al., 2013) HIICY or
TIHY and 10-min active recovery between sets. Active recovery was
conducted by walking at 40%–45% of the estimated HRmax, as
suggested by a previous study (Lee et al., 2021). The post-test
was performed within 2 days of the last training session.
Furthermore, HR levels were recorded during the 4-week
interventions, and were digitally saved by the HR application for
monitoring each training session (Table 2).

Calculations of fat and carbohydrate
oxidation rate during HICYT

During HICYT, _VO2 and carbon dioxide ( _VCO2) production
were used to calculate metabolic flexibility in terms of fat (FATox)
and carbohydrate (CHOox) oxidation, using stoichiometric
equations according to previous studies (Jeukendrup and Wallis,
2005; San-Millán and Brooks, 2018; Yang et al., 2022a).

FATox g·min−1( ) � 1.67· _VO2 L·min−1( )– 1.67· _VCO2 L·min−1( )

CHOox g·min−1( ) � 4.55· _VCO2 L·min−1( )– 3.21· _VO2 L·min−1( )

Calculations of energy system contributions
(PCr-La−-O2 method) during HICYT

The contributions of three energy systems (phosphagen [WPCr],
glycolytic [WGly], and oxidative [WOxi] in kJ and %) were calculated
by the PCr-La−-O2 method (Julio et al., 2017; Yang et al., 2018; Yang
et al., 2022b; Kaufmann et al., 2022; Yang et al., 2023). Oxygen
consumption parameters (resting oxygen consumption, _VO2rest;
average oxygen consumption during the 10-min HICYT,

TABLE 1 Anthropometric data.

Parameters HIICY (n = 10)
(Mean ± SD)

TIHY (n = 10)
(Mean ± SD)

All participants (n = 20)
(Mean ± SD)

Age (years) 27.6 ± 4.4 32.7 ± 5.2 30.2 ± 5.3

Height (cm) 169.7 ± 7.7 169.5 ± 7.5 169.6 ± 7.4

Body weight (kg) 66.2 ± 12.9 67.3 ± 13.4 66.8 ± 12.8

Body fat (%) 24.5 ± 7.3 22.3 ± 8.0 23.4 ± 7.5

BMI (kg·m−2) 22.9 ± 3.6 23.2 ± 3.2 23.0 ± 3.3

There was no significant difference of anthropometric data between HIICY and TIHY groups. HIICY; high-intensity interval cardio yoga, TIHY; traditional interval hatha yoga. ns; p > 0.05.
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_VO2mean; highest oxygen consumption during the 10-min HICYT,
_VO2peak; and fast component of excess oxygen consumption
[EPOCfast]; and off _VO2 kinetics) were assessed at 5-min rest,
during, and after 10-min HICYT (6 min), by the breath-by-breath
method using a mobile gas analyzer. _VO2mean and _VO2peak were
determined as the average and highest values during the 10-min
HICYT, respectively. Capillary blood was collected from the earlobe
(20 μL) before, and at 1-min intervals (1st to 10th) after 10-minHICYT
to determine resting and maximal blood lactate concentrations (La−rest
and La−peak; the peak value of La

− among 10 values) using an enzymatic-
amperometric sensor chip system (Biosen C-line; EKF diagnostics sales,
GmbH, Barleben, Germany).

The WOxi was calculated by subtracting _VO2rest from _VO2 by the
trapezoidal method in which the domain under the O2 data was divided
into sections and the summarized trapezoid was utilized to estimate the
integral (de Campos Mello et al., 2009; Yang et al., 2022b; Yang et al.,
2023). _VO2rest was determined in a standing position on the yoga mat
with the last 30 s of a 5 min period applied as a reference (di Prampero
and Ferretti, 1999; Beneke et al., 2004; Julio et al., 2017; Yang et al., 2018;
Kaufmann et al., 2022; Yang et al., 2022b).

The WGly analysis was performed by La−rest and La−peak values,
assuming that an accumulation of 1 mmol·L−1 was equivalent to
3 mL O2·kg−1 of body mass (di Prampero and Ferretti, 1999). Delta
La− (ΔLa−) was calculated as the difference between La−peak after 10-
min HICYT and La−rest before (Beneke et al., 2004; Campos et al.,
2012; Yang et al., 2018; Yang et al., 2022b).

The WPCr value was calculated using _VO2 after 10-min HICYT
and the fast component of excess post-exercise (Gastin, 2001;
Beneke et al., 2004; Yang et al., 2022b; Yang et al., 2023). Off
_VO2 kinetics were fitted by mono-exponential and bi-exponential
models using OriginPro 2021 statistical software (OriginLab Corp,
Northampton, USA). The slow component of the bi-exponential
model was negligible. Thus, _VO2 values after 10-min HICYT were
fitted using a mono-exponential model and WPCr was estimated by
calculating the integral of the exponential domain (Beneke et al.,
2004; Campos et al., 2012; Julio et al., 2017; Yang et al., 2018; Yang
et al., 2022b; Kaufmann et al., 2022).

A caloric quotient of 20.92 kJ was applied in the three energy
system calculations (Gastin, 2001). Total energy demand was
calculated as the sum of the three energy systems in kJ (Campos

FIGURE 2
Ten-minute Surya Namaskar B sequence. Interval cardio yoga consists of 10-min of active recovery by walking between two sets of 10-min tempo-
based Surya Namaskar B; the total duration of HY interventionwas 30 min. HIICY; high-intensity interval cardio yoga, TIHY; traditional interval hatha yoga.

TABLE 2 HRmean data of 4-week HIICY and TIHY interventions (HIICY; n = 10 and TIHY; n = 10).

Group HRmean (beats·min-1)
(Mean ± SD)

% of HRmax (mean ± SD)

HIICY 178 ± 3.7 92.7 ± 2.5

TIHY 128 ± 16.3 67.2 ± 8.3

HRmean, mean heart rate; % of HRmax, estimated maximal heart rate percentages; HIICY, high-intensity interval cardio yoga; TIHY, traditional interval hatha yoga.
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et al., 2012). The relative energy system contributions were
calculated in % compared to total energy demand.

Statistical analyses

All parameters were analyzed using GraphPad Prism 9.4.1
(GraphPad Prism Software Inc., La Jolla, CA, USA) and data are
presented as mean ± standard deviation (SD). Normality of the data
was analyzed using the Shapiro−Wilk test. All physiological variables,
energetic contributions, and metabolic flexibility during HICYT were
analyzed using a two-way (group x time) repeated-measures analysis of
variance (ANOVA) with the Greenhouse-Geisser correction for
violation of the sphericity assumption. If the main effect was
significant, a Bonferroni post-hoc test was performed to compare
among different conditions. The significance level was set at p <
0.05. The effect sizes of repeated-measures ANOVA were calculated
as partial eta squared [η2p] and Cohen’s [d] was utilized to indicate
between different conditions. Thresholds for small, medium and large
effects were considered ≥0.01, ≥0.06, and ≥0.14 for partial eta squared
[η2p] and ≥0.2, ≥0.5, and ≥0.8 for Cohen’s [d], respectively (Fritz et al.,
2012). Additionally, all data of both groups including pre- and post-tests
(n = 40) were analyzed with two-tailed Pearson’s correlation among
absolute _VO2max vs absoluteWOxi, v _VO2max (km·h−1) vs absoluteWOxi,
absolute _VO2max vs CHOox, and absolute _VO2max vs FATox (g·min−1).

Results

_VO2max betweenHIICY andTIHY

Two-way repeated-measuresANOVA for absolute, relative _VO2max

and v _VO2max indicated significant time and group × time interaction
effects (time effect: p = 0.0014; [η2p]: 0.70, group × time interaction: p <
0.0001; [η2p]: 0.86, time effect: p = 0.0007; [η2p]: 0.74, group × time

interaction: p = 0.0003; [η2p]: 0.78, p = 0.0224; [η2p]: 0.46, group × time
interaction: p = 0.0011; [η2p]: 0.71, respectively) (Figure 3). The absolute
and relative _VO2max values of the HIICY group in the post-test were
significantly higher compared with the pre-test and compared with the
post-test of the TIHY group (absolute _VO2max: p < 0.0001; [d]: 0.33, p <
0.0001; [d]: 0.26, relative _VO2max, p = 0.0002; [d]: 0.67, p = 0.0002; [d]:
0.59, respectively) (Figures 3A, B). Furthermore, v _VO2max of the HIICY
group in the post-test was significantly higher than in the pre-test (p =
0.0154; [d]: 0.33) (Figure 3C).

Physiological parameters during HICYT

There was no significant difference in anthropometric data
between HIICY and TIHY groups. Table 3 shows the
physiological parameters during 10-min HICYT pre- and post-
tests between different groups. The values of absolute and relative
_VO2peak, _VO2mean, HRpeak, HRmean, and RER indicated significant
time effects (p = 0.0263; effect size [η2p] : 0.44, p = 0.0121; [η2p]: 0.52,
p = 0.0031; [η2p]: 0.64, p = 0.0053; [η2p]: 0.60, p = 0.0163; [η2p]: 0.50,
p = 0.0061; [η2p]: 0.59, p = 0.0013; [η2p]: 0.70, respectively).
Furthermore, a significant group × time interaction effect for
ΔLa− (p = 0.0198; [η2p] : 0.47) was observed (Table 3).

Energetic contribution during HICYT

Two-way repeated-measures ANOVA showed significant time
effects in absolute (kJ) for WOxi and WTotal, and a group × time
interaction effect in absoluteWGly (time effects: p < 0.01; [η2p]: 0.54,
p = 0.0173; [η2p]: 0.49, group × time interaction: p = 0.0479; [η2p]:
0.37, respectively). Moreover, significant group × time interaction
effects in relative (%) WOxi and WGly were observed (p = 0.014;
[η2p]: 0.50, p = 0.0084; [η2p]: 0.56, respectively) (Figures 4A, B). The
relative WGly value of the HIICY group in the post-test was

FIGURE 3
Time and group × time interaction effects and comparisons of absolute and relative _VO2max and v _VO2max after 4-week interventions. (A) Absolute
values of _VO2max in HIICY and TIHY groups between pre- and post-tests (B) relative values of _VO2max in HIICY and TIHY groups between pre- and post-
tests, and (C) velocity at _VO2max in HIICY and TIHY groups between pre- and post-tests. ES; effect sizes, _VO2max; maximal oxygen uptake, v _VO2max;
velocity at _VO2max, HIICY; high-intensity interval cardio yoga, TIHY; traditional interval hatha yoga. ns; p > 0.05, *p < 0.05, ***p < 0.001, ****p <
0.0001.
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significantly lower than in the pre-test (p = 0.0376; [d]: 0.68)
(Figure 4B).

Metabolic flexibility including FATox and
CHOox during HICYT

Two-way repeated-measures ANOVA showed group × time
interaction effects at the fourth and time and group × time
interaction effects at sixth minute of FATox (p = 0.0312; effect
size [η2p]: 0.42, p = 0.0412; [η2p]: 0.39, p = 0.0386; [η2p]: 0.39,
respectively) (Figures 5A–D). Otherwise, no significant main
effect of FATox and CHOox and between pre- and post-tests
were observed.

Relationships between metabolic flexibility,
energetic contributions and physiological
variables

High positive correlations were found between WOxi in kJ, and
absolute _VO2max, as well as v _VO2max (WOxi vs absolute _VO2max: r =
0.91, R2 = 0.83, 95%CI: 0.84–0.95; p < 0.0001,WOxi vs v _VO2max: r =
0.80, R2 = 0.64, 95%CI: 0.65–0.90; p < 0.0001, respectively) (Figures
6A, B). Furthermore, a high positive correlation between CHOox
and absolute value of _VO2max (r = 0.76, R2 = 0.57, 95%CI: 0.58–0.86;
p < 0.0001) and moderate positive correlation between FATox and
absolute value of _VO2max (r = 0.62; R2 = 0.39; 95%CI: 0.39–0.78; p <
0.0001) were found (Figures 6C, D).

Discussion

Training effects of HIIT andHYon health, oxidative capacity, and
metabolism have been well reported previously. To date, however,
there was no interventional approach to HIICY. It is unclear whether
HIICY as HIHY can improve cardiometabolic fitness parameters such

as _VO2max, energetic contributions, and metabolic flexibility in
physically active adults. To the best of our knowledge, this is the
first study to investigate how different intensities during 4-week
tempo-based HY practices (HIICY and TIHY) affected _VO2max,
energetic contributions, and metabolic flexibility. Our major
findings indicate that time and group × time interaction effects in
absolute and relative _VO2max after 4-week HIICY and TIHY training
regimens were observed. _VO2max was improved between pre- and
post-testing in the HIICY but not in TIHY. During the HICYT, time
and group × time interaction effects amongWOxi in kJ,WTotal,WGly in
kJ,WOxi in %, andWGly in % were found. The value ofWGly in % was
decreased only between pre- and post-tests in the HIICY
group. Furthermore, time and group × time interaction effects in
FATox showed at the fourth and sixth minute after HIICY and TIHY,
and moderate to high correlations among _VO2max vsWOxi, v _VO2max

vs WOxi, _VO2max vs CHOox, and _VO2max vs FATox were found.
Regarding maximal aerobic performance, 4-week HIICY

improved _VO2max and v _VO2max while 10-min TIHY showed no
increase in _VO2max between pre- and post-tests in physically active
individuals. In this regard, at least 10-min of Surya Namaskar B (SS)
compared with general HY achieved an intensity that could improve
cardiometabolic fitness (Hagins et al., 2007). Furthermore,
physiological profiling of Surya Namaskar B between 3 s and 12 s
tempos indicated exercise intensities that were moderate-to high-
intensity and low-intensity (Potiaumpai et al., 2016). A recent study
by Lee et al. (2021) showed that Surya Namaskar B at a fast tempo of
1.5 s was suitable for HIIT (>90% of HRmax, ≥6 METs; vigorous/
heavy, >4 mmol·L−1 La−; zone 3). These outcomes suggest that fast
tempo-based HY practice is necessary, if the goal is to increase
endurance performance and cardiometabolic fitness. The
adjustment of exercise intensity and duration between work and
recovery intervals alters the relative demand for specific metabolic
pathways within muscle cells, oxygen delivery to the working
muscle, and subsequent adaptations. These changes occur at the
cellular and systemic levels depending on the specific nature of the
training program (Laursen and Jenkins, 2002; Sandbakk et al., 2013;
Franchini et al., 2019). HIIT with long-duration (5–10 min) and

TABLE 3 Physiological parameters during the 10-min high-intensity cardio yoga test between different groups (HIICY; n = 10 and TIHY; n = 10).

Parameters HIICY TIHY Significance p (ES η2p)

Pre-test Post-test Pre-test Post-test Group Time Group x Time

_VO2peak [L·min−1] 2.73 ± 0.74 2.90 ± 0.82 2.62 ± 0.54 2.77 ± 0.61 ns *0.0263 (0.44) ns

_VO2peak [mL·kg−1·min−1] 40.97 ± 5.71 43.14 ± 6.37 39.22 ± 6.10 41.60 ± 6.10 ns *0.0121 (0.52) ns

_VO2mean [L·min−1] 2.37 ± 0.63 2.55 ± 0.66 2.29 ± 0.44 2.43 ± 0.51 ns **0.0031 (0.64) ns

_VO2mean [mL·kg−1·min−1] 35.42 ± 4.39 38.00 ± 4.89 34.26 ± 4.76 36.48 ± 5.10 ns **0.0053 (0.60) ns

RER [ _VCO2/ _VO2] 1.10 ± 0.05 1.15 ± 0.04 1.10 ± 0.03 1.10 ± 0.06 ns *0.0163 (0.50) ns

HRpeak [beats·min−1] 188.70 ± 5.96 183.80 ± 8.46 182.70 ± 7.69 180.80 ± 7.58 ns **0.0061 (0.59) ns

HRmean [beats·min−1] 177.90 ± 5.60 171.70 ± 8.49 173.80 ± 8.30 168.3 ± 8.12 ns **0.0013 (0.70) ns

ΔLa− [mmol·L−1] 8.57 ± 1.54 7.62 ± 2.98 7.44 ± 2.90 8.51 ± 1.65 ns ns *0.0198 (0.47)

La−peak [mmol·L−1] 9.48 ± 1.58 8.73 ± 2.98 8.83 ± 2.90 9.59 ± 1.63 ns ns ns

Data shown as mean ± standard deviation (n = 20). HIICY, high-intensity interval cardio yoga; TIHY, traditional interval hatha yoga; ES, effect size; _VO2peak, peak oxygen uptake; _VO2mean,

mean oxygen uptake; RER, respiratory exchange ratio; HRpeak, peak heart rate; HRmean, mean heart rate; ΔLa−, delta lactate; La−peak, peak lactate; ns, p > 0.05, *p < 0.05, **p < 0.01.
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shorter intervals of higher intensity such as seen in supramaximal
intensity have been shown to be an effective metabolic stimulus for
improving _VO2max. Long-duration intervals such as 5–10 min
increase _VO2max and _VO2 at ventilatory thresholds in national-
level junior cross-country skiers (Sandbakk et al., 2013). Therefore,
previous study outcomes support our results showing that the long-
duration during HIIT is a relevant factor in increasing _VO2max in
well-trained athletes as well as in the general population (Gaskill
et al., 1999; Billat, 2001; Laursen and Jenkins, 2002; Seiler, 2010;
Seiler et al., 2013).

HRpeak and HRmean tended to improve post-testing in the HIICY
group. Significant increases in pulmonary oxygen uptake and skeletal
muscle oxygen demand cause HIIT-induced cardiovascular
adaptations during intensive and prolonged HIIT sessions. Exercise-
induced improvement in _VO2max is associated with enlarged red blood
cell volume, which leads to greater oxygen-rich blood capacity and
increased stroke volume. Thus, it can affect an increase in O2 transport
capacity (Predel, 2014). Sabag et al. (2022) indicated in their topical
review that systolic and diastolic function, maximum cardiac output,
capillary density, and stroke volume were increased after HIIT. Indeed,

the usefulness of HIIT in stimulating significant improvements in
cardiometabolic fitness, left ventricular ejection fraction, and
pathological left ventricular remodeling of participants was
emphasized for those who completed 36 sessions of HIIT over
2–3 months (Hsu et al., 2019). These preliminary findings suggest
that increased stroke volume can deliver more oxygen per heartbeat
(Kohn et al., 2011). A reduced HR at submaximal intensity after HIIT
may be one of the major HIIT-induced physiological adaptations, and
one which also associates with increased _VO2max (Acevedo and
Goldfarb, 1989; Kubukeli et al., 2002).

The reduced value of %WGly with increased _VO2max between
pre- and post-testing in the HIICY group (Figure 4B) is likely
associated with increased HIIT-induced metabolic responses
(Batacan et al., 2017; MacInnis and Gibala, 2017; Chrøis et al.,
2020; Sabag et al., 2022). Generally, cellular stress is proportional to
exercise intensity and there is strong evidence that higher exercise
intensities induce elevated molecular responses compared to
moderate intensities (Egan and Zierath, 2013). This may be
because higher rates of fuel utilization relies more on
carbohydrate oxidation, uses more glycogen, and increases ATP

FIGURE 4
Time and group × time interaction effects and comparisons of energetic contributions during the HICYT after 4-week interventions. (A)
Comparisons of three energy contributions in kJ between pre- and post-test in HIICY and TIHY groups, respectively and (B) comparisons of three energy
contributions in % between pre- and post-testing HIICY and TIHY groups, respectively. ES; effect sizes, WOxi; oxidative energy demand, WGly; glycolytic
energy demand, WTotal; total energy demand, HICYT; high-intensity cardio yoga test, HIICY; high-intensity interval cardio yoga, TIHY; traditional
interval hatha yoga. *p < 0.05, **p < 0.01.

Frontiers in Physiology frontiersin.org08

Park and Yang 10.3389/fphys.2023.1279505

https://www.frontiersin.org/journals/physiology
https://www.frontiersin.org
https://doi.org/10.3389/fphys.2023.1279505


turnover (Howlett et al., 1998; Van loon et al., 2001). Consequently,
it activates signaling pathways involved in mitochondrial biogenesis
following intracellular lactate production, creatine kinase, ADP, and
AMP accumulation (Howlett et al., 1998; Van loon et al., 2001)
phosphorylation of AMP-activated protein kinase, p38 mitogen-
activated protein kinase, and Ca2+/calmodulin-dependent
protein kinase II, and expression of peroxisome proliferator-
activated receptor gamma coactivator 1-alpha (PGC-1α) mRNA
(Gibala et al., 2009; Egan et al., 2010; Little et al., 2011; Kristensen
et al., 2015; Metcalfe et al., 2015; Bersiner et al., 2023). Regular
and repeated activation of these pathways increases
mitochondrial density (Coffey and Hawley, 2007). Greater
activation of these specific kinases were induced by high-
intensity exercise compared to low-intensity exercise resulting in
greater expression of mRNA for PGC-1α which is a master
regulator of mitochondrial biogenesis (Egan et al., 2010).
PGC-1α is responsible for the activation of mitochondrial
transcription factors such as nuclear respiratory factors 1 and
2 and the mitochondrial transcription factor A (Knuiman et al.,
2015). Downstream of these metabolic signals, mitochondrial
protein synthesis has been shown to result in higher
mitochondrial biogenesis in response to sustained training
performed at higher intensities with a given amount of
exercise (Di Donato et al., 2014).

Furthermore, numerous studies have shown an increased density of
monocarboxylate transporters (MCT) 1 and 4 after HIIT (Burgomaster
et al., 2007; Perry et al., 2008;McGinley and Bishop, 2016). HigherMCT
1 and 4 density increased lactate transport and likely supported a
reduction in glycogen breakdown and La− at a given intensity (Perry
et al., 2008). Accordingly, group × time interaction effect of energetic
contributions was observed and the relative value of WGly post-testing
in the HIICY group was decreased (Figure 4B). Because of the
aforementioned physiological adaptations, oxidative capacity might
be improved, which would in turn increase the lactate elimination
rate and increase ATP re-synthesis during high-intensity aerobic
exercise (Burgomaster et al., 2008; MacInnis and Gibala, 2017;
Brooks, 2018; Hwang et al., 2022; Yang et al., 2023). Indeed, muscle
glycogen is likely conserved, delaying the onset of muscle fatigue and
improving oxidative exercise performance (Hearris et al., 2018). Also,
high positive correlations among WOxi in kJ and absolute _VO2max, as
well as v _VO2max in our study outcomes, support the conclusion of a
HIIT-induced physiological adaptation (Figure 6).

In terms of metabolic flexibility, time and group × time interaction
effects of FATox at the fourth and sixth during the HICYT between
HIICY and TIHY groups and moderate to high correlations among
_VO2max vs CHOox, and _VO2max vs FATox were found (Figures 5, 6).
These results in FATox may be affected by peripheral improvements at
the level of muscle cells, such as in mitochondrial function. Such

FIGURE 5
FATox and CHOox between HIICY and TIHY during the HICYT. (A) FATox and CHOox in the HIICY group between pre- and post-testing, (B) FATox
and CHOox in the TIHY group between pre- and post-testing, (C) group × time interaction effect of FATox at 4 min during the HICYT, and (D) time and
group × time interaction effects of FATox at 6 min during the HICYT. FATox; fat oxidation, CHOox; carbohydrate oxidation, HIICY; high-intensity interval
cardio yoga, TIHY; traditional interval hatha yoga, HICYT; high-intensity cardio yoga test. *p < 0.05.
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changes have been, reported in a number of earlier studies that have
detailed improvements in mitochondrial function and insulin sensitivity,
and which together represent improved metabolic flexibility (Sandbakk
et al., 2013; Chrøis et al., 2020; Yang et al., 2022a; Sabag et al., 2022).
Furthermore, a higher percentage of FATox during HIIT than short-
interval training in about half of previous studies was observed (Astorino
and Schubert, 2018). In detail, significant increases in β-hydroxyacyl acyl-
CoA dehydrogenase, citrate synthase, fatty acid-binding protein, carnitine
palmitoyl transferase I or fatty acid translocase/cluster of differentiation
36, and expression of PGC-1α are likely responsible for increased FATox
after HIIT (Tunstall et al., 2002; Perry et al., 2008; Talanian et al., 2010;
Astorino and Schubert, 2018; Warren et al., 2020). Burgomaster et al.
(2008) reported that 18 sessions of HIIT for 6 weeks increased glucose
transporter isoform 4 content and promoted glucose uptake during
recovery, and greater muscle glycogen levels. Several weeks of HIIT
can increase muscle FATox capacity which is associated with more
hydroxyacyl-CoA dehydrogenase activity and improved insulin
resistance. Also of note, HY has been shown to reduce adipose cell
concentrations in the visceral area, diminishing or minimizing the excess
free fatty acids released by adipose cells (Khoshnaw and Ghadge, 2021).

In sum, this study has demonstrated increased cardiometabolic
fitness, including _VO2max, energetic contributions, and metabolic
flexibility after a 30-min HIICY regimen (2 sets, 3 times per week)
for 4 weeks compared with TIHY in physically active adults. Moreover,
we investigated whether HIICY for at least 4 weeks significantly
affected the cardiometabolic biomarkers described above. Therefore,
we suggest that the positively affected outcomes likely depend on
exercise intensity influencing the activation of PGC-1α, the master
regulator of mitochondrial biogenesis in human skeletal muscle (Egan
et al., 2010; Gibala et al., 2012). Also, the high-intensity level should be
maintained as much as possible during repeated sessions, with this
being more important than maintaining duration or frequency to
induce an increase in _VO2max (Hickson and Rosenkoetter, 1981).
Therefore, HIICY consisting of a specific sequence of 19 asanas is a
fast tempo-based approach, which can provide cardiometabolic health
benefits in physically active individuals.

This study does have some limitations. First, it only targeted one
cohort of physically active adults and the HIICY approach should be
investigated in more diverse populations such as in athletes, sedentary
people, and clinical populations in further studies. Second, the small

FIGURE 6
Relationships between absolute _VO2max, v _VO2max and absolute WOxi, and CHOox, FATox and absolute _VO2max. (A) two-tailed Pearson’s correlation
between absolute WOxi and absolute _VO2max, (B) two-tailed Pearson’s correlation between absolute WOxi and v _VO2max, (C) two-tailed Pearson’s
correlation between CHOox and absolute _VO2max, and (D) two-tailed Pearson’s correlation between FATox and absolute _VO2max. CI; confidence interval,
_VO2max; maximal oxygen uptake,WOxi; oxidative energy demand, v _VO2max; velocity at _VO2max, CHOox; carbohydrate oxidation, FATox, fat oxidation.
****p < 0.0001.
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sample size might have influenced our results. Therefore, more
participants should be recruited in a future study. Third,
experimenting with efficient periodization to progressively increase
HY intensity from TIHY to HIICY should be considered. Finally,
more direct measurements during training using proteomics and
metabolomics, and the measurement of fluorescent protein tools
should be investigated to determine molecular responses in the future.

Conclusion

Our findings indicate that 4-week of HIICY compared with TIHY
improved cardiometabolic fitness, oxidative capacity, and metabolic
flexibility in physically active individuals. Therefore, HIICY is a suitable
training regimen for HY-specific HIIT, and is appropriate for relatively
healthy individuals who may have HY experience but need time-
efficient exercise options. Through our study outcomes, it is once
again confirmed that exercise intensity during HY is important to
improving _VO2max. While HY is an effective practice in many respects,
significant and efficient improvements to cardiometabolic fitness
require fast-tempo HIICY. Moreover, a proportionately higher
_VO2max strongly signals greater cardiovascular health and life
expectancy at any age. Thus, this substitute system of practice may
prevent cardiac/metabolic diseases in the general population. However,
HIICY has a very high intensity for exercise beginners. Therefore, it is
recommended to start practicing with 3 s tempo-based TIHY during an
initial period within the typical linear periodization model for an
aerobic base, and then gradually increase the intensity to HIICY.
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