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Polycystic ovary syndrome is a very common disease of gynecological endocrine,
accompanied by irregular menstruation, hyperandrogenism, metabolic
abnormalities, reproductive disorders and other clinical symptoms, which
seriously endangers women’s physical and mental health, but its etiology and
pathogenesis are not completely clear. Recently, the contribution of exosomes to
the diagnosis and treatment of various diseases in the biomedical field has
attracted much attention, including PCOS. Exosomes are extracellular vesicles
secreted by cells, containing various biologically active molecules such as cell-
specific proteins, lipids, and nucleic acids. They are important signaling regulators
in vivo and widely participate in various physiopathological processes. They are
new targets for disease diagnosis and treatment. Considering the important role of
non-coding RNAs during the development and treatment of PCOS, this article
takes exosomal miRNAs as the breakthrough point for elucidating the
physiological functions and therapeutic potential of exosomes during the
development and treatment of PCOS through analyzing the effects of
exosomal miRNAs on ovarian follicle development, hormone secretion,
oxidative stress, inflammatory response and insulin resistance, thus providing
new research directions and theoretical basis for PCOS pathogenesis, clinical
diagnosis and prognosis improvement.
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1 Introduction

PCOS is a common endocrine disease in the childbearing women. The main clinical
manifestations are irregular menstruation, hyperandrogenism, metabolic abnormalities,
ovulation dysfunction and the morphology of polycystic ovary. The global incidence rate
is 4%~21% (Teede et al., 2010; Lizneva et al., 2016; Azziz, 2018; Velez et al., 2021; Karjula
et al., 2022), and has shown a significant upward trend in recent years. PCOS not only affects
women’s reproductive and physiological health, but also can lead to the occurrence of
metabolic and non-metabolic complications like hypertension, NAFLD, CVD, depression
and anxiety (Anagnostis et al., 2018; Cooney and Dokras, 2018; Kakoly et al., 2019;
Rodriguez-Paris et al., 2019; Sadeghi et al., 2022). Therefore, PCOS is not only a
reproductive system disease, it has gone beyond the field of gynecology and obstetrics to
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involve all major systems of the whole body, seriously threatening
women’s physical and mental health, affecting women’s quality of
life, can cause the lifelong endocrine metabolic disorder, and has
brought a heavy burden to society and families.

PCOS patients exhibit the high heterogeneity in clinical
practice, making it difficult to be elucidated with a single factor
(Teede et al., 2010; Escobar-Morreale, 2018; Sadeghi et al., 2022).
IR is a major feature of PCOS, which can lead to compensatory
hyperinsulinemia, and then cause hyperandrogenism by
stimulating androgen secretion and inhibiting the production of
SHBG (Wang et al., 2017a; Wang et al., 2017b; Jeanes and Reeves,
2017). A research has shown that adipose tissue dysfunction may
be a key trigger for IR in PCOS (Villa and Pratley, 2011; Almalki,
2021; Li et al., 2022a). Abnormal follicular development and
gonadotropin production, especially the excessive secretion of
LH, can also cause the occurrence and development of PCOS
(Goodarzi et al., 2011; Escobar-Morreale, 2018). The existing
researches have shown that the mechanism of PCOS ovarian
dysfunction mainly involves two aspects: One is the imbalance
of steroid hormone production, including congenital thecal cell
dysfunction and adrenal cortex androgen dysfunction, the other is
the dysfunction of GCs and the disorder of follicular development,
including excessive androgen as well as the morphology of
polycystic ovary (Rosenfield and Ehrmann, 2016; Wang et al.,
2017b; Xu andWang, 2021; Wang et al., 2023). PCOS pathogenesis
is complex with the abnormalities in HPO/HPA endocrine and
metabolism (Barthelmess and Naz, 2014; Meier, 2018; Dinsdale
and Crespi, 2021). At present, it is widely believed that the
abnormal changes in PCOS are mainly caused by
environmental and genetic factors (Urbanek, 2007; Merkin
et al., 2016; Dinsdale and Crespi, 2021). The treatment needs to
be tailored to different patients, including improving
hyperandrogenicity symptoms, inducing ovulation, regulating
menstruation, and preventing myocardial metabolic
complications (Jayasena and Franks, 2014; Escobar-Morreale,
2018). Therefore, it is currently necessary to further analyze its
etiology from a new perspective, such as extracellular miRNA, to
provide new targets for its effective prevention and genetic
intervention.

In recent years, exosomes and their contents have be proved
for their contribution to the occurrence and development of
various reproductive, endocrine and metabolic disorder,
including PCOS (Chen and Liu, 2022). More and more
attention has bee attracted for the role of exosomes in PCOS,
which has shown exosomes and their ncRNA were involved in
PCOS, especially the potential regulatory effects on the follicular
development of PCOS (Machtinger et al., 2016; Kalluri and
LeBleu, 2020). ncRNA includes lncRNA, miRNA, circRNA
and siRNA, which can participate in various biological
processes and play important regulatory functions (Beermann
et al., 2016; Quinn and Chang, 2016). miRNAs are small single
stranded ncRNAs with 19–25 nucleotides. They can regulate the
gene expression after transcription for silencing of target genes.
miRNAs can target hundreds of mRNAs and simultaneously
affect the expression of associated genes on certain specific
pathways (Lu and Rothenberg, 2018). miRNA sequences are
highly conserved, which regulate various biological functions
of different organisms, such as cell apoptosis, proliferation,

differentiation, and development (Long et al., 2014). miRNAs
play a key role in almost all cells, and their abnormal expressions
are related to many diseases including AID, cancer and infertility
(Zhang et al., 2020b; Li et al., 2020b; Kiani et al., 2019. During the
biosynthesis process, miRNAs can be released into intercellular
spaces, making them detectable in body fluids like blood, urine
and semen (Kiani et al., 2019; Saliminejad et al., 2019; Smolarz
et al., 2022). miRNAs not only exhibit significant stability in
various body fluids, but also reflect the secretion and metabolic
activities of oocytes and follicular walls (Cirillo et al., 2019).
Therefore, miRNAs are closely involved in PCOS pathogenesis.

With the rapid biotechnology, the development potential of
exosomes in clinical applications continues to expand, especially
in the rapid progress of disease diagnosis and drug treatment.
Clinical studies have shown a correlation between PCOS and
exosomes, which have a profound impact on the occurrence and
treatment of PCOS. However, PCOS pathogenesis is not yet clear.
In order to elucidate the physiological function and therapeutic
potential of exosomes during the occurrence and treatment of
PCOS, this article takes exosomal miRNAs as the entry point, and
then analyzes the effects of exosomal miRNAs on ovarian follicle
development, hormone secretion, oxidative stress, inflammatory
response, and insulin resistance. Finally, the new research
directions and theoretical basis are provided for PCOS
pathogenesis, clinical treatment, and prognosis improvement.

2 The origination of exosomes

Exosomes are an extracellular vesicle (EV) with a lipid bilayer
membrane structure of uniform size and 30~150 nm in diameter
that is actively secreted by cells. They contain a variety of biologically
active molecules such as cell-specific RNA, DNA or proteins, which
transmit genetics to the receptor and affect their normal cell
functions (Sun et al., 2019; Khalyfa et al., 2020). Exosomes are
distributed in many bodily fluids, like uterine cavity fluid and
follicular fluid, adjusting many physiological processes (Simon
et al., 2018).

Exosomes are the main type of EVs, which are a newmechanism
of cellular communication, where all cells can synthesize and secrete
EVs including eukaryotic and prokaryotic cells. The biogenesis of
exosomes is a continuous process, where the cell membrane sinks
inward to form early endosomes containing various membrane
surface proteins, exogenous antigens, and lipids; then the
endosomes collapse again in the cells, wrapping proteins, nucleic
acids, etc. in the cytoplasm to form vesicular bodies; lastly, the
polyvesicular bodies fused with the cell membrane and exocytosis,
and finally secreted into the extracellular environment in the form of
exosomes (Figure 1) (Kalluri and LeBleu, 2020).

Exosomes can carry a variety of biomacromolecule substances,
and these specific biological molecules contained in these exosomes
determine their functions and are widely used as the biomarkers
(Yang et al., 2019). In order to better understand the biological
functions of exosomes under various physiological and pathological
conditions, various isolation methods for exosomes have been
established (Table 1) (Mashouri et al., 2019; Pegtel and Gould,
2019; Yang et al., 2019; Zhang et al., 2020c; Liang et al., 2021; Kimiz-
Gebologlu and Oncel, 2022).
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3 Physiological functions of exosomes

The RNA, protein, and lipid contents of exosomes from different
cell sources are various, and their physiological functions are also
different (Sun et al., 2019; Zhang et al., 2020c). Exosomes can
directly activate target cells through plasma membrane receptors,
or act as carriers to transport proteins, lipids, non-coding RNA, and
even viruses into target cells, serving as signaling factors to alter the
biological activity and function of target cells (Simon et al., 2018;
Pegtel and Gould, 2019). Therefore, exosomes have different
physiological functions in various tissues under different
physiological states (Figure 2).

Exosomes, as a new intercellular communication medium, play
an important biological role. The exosomes have good stability, and
their lipid bilayer membrane structure can protect the endosomes
from degradation or modification. Therefore, the cell specific
biomacromolecules they carried can be transmitted to other cells
as signaling molecule to change the biological function of receptor
cells, which is an important way of cell-cell information
transmission. Exosomes can also participate in maintaining
various physiological processes in organisms, including cell
quality control, inter-cellular communication, cell waste
clearance, immune regulation, tissue repair, stem cell division/
differentiation, neovascularization, and coagulation (Simon et al.,

2018; Pegtel and Gould, 2019; Kalluri and LeBleu, 2020).
Furthermore, exosomes can mediate signal transmission and
molecular transfer, contributing to a series of normal
physiological processes, including tissue homeostasis,
development, aging, metabolic regulation, molecular transfer
during pregnancy, and breastfeeding (Pegtel and Gould, 2019). In
addition, exosomes may have the potential to cross tissue barriers
(such as blood–brain barrier) through endocytosis (Yuan et al.,
2017).

Exosomes, as a new treatment method for tissue damage, have
important clinical therapeutic effects. The specific biological
molecules contained in exosomes determine the function of
exosomes. In many fields, such as cancer, metabolic diseases,
cardio cerebral vascular disease, and neuro degenerative disease,
it mainly plays the role in regulating inter-cellular information
transmission, immune response, and repair regulation, especially
in mediating the progress and metastasis of cancer, and the early
diagnosis and treatment (Pegtel and Gould, 2019; Kalluri and
LeBleu, 2020). Giovannelli et al. (2021) reported that prostate
cancer cells directly act on stroma or prostate cancer epithelial
cells by releasing exosomes for cell communication. Wortzel et al.
(2019) found that exosomes existing between primary tumor cells
and distant organ microenvironment may promote the formation of
local tumor micro-environment through mediating inter-cellular

FIGURE 1
The origination and excretion of exosomes. The biogenesis of exosomes is a continuous process, from the early endosomes to the polyvesicular
bodies, and finally secreted into the extracellular environment in the form of exosomes. Exosomes mainly interact with target cells main through three
ways: directly binding to the target cells; completely internalized into the target cells; and binding to the target cells through surface molecules.
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communication. Li et al. (2022b) found miR-155-5p, an exosome
derived from tumor cells, can inhibit the progression of ovarian
cancer and macrophage infiltration in immune intact mice, activate
CD8+ T-cell function, and generate immune responses. In addition,
the function of exosomes is highly heterogeneous due to the
influence of cell sources and contents. Among them, exosomes
derived from MSCs many be a novel treat method for tissue
damage, affecting angiogenesis, tissue repairment, immune
regulation, and resistance to inflammation.

Exosomes, as a new drug molecule delivery carrier, have
important pharmacological effects. Based on its unique bio-
compatibility, good stability and high affinity to cells, exosomes

are regarded as the best carriers for chemical drugs, RNA, proteins
and other drug molecules, playing a dominant role in preventing the
decomposition of drug molecules carried, targeting receptor cells,
and improving drug utilization (Peng et al., 2020). Lou et al. (2020)
found AMSC exosomes modified by miR-199a-3p can improve the
sensitivity of hepato-cellular carcinoma cells to chemo-therapeutic
drugs through mTOR pathway, which to some extent solves the
problem of easy degradation of miR-199a-3p molecules when
directly administered in vivo. Kamerkar et al. (2017) have
confirmed that the exosomes after genetic engineering
transformation, which carry the miRNA-specific targeted
oncogene KrasG12D, can promote the targeted therapy of the

TABLE 1 Separation principle and characteristics of exosomes.

Separation method Separation principle of exosomes Advantages and disadvantages

Ultracentrifugation
method

It is currently a commonly used method for purifying extracellular
vesicles. Firstly, the follicular fluid was centrifuged at 300 g for 10 min at
4°C, followed by 2,000 g for 20 min. After discarding the precipitate, it
was centrifuged at 10,000 g for 30 min before discarding the precipitate
again. Finally, after discarding the supernatant at 10,000 g, the
precipitate obtained was called exosomes

The advantage of this method is that it has a large amount of extraction,
while the disadvantage is that the extraction purity is insufficient, the
recovery rate is unstable, and repeated centrifugation may damage the
vesicles. Under electron microscopy, the extracellular vesicles aggregate
into blocks

Filtration centrifugation
method

The filtration centrifugation method uses the separation principle of the
pore size of the biofilm to centrifugate the sample to obtain exosomes,
that is, use the ultrafiltration membrane to leave large molecules while
small molecules can be filtered out through the ultrafiltration membrane

The advantage of this method is time-saving and efficient, and it is not
easy to damage the exosomes; The disadvantage is that the purity
obtained is relatively insufficient, and it is prone to residual adhesion on
the ultrafiltration membrane, reducing the lifespan of the membrane.
The production of exosomes in this method is relatively low, which is
insufficient to support the conduct of experiments that require a large
number of exosomes

Immunomagnetic Bead
Method

On the basis of centrifugation, the sample to be tested is mixed with
antibody coated immune magnetic beads, incubated at room
temperature, and then slowly added to the separation column. The
separation column is then removed from the magnetic separator and
rinsed with phosphate buffer solution

This method is simple to operate and has high separation purity, which
can ensure the integrity of exosome morphology. However, non-neutral
pH values can affect the biological activity of exosomes and are not
suitable for the separation of large volume samples. Therefore, it is not
conducive to the subsequent functional experiments and the promotion
of this method

ExoQuickPrecision
Method

Using the ExoQuick reagent kit, centrifuge the follicular fluid at 3,000 xg
for 15 min to obtain the supernatant. Add a precipitant (to reduce the
hydration of the follicles and change their solubility) and centrifuge
again to discard the supernatant. Complete exosomes are obtained and
impurities in the extracted sample can be effectively removed

This method mainly relies on polymer co precipitation to obtain richer
extracellular vesicles. However, its biological activity is easily affected by
reagent concentration and pH, and the reagent kit is expensive, making
it unsuitable for large-scale exosome extraction

Spiral Ultrafiltration
Method

Spiral ultrafiltration method uses a spiral ultrafiltration instrument to
extract extracellular vesicles. Firstly, the collected follicular supernatant
was placed in two 15 mL centrifuge tubes, and centrifuged at 300 g and
2000 g at 4°C to obtain the supernatant. After filtration, the supernatant
was repeatedly ultrafiltration by a spiral ultrafiltration device three
times, and rinsed repeatedly with phosphate buffer solution. Finally, it
was placed in an Eppendorf tube and stored in a −80°C refrigerator for
future use

This method can obtain extracellular vesicles quickly and efficiently, and
is commonly used

Size Exclusion
Chromatography

Molecular exclusion chromatography separates the vesicles from other
molecular phases through gel filtration. The gel is mainly composed of
spherical particles, which are distributed with pores at specific positions.
When the sample enters the gel, the small molecules can diffuse directly
into the pores, while the large molecules are eluted directly, so the large
molecules are easier to separate than the small molecules

This method utilizes complex biological characteristics to achieve the
separation of extracellular vesicles, which has only recently been applied
to the separation of vesicles. In the actual operation process, factors such
as equipment type, pore size, and flow rate should also be taken into
account to obtain exosomes with high purity and good functionality

Quantitative Detection
Method

The collection of extracellular vesicles is first separated and enriched
through methods such as centrifugation and immunomagnetic beads.
However, due to insufficient purity and lack of recognized separation
methods, quantitative research on extracellular vesicles is greatly
limited. This article collects multiple methods for extracellular vesicle
extraction for comprehensive analysis. Nanoparticle Tracking Analysis
is a quantitative analysis method that utilizes the physical properties of
extracellular vesicles to detect the distribution and concentration of
nanoparticles using light scattering. It can simultaneously analyze
samples of different sizes and distributions to minimize contamination
in the processed samples

Electrochemical sensors are a method of quantitatively analyzing
extracellular vesicles using their electrochemical properties. This
method has the advantages of good characteristics, high sensitivity, and
easy acquisition. Surface plasmon resonance technology can perform
real-time quantitative detection of unlabeled extracellular vesicles, with
high sensitivity and the need for fluorescence labeling, making it
convenient and fast
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oncogene KRAS in pancreatic cancer, and show good efficacy in a
variety of pancreatic cancer mouse models. Exosomes as drug
delivery carriers have unique advantages, such as low
immunogenicity, high transport efficiency, good stability, strong
targeting, and ability to cross the blood-brain barrier (Yuan et al.,
2017). At present, it has been reported that some small molecule
chemicals and gene drugs have been successfully loaded into the
exosomes, and have shown great potential in the treatment of
nervous system disease and tumors (Haney et al., 2015).

Exosomes, as a new specific biomarker, play an important role in
disease diagnosis. Exosomes can be stably transmitted in various
bodily fluids and have become indicators of homeostasis in
organisms. Their content reflects the fact that the originating
cells and pathophysiological states highlight their effectiveness as
biomarkers (Pegtel and Gould, 2019). Researches have
demonstrated the differences of exosome contents between
patients and healthy people, suggesting that they can be used as
potential diagnostic indicators of diseases (Zhang et al., 2019c). At
present, exosomes have already been proved to function in various
human diseases, and many researches have shown that exosomes
can be used as potential new diagnostic markers for many diseases,
such as tumors (Sun et al., 2018b), degenerative disease (Quek and
Hill, 2017), cardiovascular diseases (Jansen et al., 2017), and
metabolic disorder (Akbar et al., 2019).

Together, it can be seen that exosomes are mediated by various
stimuli, such as ultrasound (Zeng et al., 2019), ionizing radiation
(Beer et al., 2015), DNA damage (Lehmann et al., 2008), enzyme
effects (Zhang et al., 2018), and inflammatory stimuli (Almohammai
et al., 2021). Under different pathological conditions, the release of
exosomes are different, for example, OS can promote exosome
release during ERS (Kanemoto et al., 2016). Exosomes mainly
interact with target cells through the following three ways: 1)
Exosomes directly bind to the target cells; 2) The exosomes are

completely internalized by the target cells; 3) Exosomes bind to the
target cells through their surface characteristic protein molecules
(Figure 1). Exosomes participate in inter-cellular signal
transduction, cell metabolism and proliferation (Zhang et al.,
2019c; Wortzel et al., 2019). The nucleic acid carried by
exosomes facilitates the angiogenesis and the rapid proliferation
in the tumors (Sun et al., 2018b; Mashouri et al., 2019). Therefore,
interfering the extra-cellular release of exosomes and disrupting the
inter-cellular communication mediated by exosomes may be
potential and powerful therapeutic strategies.

4 Role of exosomes in the pathogenesis
of PCOS

During recent years, their contribution of exosomes to human
reproductive health and diseases has received widespread attention
(Hu et al., 2017; Pegtel and Gould, 2019; Sun et al., 2019; Zhang et al.,
2021a). Exosomes can play important roles as key regulatory factors
in different reproductive processes, such as follicular development
and embryo implantation (Machtinger et al., 2016; Zhang et al.,
2021a). As a disease with abnormal follicular development, studies
have found the relationship of exosomes and PCOS (Hu et al., 2017;
Simon et al., 2018). Koiou et al. (2013) found the positive
relationship of ovarian follicles and plasma exosomes in a
number-increased manner in PCOS patients. Jiang et al. (2021)
found five miRNAs involved in estrous cycle, sinus follicle number,
and hormone levels. Zhang et al. (2021a) reported significant
differential expressions of four miRNA in PCOS serum
exosomes, and identified these miRNAs as potential biomarkers.
Recent researches have also found that multiple ncRNAs are
abnormally expressed in PCOS ovaries (Sorensen et al., 2014; Li
et al., 2015; Bahmyari et al., 2021; Zhang et al., 2022). These ncRNAs

FIGURE 2
Different physiological functions of exosomes. Exosomes may have different physiological functions in various tissues under different physiological
states, such as a new intercellular communication medium, a new treatment method for tissue damage, a new drug molecule delivery carrier and a new
specific biomarker.
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can mediate related-gene expression, affect hormone metabolism,
and biological functions of GCs, thereby participating in the
following regulation of the pathogenesis of PCOS (Fitzgerald
et al., 2016; Bahmyari et al., 2021; Zhang et al., 2022).

Therefore, we here take exosomal miRNAs as a breakthrough
point, and analyze their effects of exosomal miRNAs on ovarian
follicular development, hormone secretion, oxidative stress,
inflammatory response, and insulin resistance in order to
elucidate the physiological function and therapeutic potential of
exosomes during the occurrence and treatment of PCOS (Figure 3).

4.1 Effect of exosomes on follicular
development

Abnormal follicular development induces anovulation, which is
a fundamental feature of PCOS. During ovulation, matured oocyte is
released after the follicle has been developed and ruptured, which is
supported by the micro-environment of follicular fluid (Wu et al.,
2013; Wu et al., 2015; Tang et al., 2017; Wu et al., 2016; Zhang et al.,
2020a; Tang et al., 2021). Hu et al. (2020) showed the difference of
exosome expressions in follicular fluid of PCOS patients, compared
with those in the control group. These exosomes affect follicular
development by regulating ovarian GCs and cumulus cells (Yuan
et al., 2021; Zhao et al., 2022a).Yuan et al. (2021) found that miR-
424-5p expressed inhibits the proliferation of ovarian GCs and
induces the aging of ovarian GCs by blocking CDCA4-mediated
Rb/E2F1 signaling pathway in PCOS. Zhao et al. (2022a) reported
that in PCOS, exosomal miR-143-3p induces the apoptosis of
ovarian GCs through blocking BMPRA-mediated Smad1/5/
8 signaling. Xie et al. (2021) reported melatonin treatment
regulates the autophagy of ovarian cells via PI-3K/Akt signaling,
thereby improving ovarian dysfunction of PCOS rats. Additional
studies suggested that miR-320a diminishes PI-3K-mediated insulin
sensitivity because of their target p85 (Ling et al., 2009; Cirillo et al.,
2019; Luo et al., 2021). Wang et al. reported the expression levels of
miR-27a-3p, miR-23a, and miR-483-5p in serum exosomes of PCOS
were upregulated, which may participate in regulating the growth of

GCs and the synthesis of intrafollicular hormones in PCOS patients
(Wang et al., 2019a; Wang et al., 2020). Therefore, exosomal
miRNAs in follicular fluid are critical during the follicular
development by influencing the biological functions of PCOS
ovaries.

Abnormal function of GCs is an important cause of irregular
development in PCOS follicles (Hussein, 2005). Sen et al. (2014)
found that androgen can inhibit follicular atresia through up-
regulating miR-125b expression in GCs, promoting the growth of
preantral follicles, and reducing the expression of apoptotic proteins
mediated by MAPK 1/3 and other signaling pathways. Jiang et al.
(2015) reported that miR-93 is upregulated in PCOS GCs, and then
regulates GC proliferation by targeting CDKN1A. Ding et al. (2020)
found through miRNA microarray analysis that miR-9119
expression is upregulated, which can regulate the activity of GCs
by mediating Dicer expression in PCOS ovaries. He et al. (2019)
found that miRNA-200b/c are upregulated in GCs of PCOS patients,
and then inhibit the proliferation of human granulosa cell KGN by
targeting photosphatase and tense homolog (PTEN). Therefore,
more and more evidence demonstrated that ncRNAs have an
important regulatory function during the growth process of
follicular GCs.

At the early stage of follicular development, oocytes exhibit
an interdependent relationship with surrounding cumulus cells,
where cumulus cells are mainly responsible for secreting growth
hormone and ovarian steroid hormones, playing an important
role in oocyte development. Cao et al. (2022a) reported that miR-
143-3p/miR-155-5p secreted from follicular fluid can regulate
follicular dysplasia through mediating the glycolysis of PCOS
GCs. Zhao et al. (2019) showed that exosomal miR-323-3p is not
only secreted from MSC, but also inhibits cumulus cell apoptosis
by targeting PDCD4 in PCOS. In addition, Wang et al. (2019b)
also confirmed that miR-323-3p is downregulated in cumulus
cells of PCOS patients, and this downregulated miR-323-3p
mediated steroid production by targeting IGF1. Therefore,
exosomes derived from follicular fluid are highly likely to
participate in the development of PCOS as novel molecules
that regulate follicular development (Figure 4).

FIGURE 3
Role of exosomes in the pathogenesis of PCOS. The effects of exosomal miRNAs on ovarian follicular development, hormone secretion, oxidative
stress, inflammatory response, and insulin resistance were analyzed in order to elucidate the physiological function and therapeutic potential of
exosomes during the occurrence and treatment of PCOS.

Frontiers in Physiology frontiersin.org06

Zhang et al. 10.3389/fphys.2023.1279469

https://www.frontiersin.org/journals/physiology
https://www.frontiersin.org
https://doi.org/10.3389/fphys.2023.1279469


4.2 Effect of exosomes on hormone
secretion

Hyperandrogenism is the main clinical symptom of PCOS, and
recent studies have found a close correlation of miRNA and
androgen production (Li et al., 2015; Fitzgerald et al., 2016;
Cirillo et al., 2019; Luo et al., 2021). Murri et al. (2013) found
through case control that miR-21, miR-27b, miR-103, and miR-155
in the blood of PCOS patients were significantly upregulated and
positively correlated with the levels of free testosterone in the blood,
affecting the release of testosterone. In addition, the levels of miR-
222 and miR-146a in the blood of PCOS patients are correlated with
serum insulin levels and testosterone concentrations (Murri et al.,
2013). Rashad et al. (2019) reported serum miR-320 expressions
were reduced in PCOS, especially with IR, and were negative with
fasting insulin, PCOS phenotype, hirsutism score, ovarian volume,
and sinus follicle number. Xu et al. (2015) detected significant
differences in the expression of 59 miRNAs in PCOS GCs
through miRNA expression profiling sequencing, and further
bioinformatics analysis revealed that these differential expressed
miRNAs can participate in important biological processes, such as
regulating hormone metabolism and energy metabolism. Sang et al.
(2013) detected the presence of multiple miRNAs in follicular fluid
of PCOS patients, with significantly reduced expression levels of
miR-132 and miR-320 related to estrogen metabolism. Yin et al.
(2014) found that miR-383 in follicular fluid of PCOS patients was
increased and also participated in steroid synthesis. Yao et al. (2018)
conducted sequencing analysis on follicular fluid of PCOS patients

and found 16 miRNA expressions were downregulated and
3 miRNA expressions were significantly upregulated. Among
them, the abundance of miR-335-5p in PCOS was lower than
that in non PCOS groups, and it was negative to the levels of
anti-Mullerian, testosterone, and antral follicles. Given miR-200b as
AR target, it is necessary for the ovulation regulated by HPO. miR-
29c plays a role by influencing the downstream pathway of AR
localization (Xue et al., 2018), indicating miR-200b/c involved in
PCOS hyperandrogenism.

Cytochrome p450 enzymes, including CYP17, CYP21, CYP19,
and CYP11A, are key enzymes in steroid hormone biosynthesis.
Chaudhary et al. (2021) found that the increase in ovarian steroid
production and androgen production is mainly due to the
expression change of cytochrome p450 enzyme, a key enzyme in
the steroid hormone biosynthesis pathway, in which CYP11A gene,
as a possible genetic biomarker, functions in PCOS pathogenesis. Yu
et al. (2021a) reported the levels of core enzyme mRNA involved in
the steroid synthesis in PCOS exosomes. Among them, CYP11A,
CYP19A, and HSD17B2 mRNA levels increased. At the same time,
with the change of hormone levels in follicular fluid, the levels of
estriol, estradiol and isoprenol ketone in PCOS follicular fluid
increased, and progesterone decreased, indicating that exosomal
mRNA expression is related to the change of hormone levels in the
follicular fluid (Yu et al., 2021a). The mRNA differential expressed
in follicular fluid induces abnormal steroid production, which is the
potential mechanism of the increase of estrogen and pregnenolone
in PCOS follicular fluid (Yu et al., 2021a). However, due to the lack
of comprehensive analysis of steroids in follicular fluid by

FIGURE 4
Effect of exosomes on follicular development. The exosomes derived from follicular fluid may participate in the development of PCOS as the novel
molecules that regulate follicular development.
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researchers, further research is needed on the relationship between
their expressions and androgen levels. Huang et al. (2020) revealed
that the reduction of PCOS exosomal circLDLR can increase miR-
1294 expression, inhibit CYP19A1 expressions in receptor cells, and
then decrease estrogen production. Interestingly, miRNA-199 was
downregulated in PCOS exosomes, while it was high in PCOS
follicular fluid. Considering that miRNA-199 is a potential target
for CYP19A1, it is of great significance to detect and deeply explore
the expression and role of exosomal miRNA-199 for studying the
pathological mechanism of PCOS.

At present, there is not much research on the relationship
between PCOS exosomes and hyperandrogenism. Further
understanding miRNA regulating androgen secretion may help
us improve PCOS clinical prognosis. However, there is currently
a lack of in-depth research on how miRNA leads to PCOS androgen
disorders (Figure 5).

4.3 Effect of exosomes on oxidative stress

PCOS is usually associated with obesity and impairs
reproductive health, with a high sugar and fat diet being one of
the causes of obesity. After administering a high fat and high sugar
diet to letrozole-induced PCOS mice for a period of time, both the
treatment and control group mice experienced severe metabolic
disorders and reproductive disorders (Pieczynska et al., 2022).
Excess accumulation of adipose tissue is the most prominent
feature of obesity.Zhou et al. (2020b) reported that the exosomes
derived from brown adipose tissue in young healthy mice can reduce

the weight of obese mice induced by high-fat diet, reduce blood
sugar and lipid accumulation and other metabolic syndromes under
the exclusion of food intake. Hong et al. (2022) have shown that
exosomal miR-20b-5p and miR-106a-5p can reduce adipocyte
differentiation in a PCOS mouse model with IR, thereby
alleviating lipid metabolism disorders in the pathogenesis of
PCOS caused by IR. Katayama et al. (2019) reported that miR-
20b-5p can regulate insulin-mediated glucose metabolism through
PKB/Akt signaling to play an intracellular role. It is not only
considered as a biomarker related to type 2 diabetes, but also a
new molecule regulating glucose and lipid metabolism. From this, it
can be seen that exosomes influence obesity by mediating the
process of glucose and lipid metabolism, revealing the important
role of exosomes in regulating lipid metabolism disorders in PCOS.
It is widely known that one of the main factors of oxidative stress is
ROS, which are active oxygen radicals that cause peroxidation and
disorder in lipids and mutations in DNA, and exosomes play an
important role in scavenger of these factors. Notably, the effect of
exosomes on OS is still not fully understood in PCOS.

OS is closely related to lipid metabolism, and obesity and
dyslipidemia, which are PCOS manifestations. Approximately
50% of PCOS women are overweight or obese (Glueck and
Goldenberg, 2019). In PCOS women, miR-21, miR-27b, miR-103,
and miR-155 were significantly higher in the obese than those in the
control (Murri et al., 2013). Xiong et al. (2017) reported both of miR-
23a/b reduced in PCOS, while miR-23b enhanced by raised BMI not
miR-23a. Soh reported that miR-30c adjusts the levels of steroid and
VLDL-C through decreased apolipoprotein, and becomes a
therapeutic target for hyperlipidemia (Soh et al., 2013). At the

FIGURE 5
Effect of exosomes on hormone secretion. The relationship between PCOS exosomes and hormone secretion indicates exosomal miRNA
regulating androgen secretion.
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same time, miR-122 can inhibit VLDL-C to mediate LDL-C
contents (Rayner et al., 2010). The research also shows miR-122-
5p/miR-223-3p is related to obese. On the contrary, miR-151a/miR-
199a is negatively related to obese and WHR (Murri et al., 2018).
miR-33 can decrease the expressions of ABCA1/ABCG1 and the
contents of HDL, while blocking miR-33 can change VLDL-C and
triglyceride contents through affecting cholesterol efflux and bile
acid synthesis (Horie et al., 2010; Rayner et al., 2010; Aryal et al.,
2017; Abdalla et al., 2020). Additionally, circulating LDL-C can also
be affected by some specific exosomal miRNAs (Iacomino and Siani,
2017). miR-143 can decrease PKB/Akt activity mediated by insulin
(Jordan et al., 2011). On the contrary, miR-375 promotes adipocyte
differentiation via mediating the activity of PPARγ And ERK (Ling
et al., 2011). All of these indicate the expression change of cell-
specific miRNAs is intimately related to BMI and dyslipidemia,
suggesting it as the metabolic targets in PCOS.

Interestingly, OS is undermined and apoptosis is decreased when
Nrf2 signaling activated in PCOS (Ling et al., 2011). Simultaneously,
miR-223 activates Nrf2 pathway through blocking Keap1 and
increasing antioxidant systems (Ashrafizadeh et al., 2020). Notably,
miR-141 inhibits Keap1 expression, stimulates Nrf2 signaling, reduces
ROS level, and then improves OS (Zhou et al., 2019). Omar et al. found
that in H2O2-treated bovine GCs, not only Nrf2 expression increased,
but miR-28/miR-153/miR-708 expressions decreased; If these miRNAs
are upregulated separately, it leads to the following decreased Nrf2 and
antioxidant capacity, indicating the contribution of miRNAs to Nrf2-
mediated OS (Khadrawy et al., 2019) (Figure 6).

4.4 Effect of exosomes on inflammatory
response

Exosomes are considered as the key signal molecule carriers
for the transmission of biomacromolecules during the
inflammatory process, thus affecting the metabolism of target
cells in many diseases, including PCOS (Zhang et al., 2019a;
Console et al., 2019; Zhou et al., 2020a; Bouchareychas et al.,
2020). For example, miR-155 is mediated for delivery by
exosomes, which is involved in acute lung inflammation (Jiang
et al., 2019). Exosomal lipids can restore membrane raft function
and barrier integrity in IBD (Bowie et al., 2012). Exosomal
proteins can affect brain inflammation (Yuan et al., 2017).
Exosomal S100-A9 can also promote PCOS inflammation (Li
et al., 2020a). In addition, IL-35 encapsulated in exosomes is a key
molecule that inhibits inflammatory response (Kang et al., 2020).
Recently, increasing researches demonstrate NLRP3 is also
mediated through exosomes (Bai et al., 2019; Liang et al.,
2020; Si et al., 2021). UMSC-Exo can reduce lysed-caspase
1 production, and then diminish IL-1β/IL-18 release and
following pyroptosis (Yang et al., 2019). UMSC-Exo
circHIPK3 decreases miR-421, leading to increased FOXO3a,
expression, which can inhibit NLRP3 activation (Yan et al.,
2020). These findings have already indicated the relationship
between exosomes and inflammatory response, which maybe
exist in PCOS similarly. Therefore, NLRP3 inflammasomes
may also participate in PCOS pathogenesis.

FIGURE 6
Effect of exosomes on oxidative stress. The effect of exosomalmiRNA on oxidative stress is through Keap1/Nrf2 or MAPK signaling pathway in PCOS.
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The exosomes can monitor PD1 and TLR4/NF-κB/
NLRP3 inflammasomes to regulate immunity in diseases (Yang
et al., 2018; Dai et al., 2020). Dai et al. (2020) reported miR-148a can
significantly inhibit TXNIP/TLR4 expression, leading to NF-κB/
NLRP3 inflammasomes were suppressed, thereby alleviating
myocardial IRI. Exosomal miR-126 inhibit NLRP3 activation and
reduce hyperglycemia induced inflammatory response by reducing
HMGB1 (Zhang et al., 2019b). Tang et al. (2020) found exosomal
miR-320b can attenuate pyroptosis directly through suppressing
NLRP3 inflammasomes during myocardial IRI. Exosomal miRNA-
223 are inhibitors of NLRP3 inflammasome formation, which can
inhibit NF-κB-mediated inflammatory response of macrophages
(Haneklaus et al., 2013). Yu et al. (2021b) reported miR-21 can
activate TLR8, leading to TNFα/IL-12 levels elevated in PCOS GCs.
Knocking out miR-146a can increase pro-inflammatory gene
expression and induce NF-κB activation (Runtsch et al., 2019).

Additionally, NF-κB can activate CCL2, which is a main target of
miR-374a-5p, indicating miR-374a-5p involved in inflammatory
response (Doumatey et al., 2018). Li et al. (2021b) found miR-
1224-5p can inhibit NF-κB signaling and then alleviates PCOS
inflammation (Figure 7).

4.5 Effect of exosomes on insulin resistance

Insulin resistance is commonly present in PCOS and also
involved in its reproductive and metabolic complications
(Diamanti-Kandarakis and Dunaif, 2012; Bannigida et al., 2020).
Sun et al. (2018c) have shown that exosomes derived from human
MSCs can reverse peripheral IR and alleviate β cell destruction to
alleviate type 2 diabetes. The ectopic lipid accumulation in the liver
has received attention as one of the possible factors affecting PCOS

FIGURE 7
Effect of exosomes on inflammatory response. The effect of exosomal miRNA on inflammatory response is mainly through NF-κB pathway,
including NLRP3 inflammasome activation in PCOS.
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metabolic syndrome (Hwang et al., 2022). Gao et al. (2022) studied
the liver tissue and exosomes of mice at different stages of PCOS,
showing the complex metabolism between liver tissue and
exosomes, in which the downregulation of glycolysis and
tricarboxylic acid cycle may be related to the liver
pathophysiological mechanism of PCOS.

In the PCOS rat model induced by dehydroepiandrosterone,
AMSC and its derived exosomes are regulated via miR-21-5p, which
can control glucose homeostasis by targeting BTG2, and
significantly reduce multiple phenotypes in PCOS (Cao et al.,
2022b). Ye et al. (2022) conducted transcriptome and
metabonomics conjoint analysis on exosomes of PCOS patients,
and found that β-tocopherol, 1-methyl hydantoin and 2-isopropyl
malic acid may be involved in PCOS pathogenesis. The miRNA
sequencing results showed differential miRNAs can control the
contents of differential metabolites, which may serve as potential
biomarkers for diagnosing PCOS. Therefore, it can be seen that
exosomes can regulate the metabolic process of peripheral tissues
including liver and adipose tissue between organs through the
expression of regulator gene, thus affecting IR, and then
mediating PCOS.

In addition, the contribution of miRNAs to IR has been widely
investigated in PCOS (Sorensen et al., 2014; Cirillo et al., 2019;
Bahmyari et al., 2021; Yu et al., 2021b), demonstrating that glucose
metabolism is abnormal and miR-194/miR-193b/miR-122 are
obviously increased. In PCOS only with IR, miR-223 expression
is enhanced, which can induce GLUT4 expression. miR-1333a and
miR-133b are involved in GLUT4 expression via KLF15, and
attenuate glucose utilization for IR control. Given the regulatory
relationship between miRNA and GLUT4, GULT4 may also be

another novel target during PCOS therapy (Chakraborty et al., 2014;
Gebremedhn et al., 2021). Furthermore, there are a negative
relationship of miR-146a with IR, TNFα and IL-6, while Jiang
et al. (2021) reported exosomal miR-146a has no association with
glucose metabolism indicators (Balasubramanyam et al., 2011).
miR-24 is reduced without a relationship with abnormal IR and
hormones in PCOS (Nanda et al., 2020). Overall, miRNA may
function as another potential novel target during PCOS therapy
(Figure 8).

5 Therapeutic potential of exosomes in
PCOS

In recent years, the research of exosomes as a new drug carrier
applied to targeted therapy of diseases has attracted wide attention,
among which exosomes based disease diagnosis and drug research
and development have made rapid progress in tumor, cardio
cerebral vascular disease, diabetes, neurodegenerative diseases and
other major diseases (Haney et al., 2015; Jansen et al., 2017; Console
et al., 2019; Peng et al., 2020; Kimiz-Gebologlu and Oncel,
2022).Katakowski et al. (2013) transfected miR-146b plasmid into
MSCs to obtain exosomes rich in miR-146b, and then injected them
into polymorphous keratinoblastoma in mice. The results showed
that the treatment method of using exosomes to transport miRNA
can inhibit the growth of mouse tumor cells. Another study found
that the exosomes of MSCs rich in miR-133b increased the level of
outward growth of neurite in vitro, and eliminated the
downregulation of miR-133b in the brain induced by stroke,
indicating that the treatment of stroke with exosomes containing

FIGURE 8
Effect of exosomes on insulin resistance. The effect of exosomalmiRNA on insulin resistance ismainly through PI-3K/Akt signaling pathway in PCOS.
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specific miRNA can promote brain remodeling (Johnsen et al., 2014;
Chen and Chopp, 2018; Li et al., 2021a). In addition, exosomes
derived fromMSCs can selectively deliver a specific miRNA let-7c to
damaged kidneys, thereby up-regulating the expression level of let-
7c and reducing renal fibrosis (Lu et al., 2018). Based on the
advantages and functional characteristics of exosomes in drug
delivery, exosomes and their differential expressed contents have
played an advantageous role in treating follicular development,
metabolic abnormalities, and alleviating inflammation in PCOS.

Phosphatidylinositol 3-kinase (PI-3K) signaling pathway
functions in PCOS through influencing ovarian follicular
development and hormone secretion (Wu et al., 2015; Wu et al.,
2016;Wang et al., 2017a;Wang et al., 2017b; Tang et al., 2017; Lu et al.,
2018; Zhang et al., 2020a; Tang et al., 2021). For example, Zhou et al.
(2022) proved miR-18b-5p produced by exosomes derived from
follicular fluid can reduce PTEN expression and promote PI-3K/
Akt/mTOR signaling activation, thereby improving PCOS. MAPK/
Nrf2 signaling pathway participates in energy metabolism and
antioxidant defense system pf ovarian cells of PCOS (Khadrawy
et al., 2019; Zhou et al., 2019; Ashrafizadeh et al., 2020; Jiang et al.,
2021). For example, ROS activates the MAPK pathway and can be
blocked by antioxidants, while H2O2 induces an increase in ROS,
inhibits specific miRNAs and activates MAPK pathway (Zhao et al.,
2022b). NF-κB can mediate pro-inflammatory factor expression,
which is critical for the following inflammatory response. For
example, Zhao et al. (2022b) reported that exosomes derived from
human umbilical cord MSCs can inhibit NF-κB signaling in PCOS,
thereby reducing ovarian GC inflammatory response and increasing
anti-inflammatory factor IL-10 expression, while also inhibiting the
pro-inflammatory factor TNFα and interferon-γ expression,
decreasing cell apoptosis, and promoting progesterone production.

Notably, the conditioned medium is considered as a putative
and rich source of exosomes in clinical settings, and the importance
of cell vs. cell-free therapy has been investigated in the field of
reproductive biology both in human and animal settings (Jiao et al.,
2020; Zhang et al., 2021b; Abd-Elwahab et al., 2023; Amiri et al.,
2023). For example, recent findings discussed the regenerative
potential of exosomes in premature ovarian condition and even
azoospermia in animal settings (Li et al., 2021c; Nazdikbin Yamchi
et al., 2023; Park et al., 2023). Therefore, exosomes and their non
coding RNAs may serve as diagnostic and therapeutic targets for
PCOS, especially MSC-derived exosomes as a new method for
treating infertility caused by PCOS (Figure 9).

6 Summary and prospects

In conclusion, investigations about exosomes have developed
rapidly, involved various fields about physiological projects.
Exosomes have been successfully used as a circulating biomarker
for breast cancer, ovarian cancer and other cancers, and as a tumor-
related molecule before metastasis (Pant et al., 2012; Peinado et al.,
2017; Sun et al., 2018b; Mashouri et al., 2019; Pegtel and Gould,
2019). At the same time, it also serves as a potential marker for some
diseases, such as central nervous system degeneration and
Alzheimer’s disease (Fais et al., 2016; Kanninen et al., 2016), and
is currently attempting to convert exosomes into promising vaccines
for treating diseases (Lasser, 2015). Exosomes play a crucial role in
many biosynthetic processes, and the RNA and protein content they
carried can reflect the level of their originating cells. Therefore,
quantitative research on exosomes is crucial in future research (Sun
et al., 2018a), especially for early diagnosis and treatment of diseases.

FIGURE 9
Therapeutic potential of exosomes in PCOS. The therapeutic potential of exosomes in PCOS is main through MAPK/Nrf, PI-3K/Akt and NF-kB
signaling pathways.
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The special endocrine state in PCOS is often close to the onset of
spontaneous abortion, pregnancy diabetes, pregnancy hypertension
and other diseases (Palomba et al., 2015; Wang et al., 2016;
Anagnostis et al., 2018; Azziz, 2018). Due to the significant
heterogeneity of PCOS, treatment plans typically provide
personalized guidance, exercise guidance, and ovulation
promoting drugs, but pregnancy outcomes are often
unsatisfactory. As a multifunctional bio-active carrier, exosomes
are involved in cell signaling transduction. Due to their stable nature,
compared with general biomarker, exosomes can provide a large
number of specificity and sensitivity indicators (Di Pietro, 2016).
Therefore, by analyzing the changes in protein or nucleic acid
profiles of exosomes and selecting molecules specifically
expressed as biomarkers for the diagnosis and prognosis of
PCOS, which may become a novel approach for early PCOS
diagnosis.

In addition, differential miRNA expression in the blood, ovaries
and exosomes has special significance for the diagnosis, treatment,
and prognosis of PCOS. Exosomes with multiple molecules serve as
important carriers of inter-cellular communication, participating in
PCOS by mediating follicular development, hormone content,
insulin resistance, and metabolic disorders, in order to study the
therapeutic effect of exosomes and their contents according to the
source of cells, and analyze the related factors and pathways of
exosomes acting on PCOS, which is helpful to further explore the
pathogenesis of PCOS. With the help of bioengineering technology,
exosomes are expected to be used as carriers to deliver chemicals,
RNA, and proteins. In the future, targeted therapy of PCOS may be
realized, so as to alleviate the endocrine and metabolic abnormalities
of PCOS patients, to achieve the goal of treating infertility caused
by PCOS.

Finally, research on exosomes is still at the early stages, and
large-scale production and storage of exosomes are difficult.
Currently, there are no standardized methods for exosomal
separation and analysis. However, it is believed that with the
deepening of researches on exosomal bioengineering and the
exploration of their biochemical and physicochemical properties
through various emerging technologies, the large-scale application
of exosomes in medical practice will be further developed.
Furthermore, it provides novel clues for PCOS research and
applications.
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Glossary

ABCA1 ATP binding cassette transporter A1

ABCG1 ATP binding cassette subfamily G member 1

AID autoimmune disease

AMSCs adipose derived mesenchymal stem cells

AR androgen receptor

BMI body mass index

BMPRA bone morphogenetic protein receptor 1 A

BTG2 B cell translocation gene 2

CDCA4 cell division cycle associated 4

CDKN1A cyclin dependent kinase inhibitor 1 A

circRNA circular RNA

CVD cardiovascular disease

CYP19A1 cytochrome p450 family 19 subfamily A member 1

ERK extracellular signal-regulated kinase

ERS endoplasmic reticulum stress

EV extracellular vesicle

FOXO3a forkhead box class O3a

GCs granulosa cells

GLUT4 glucose transporter 4

HDL high-density lipoprotein

HMGB1 high mobility group box-1

HPA hypothalamic-pituitary-adrenal axis

HPO hypothalamic-pituitary-ovarian axis

IBD inflammatory bowel disease

IGF1 insulin-like growth factor 1

IL-35 interleukin-35

IR insulin resistance

IR insulin resistance

IRI ischemia/reperfusion injury

KLF15 kruppel like transcription factor 15

LDL-C low-density lipoprotein cholesterol

MAPK mitogen activated protein kinase

miRNA microRNA

MSCs mesenchymal stem cells

mTOR mammalian target of rapamycin

NAFLD non-alcoholic fatty liver disease

ncRNA non coding RNA

OS oxidative stress

PCOS polycystic ovary syndrome

PD1 programmed cell death 1

PDCD4 programmed cell death 4

PKB/Akt protein kinase B

S100-A9 S100 calcium-binding protein A9

SHBG sex hormone-binding globulin

siRNA small interfering RNA

TLR8 toll like receptor 8

UMSC-Exo umbilical cord mesenchymal stem cell derived exosomes

VLDL-C very low-density lipoprotein cholesterol

WHR waist-hip ratio
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