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We address mathematical modelling of respiratory mechanics and put forward a
model based on double-exponential and fractional calculus for parameter
estimation, model simulation, and evaluation based on actual data. Our model
has been implemented on a publicly available executable code with adjustable
parameters, making it suitable for different applications. Our analysis represents
the first application of fractional calculus and double-exponential modelling to
respiratory mechanics, and allows us to propose a hybrid model fitting
experimental data in different ventilation modes. Furthermore, our model can
be used to study the mechanical features of the respiratory system, improve the
safety of ventilation techniques, reduce ventilation damages, and provide strong
support for fast and adaptive determination of ventilation parameters.
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1 Introduction

With the aging population and the increase in chronic respiratory diseases (Divo et al.,
2014; Soriano et al., 2020; Xie et al., 2020), the demand for mechanical ventilation treatment
has largely increased (Wunsch, 2020). At the same time, the outbreak of COVID-19 in recent
years has further boosted the demand for ventilators. As a consequence, the analysis of more
accurate respiratory mechanics models has become extremely important, as it can be used to
predict and optimize parameter settings in mechanical ventilation therapy. Further, this kind
of models are required to dynamically adjust parameters according to the respiratory
characteristics of different patients, in order to improve treatment outcomes and reduce
ventilation injuries.

In the field of mechanical ventilation, the respiratory system is often modelled as a linear
dynamical system described by linear differential equations. Examples are provided by the
single-compartment model (Bates, 2009; Ghafarian et al., 2016; Gertler, 2021) corresponding
to a first-order linear differential system, the two-compartment model (Bates, 2009; Carvalho
and Zin, 2011; Ghafarian et al., 2016) corresponding to a second-order differential system,
and the viscoelastic model (Ganzert et al., 2009). Over the last few years, different types of
respiratory mechanics models have been put forward, including nonlinear models involving
elastance and resistance of the respiratory system (Chiew et al., 2015; Redmond et al., 2017;
Ellwein Fix et al., 2018; Marconi and De Lazzari, 2020). These studies generally provide a
good theoretical modelling and may be used to simulate the respiratory system. However,
they generally involve idealized elementary function description of ventilation pressure
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(Ellwein Fix et al., 2018; Marconi and De Lazzari, 2020; Dincel,
2021), and ignore the inherent randomness and background noise/
error of real respiratory processes. Other studies are based on
experimental data, but produce results in disagreement with
actual data. For example, the simulations of Albanese et al.
(2016), lead to a minimum CV(RMSE) (stands for the coefficient
of variations of the root mean square errors) volume curve equal to
0.079, which is an order of magnitude higher than the simulation
results of all models in this paper. At the same time, these studies did
not provide executable program code and corresponding
original data.

In this paper, we propose an accurate respiratory mechanics
model based on previous research and studies based on actual
measurement data. We consider Bama pigs for actual
measurements, since they provide conditions close to the
healthy state of the human respiratory system, and assess
results of our models against actual measurement data. By
combining fractional calculus with a double-exponential
model, we are able to describe the dynamical behaviour of the
coefficients in the differential equations, and to put forward a
hybrid model consistent with the experimental in wide range of
ventilation modes, and provided. We also provide a public
executable code package for parameter estimation, simulation
methods, and optimized parameter search.

2 Methods

2.1 Respiratory mechanics models

2.1.1 Linear models
First order linear differential models with constant coefficients

(linear single-compartment model). According to previous studies
on respiratory mechanics models (Bates, 2009; Carvalho and Zin,
2011; Hess, 2014; Ghafarian et al., 2016; Gertler, 2021), the classical
linear single-compartment model corresponds to the following
differential equation:

P t( ) � R
dV t( )
dt

+ EV t( ) + P0 (1)

for the pressure (applied power) to the lung P(t), where V(t) is the air
volume entering the lung (Tidal volume), E and R denote the
elastance and resistance of respiratory system respectively. The
offset pressure P0 represents the positive end-expiratory pressure
(PEEP). The compliance C of respiratory system is the reciprocal of
elastance E, that is C = 1/E.

The electrical circuit that represents the linear single-
compartment model consists of a resistance R, a capacitor C (1/
E) and a generator P(t) (Figure 1A). The corresponding impedance
is (Carvalho and Zin, 2011; Li, 2011):

FIGURE 1
Electrical analogue of the respiratory system. (A) Scheme corresponding to Eq. 1, (B) scheme corresponding to Eq. 10, (C) scheme corresponding to
Eqs 14, (D) different impedance elements in series and in parallel corresponding to Eq. 16. The resistance R of respiratory system in Eq. 1 is equivalent to
the resistance in the circuit, and the compliance C of respiratory system is equivalent to the capacitor in the circuit. The current in the circuit represents
the flow in the airway.
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Z � R − j

ωC
(2)

where ω is the angular frequency in radians/second, and the symbol j
represents the unit imaginary number.

Moreover, based on the electrical analogous (a), if we assume the
initial value V (0) = 0 and P0 = 0 (or define a new pressure
P̂(t) � P(t) − P0) for simplicity, we can obtain the open-loop
transfer function between the pressure P(t) and volume V(t):

G s( ) � V s( )
P s( ) �

C

CRs+1 � 1
Rs + E

(3)

The inverse Laplace transform of transfer function G(s) is
given by:

G t( ) � L−1 G s( )( ) � L−1
1
R

s + 1
CR

( ) � 1
R
e−

t
CR � 1

R
e−

tE
R (4)

If P(t) is a unit step signal, this will be the solution in time
domain.

If we express the pressure P(t) as a linear combination of
elementary functions:

P t( ) � ∑n
i�0
kiPi t( ) (5)

Such as sin (at), e−at, or polynomial functions, and the ki are
constant coefficients, then we can theoretically obtain the general
solution of V(t) in time domain as follows

V t( ) � L−1 G s( )P s( )( ) � L−1 G s( )( )*L−1 P s( )( )
� ∫t

0
G t − τ( )P τ( )dτ (6)

where “*” denotes convolution. The result is the same as that
obtained by directly solving the equation by Laplace transform.
Based on the superposition principle of linear differential equation,
the final solution of V(t) is given by

V t( ) � ∑n
i�0
∫t

0
kiG t − τ( )Pi τ( )dτ (7)

For example, if P(t)� Pconstant sin(at), t ∈[0, π] , Eq. 1 can be
written as: R dV(t)

dt + EV(t) � Pconstant sin(at) − P0 , with general
solution V(t) � Ke− t

CR + PC
a2C2R2+1 (sin(at) − aCRcos(at)) − CP0,

where K is a constant determined by the initial conditions and
Pconstant is also a constant that determines the magnitude of pressure.
Other simple examples are illustrated in the Supplementary Material
Section S1.

Although it is theoretically possible to represent any P(t) based
on the Fourier transform, this method is not particularly useful due
to the computational complexity and the lack of accuracy.

Second order models with constant coefficients. Assuming that
the airway is an approximately cylindrical structure of length l and
radius r and using Newton’s second law (Carvalho and Zin, 2011;
Hess, 2014) we have:

πr2Pi � PiS � F � ma � πr2lρ
d2V

dt2
( ) (8)

that is:

Pi � lρ
d2V

dt2
� I

d2V

dt2
(9)

where ρ is the gas density, and I � lρ . Due to the relatively low gas
density, the inertia coefficient I (Inertia) is generally very small
compared to other parameters with the same dimensions in
respiratory mechanics models. Taking airway resistance and
elasticity into account, the pressure P and volume V are related
by the following Eq. 10.

P t( ) � I
d2V t( )
dt2

+ R
dV t( )
dt

+ EV t( ) + P0 (10)

This is a second order linear differential equation, which
corresponds to the electrical analogue shown in Figure 1B with
impedance:

Z � R + jωI − j

ωC
(11)

where I represents the total inductance of the circuit.
If we assume the initial conditions V (0) = 0 and V’ (0) = 0 (the

first-order derivative of V) and P0 = 0 (or define new pressure
P̂(t) � P(t) − P0) for simplicity, we can also obtain the transfer
function, which can be written as the sum of two fractions:

G s( ) � V s( )
P s( ) �

1
Is2 + Rs + E

� c1
s + a

+ c2
s + b

(12)

where a, b, c1, c2 are constant and the real part of a and b are positive,
that is Re(a) > 0, Re(b) > 0 (satisfying the stability constraint
conditions) (Zhong, 1988; Hu, 2007).

The inverse Laplace transform of the transfer function in Eq. 12
is given by:

G t( ) � L−1 G s( )( ) � L−1 c1
s + a

+ c2
s + b

( ) � c1e
−at + c2e

−bt (13)

Assuming that P(t) is a step signal, the general solution of Eq.
10 has the same form as Eq. 14. On the other hand, if we have
single-compartment models connected in series or in parallel,
we obtain the two-compartment model proposed by Bates
(Bates, 2009), whose dynamics is similar to that governed by
Eq. 10 (Figure 1C), i.e.,

P t( ) + k
dP t( )
dt

� I
d2V t( )
dt2

+ R
dV t( )
dt

+ EV t( ) (14)

where k is a constant. The transfer function of Eq. 14 is similar to
that reported in Eq. 12:

G s( ) � V s( )
P s( ) �

1 + ks

Is2 + Rs + E
� k1
s + a

+ k2
s + b

(15)

In other words, Eqs 10, 14 has the same solutions.
According to the superposition principle, we can also obtain the

general solution of second order linear differential models based on
Eq. 7. Simple examples are given in the Supplementary Material
Section 2.

High-order linear differential models. The term I d2V(t)
dt2 in Eq.

10 corresponds to an acceleration, however, in a respiratory
mechanical model (Carvalho and Zin, 2011; Eager et al., 2016;
Dincel, 2021) we may also consider higher derivatives (like jerk
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and snap), such that more general models may be obtained, in the
following general form:

b0P t( )+b1dP t( )
dt

+ . . .+bmd
mP t( )
dtm

� a0V t( ) + a1
dV t( )
dt

+ a2
d2V t( )
dt2

+ . . .+and
nV t( )
dtn

(16)
where n > m.

Assuming the initial values V (0), V’ (0), V’’ (0), . . . = 0, we
obtain the transfer function as

G s( ) � V s( )
P s( ) �

bmsm + . . . + b2s2 + b1s + b0
ansn + . . . + a2s2 + a1s + a0

(17)

In a stable respiratory system, the system should satisfy Routh-
Hurwitz criterion. The inverse Laplace transform of transfer
function G(s) is as follows:

G t( ) � L−1 G s( )( ) � ∑n
i�0
kie

λi t (18)

where Re(λi)< 0.
If P(t) is a unit step signal, this represents the solution of

Eq. 16.
Using again the electrical analogy, Eq. 16 corresponds to put

more components in series or in parallel (in a circuit,
components connected in parallel are equivalent to adding
their transfer functions in the s domain, while components
connected in series are equivalent to multiplying their transfer
functions in the s domain). The overall circuit has an equivalent
impedance Ztotal:

Ztotal � Rtotal + jωItotal − j

ωCtotal
(19)

where Rtotal, Itotal, Ctotal represent the overall equivalent resistance,
capacitor, inductance respectively in the circuit (Figure 1D). Eq. 19
and Eq. 11 have indeed a similar form.

However, high-order linear differential models are rarely
encountered and applied in practical applications. We suggest
caution in using high-order models to describe the respiratory
system, primarily based on the following reasons:

1. Since Eq. 19 and Eq. 11 have a similar form, we can approximate
the effect of high-order differential models by using first and
second order differential models.

2. Higher-order differential models are difficult to stabilize in
practical applications, as there are always disturbances present
in real-world situations. We illustrate some examples in the
Supplementary Material Section 3.

3. There are many parameters in high-order differential models,
which typically require more measured data to be estimated. In
the following sections, we introduce fractional calculus models
with fewer parameters and similar accuracy.

4. In nondegenerate mechanics systems, (the Hessian matrix is
full rank), based the Hamilton’s Principle and Ostrogradsky’s
theorem, terms of order three and higher in higher-order

differential models do not exist. More details on thus point
may be found in the Supplementary Material Section 4.

Overall, given the above analysis, we are not going to employ
high-order differential models in processing measured data.

2.1.2 Fractional calculus models
If there is uncertainty about the appropriate order of the

differential terms in the respiratory mechanics model and on
the actual weight of each order, we may consider introducing
fractional-order terms involving different orders of derivatives into
the model. This would also allow us to take into account the
memory-dependent viscoelasticity and heterogeneity features of
the lung tissue (Bates, 2009; Ganzert et al., 2009; Chen et al., 2010;
Carvalho and Zin, 2011; Ionescu and Kelly, 2017; Xue and Bai,
2023), which cannot be captured by classical integer-order
differential equations-based lumped-parameter models. Here,
we propose a fractional calculus model to solve this problem,
which has fewer parameters to be estimated compared to classical
models.

Fractional calculus may be introduced in different and slightly
inequivalent ways, involving Grünwald-Letnikov,
Riemann–Liouville, and Caputo fractional derivatives. Here, we
primarily consider the Grünwald-Letnikov definition that is
convenient for numerical calculations. The α-order derivative of
a given function f(t) is expressed as (Xue and Bai, 2023):

Dα
t0
f t( ) � lim

h→0

1
hα

∑
j�0

t−t0
h −1( )jΓ α + 1( )
Γ j + 1( )Γ α − j + 1( )f t − jh( ) (20)

In the above formula, h is a sufficiently small time step, and Γ
denotes the Gamma function, that is Γ(z) � ∫∞

0
e−ttz−1dt。This

definition assumes that the value of the function f(t) is 0 when t ≤ t0,
in agreement with the assumption that any physical quantity is zero
before the initial time t0. Fractional order derivatives are able to
capture memory properties (applicable to differentiation where α >
0 and to integration where α < 0). More about numerical
calculations of fractional order calculus can be found in the
Supplementary Material Section 5.

Furthermore, according to Eq. 20, any fractional order derivative
term also involves some higher order derivative features.

Based on the fractional order differentiation proposed above, we
modify Eqs 1, 20, thus obtaining the following fractional order
derivative respiratory mechanics model:

P � EV t( ) + RV′ t( ) + aDα
t0
V t( ) + P0 (21)

whereDα
t0
V(t) is the α-order derivative of theV(t), with a fractional

order differential term α > 0. When α = 1, it takes the form of Eq. 10.
In the subsequent sections, we mainly focus on cases with 0<α < 1.

The above formula contains a single fractional order derivative
term. Analogously, we may also introduce models containing more
fractional terms, such as the generalization of Eq. 22 containing
2 fractional order derivative terms, i.e.,

P � EV t( ) + RV′ t( ) + aDα
t0
V t( ) + bDβ

t0
V t( ) + P0 (22)
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As a matter of fact, upon considering actual measurement data,
one sees that more fractional order terms do not provide better
results than a single one. Parameters estimation and model
simulation results for Eq. 21, 22 are reported in the
Supplementary Material Section 6.

2.1.3 Non-linear models
The models mentioned earlier are all cases where the coefficients

of the differential equations are constants. In the actual respiratory
system, the elasticity E and airway resistance R may be variables
rather than constants (Van Drunen et al., 2014; Chiew et al., 2015;
Redmond et al., 2017; Ellwein Fix et al., 2018; Marconi and De
Lazzari, 2020). When the elasticity E changes with V(t), and the
resistance R changes with V′(t), based on Eq. 1, pressure P(t) and
volume V(t) satisfy the following equation:

P t( ) � Ef V t( )( )V t( ) + Rh V′ t( )( )V′ t( ) + P0 (23)
where V′(t) represents the first-order derivative of V with
respect to t.

Specifically, when only the elasticity E varies with V(t) or only
the resistance R varies with V′(t), Eq. 23 can be evolved into Eq. 24
and Eq. 25.

P t( ) � Ef V t( )( )V t( ) + RV′ t( ) + P0 (24)
P t( ) � EV t( ) + Rh V′ t( )( )V′ t( ) + P0 (25)

Nonlinear models containing polynomial terms. In order to
describe physical situations in which the elasticity E is
monotonically (and strongly) positively correlated with V(t) and
the resistance R is monotonically strongly positively correlated with
V′(t), we should consider polynomial functions f and h in Eq. 23. To
a first approximation, we may safely ignore the different inflection
points of the polynomials and focus on the highest order term that
mostly affects the behaviour of the functions. This amounts to
consider f of the form of Eof f set + αV(t)β, where Eoffset > 0, and
the constants α and β capture the behaviour of the elasticity E as a
function of V(t). The form of the function h is analogue,
i.e., Rof f set + αV′(t)β. Overall, we have

P t( ) � E0 Eoffset + αEV t( )βE( )V t( ) + R0 Roffset + αRV
′ t( )βR( )V′ t( )

+ P0

(26)
Then Eq. 23 can be written as

P t( ) � EV t( ) + RV′ t( ) + aV t( )x + bV′ t( )y + P0 (27)
where a, b, x and y are constant.

Similarly, when only the elasticity E changes with V(t) in a
polynomial form or only the resistance R changes with V′(t) in a
polynomial form, Eq. 27 can be written as

P t( ) � EV t( ) + RV′ t( ) + aV t( )x + P0 (28)
P t( ) � EV t( ) + RV′ t( ) + bV′ t( )y + P0 (29)

As a matter of fact, there exists some nonlinear models with
analytic solutions in terms of elementary functions. For instance, for
the model (t) � E0(Eoffset + kV(t))V(t) + RV′(t) + P0 � EV(t)+

RV′(t) + aV(t)2 + P0 , if we assume the P(t) is a step signal with
constant value Pc, then its analytic general solution is

V(t) � −E+

−E2+4a(P0−Pc)

√
tan[


−E2+4a(P0−Pc)

√
(−t+kR)

2R ]
2a , where k is the

constant coefficient determined by the initial conditions.
Non-linear models containing exponential terms. In some

cases, the respiratory system elasticity E may show a step
response property10,12. Combined with the results presented
in the following sections, this corresponds to the model
described by Eq. 24. If function f is an exponential function,
double-exponential function and triple exponential function, P
and V satisfy one of the following equations.

P t( ) � EV t( ) + aexV t( )V t( ) + RV′ t( ) + P0 (30)
P t( ) � EV t( ) + aeexV t( )V t( ) + RV′ t( ) + P0 (31)
P t( ) � EV t( ) + aee

e xV t( )
V t( ) + RV′ t( ) + P0 (32)

The growth in single exponential function is fast, but not as fast
as the factorial function. The double-exponential function grows
faster than the factorial function (see the Supplementary Material
Section 7). The growth rate of the Ackermann’s function is much
faster than the double-exponential function. As it may intuitively be
expected, we will show that without using piecewise functions the
faster is the growth, the better is the fitting of the measured data (for
a step response).

2.1.4 Hybrid model
Considering the step-like features of the respiratory system

elasticity, as well as the memory-dependent viscoelasticity and
heterogeneity characteristics of lung tissue, we may combine Eq.
21 with Eq. 30 to obtain the hybrid model of Eq. 33, which itself
incorporates different properties:

P t( ) � EV t( ) + RV′ t( ) + aDα
t0
V t( )+beeβV t( ) + P0 (33)

As we will see in the following Sections, this hybrid model
provides the best fit for measured data in most situations.

2.2 Data collection

We use a Dräger Savina 300 to measure airway pressure P(t),
flow speed V’(t) and respiratory volume V(t) in the actual
respiration of three Bama pigs. The first Bama pig (sample ID as
case1) weighs 28 kg, and data are taken for three ventilation modes,
namely, pressure control - assist control (PC-AC), volume control -
assist control (VC-AC), and volume control - synchronized
intermittent mandatory ventilation (VC-SIMV). The second one
(sample ID as case2) weighs 31 kg and the third one (sample ID as
case3) weighs 24.3 kg, and data are taken for the VC-AC ventilation
mode. In all measurements, pressure P(t), flow speed V′(t), and
respiratory volume V(t) data are collected every 10 ms for at least
6 min. In the pressure control ventilation mode, set peak breathing
pressure = 16 mbar, plateau pressure = 15 mbar and PEEP = 3 mbar.
In the volume control ventilation mode, the tidal volume is set
to 0.3 L.

During the measurement process, the original HL7 data are
first obtained through serial communication, and then the
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pressure P, flow speed V′, and respiratory volume V data at each
moment are further parsed and extracted. The data at the same
moment are placed in the same row, with each row divided into
three columns: pressure P, flow speed V’, and respiratory volume
V, separated by tabs. The data are arranged in chronological
order. Finally, the unit of P is converted to mbar, the flow rate is
in L/s, and the respiratory volume is in L, which are written into
the txt file.

For cross-validation at different time periods, two data files of
150 s duration (15,000 data points, about 50 breathing cycles) are
extracted from each breathing mode. After sorting, the data files are
respectively named as case1PCAC1.txt, case1VCAC1.txt,
case1VCSIMV1.txt, case2VCAC1.txt, case3VCAC1.txt and
case1PCAC2.txt, case1VCAC2.txt, case1VCSIMV2.txt,
case2VCAC2.txt case3VCAC2.txt.

2.3 Parameter estimation

Parameter estimation for all the above-mentioned ordinary
differential equations with constant coefficients can be
performed using the following procedure (Bates, 2009;
Redmond et al., 2017; Avilés-Rojas and Hurtado, 2022). The
first observation is that all the models analyzed in this paper may
be recasted as

P t( ) � a1f1 t( ) + a2f2 t( )+ . . .+amfm t( ) + P0 (34)
where f1(t), f2(t) . . .fn(t){ } denotes any linear or nonlinear term
of the differential equation, for example, fn(t) may represent
(V′(t))2, Dα

t0
V(t), exV(t), etc., while �A � a1, a2 . . . an{ } is the

corresponding set of coefficients, i.e., the quantities to be
estimated.

The values of pressure P(t), flow speed V′(t), and respiratory
volume V(t) collected in real time are organized in vector andmatrix
form and used as input for the algorithm. If the collected values of
the respiratory system are at n time points t1, t2 . . . tn{ }, then the
input data are the n-dimensional pressure vector P(t), and the data
matrix X with n rows and m+1 columns:

�P �
P(t1)
P(t2)
..
.

P(tn)

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
⎫⎪⎪⎪⎪⎬⎪⎪⎪⎪⎭ (35)

X �
f1 t1( ) . . . fm t1( ) 1
f1 t2( ) . . . fm t2( ) 1

..

.

f1 tn( ) . . . fm tn( ) 1

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
⎫⎪⎪⎪⎪⎬⎪⎪⎪⎪⎭ (36)

Then, the coefficients can be estimated from

�A � XTX[ ]−1XT �P (37)
In the above Eq. 37, XT represents matrix transposition, and

[*]−1 represents matrix inversion. We estimate parameters by
minimizing the sum of squared residuals (SSR). At the extreme

point, the partial derivatives with respect to each coefficient are zero,
and this provides constraints to obtain their values. In order to
determine the fractional-order in Eq. 21, we employ Particle Swarm
Optimization (PSO) algorithm in machine learning (Kennedy and
Eberhart, 1995; Gad, 2022; Shami et al., 2022; Xie et al., 2022; Yang
et al., 2022), searching for the stable optimal solution with the lowest
overall SSR. In this way, we also find the coefficient x for the
exponential Eqs 30–32, and the hybrid Eq. 33. For all the
models, suitable values of the number of particles N and
iterations M may be found, which ensure stable optimal
solutions. In general, for Eq. 21, M = N = 5 is enough, whereas
for the exponential model we need M = N = 10, and for the hybrid
model, M = N = 20. Once the values of α and x are determined, their
corresponding constant coefficients can be calculated according to
Eq. 37.

To ensure computational accuracy, we use the different packages
in Python to calculate the fractional order derivatives (Adams,
2019), and call Python code within MATLAB while optimizing
the SSR value of the models. In addition, since the exponential Eqs
30–32, is prone to produce a singular matrix, we perform address Eq.
37 using a pseudo-inverse matrix to reduce the distortion and
deviation of numerical results.

More details about faster empirical estimation methods of the
parameters for fractional calculus and exponential terms may be
found in the Supplementary Material Section 8.

2.4 Numerical simulations

After obtaining the estimated values of the parameters, the
stability of the models is assessed using the Routh-Hurwitz
stability criterion, and then the subsequent simulations are
carried out carefully considering their actual physical meaning
(Hu, 2007; Wang et al., 2007). Generally, we accept estimated
values of the parameters only if they are positive. On the one
hand, this is required by the Routh-Hurwitz stability criterion,
dictating that our models are stable only if all coefficients are
positive. On the other hand, from a practical physical
perspective, most of the variables of interest, e.g., the elasticity E
of lung tissue are positive numbers.

After the parameters meet the above conditions, we use
MATLAB/Simulink and Python to complete the calculations and
construct the Simulink model for all the models considered in this
work. The open-source vfoderiv3 module of Simulink (Scherer et al.,
2011; Sierociuk et al., 2015; Sierociuk, 2023) is used for the
simulation of fractional calculus. The Simulink model for the
other models may be found in the SupplementaryMaterial Section 9.

2.5 Evaluation criteria

The comparison of models with the same number of parameters
to be estimated is made in terms of the SSR and the root mean square
error (RMSE). Models with lower values of these two indicators
should be preferred. The definition is given by
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SSR � ∑n
i�1

Vi − V̂i( )2 (38)

RMSE �

SSR

n

√
(39)

where Vi represents the actual respiratory volume value from
measured data at time i (the i th data point), and V̂i represents
the value from model simulations. The actual measurement period
contains a total of n data points (an overall duration of 150 s
corresponds to n = 15,000). The comparison between different
models is made using the Bayesian Information Criterion (BIC)
which considers the number of parameters. If residuals~ N(0, σ2),
we ignore the irrelevant constants and use the equivalent BIC value,
i.e., Eq. 40, for model comparison and evaluation (Sheng et al.,
2020).

BIC� n* ln SSR( )+k* ln n( ) (40)
In the above formula, k represents the number of model

parameters. The process of deriving Eq. 40 based on the original
BIC definition and the assumption of residual distribution may be
found in the Supplementary Material Section 10.

In addition, we also use the Pearson correlation coefficient
between the measured and simulated values of the respiratory
volume as an additional criterion for optimization (the closer the
correlation coefficient is to 1, the better).

2.6 Computation details

The executable code and actual respiratory data can be found in
the Supplementary Material and our Gitee repository (https://gitee.
com/lizwtest/mechanical_ventilation).

For models that do not contain exponential or fractional order
differential terms, such as Eq 1 and Eq. 2 and Eq. 10, and (27–29),
the measured respiratory mechanical data of the respiratory system
can be substituted into Eq. 37 based on Section 2.3. This results in
calculated values with practical physical characteristics such as
respiratory system elasticity E, airway resistance R, P0 (PEEP),
and so on.

For the calculation of models containing double exponential or
fractional order differential terms, taking the double exponential
model of Eq. 31 as an example, when a suitable value of the
exponential parameter x is given in the model, the respiratory
system mechanics data is substituted into Eq. 37 to obtain the
elasticity “E,” airway resistance “R” and coefficient “a” which can
reflect the weight of the step mechanical characteristic. At this time,
the SSR value can be obtained by Eq. 38 as the score of the PSO
function based on the predicted respiratory volume V̂ (t) and the
measured volume V(t), and then the velocity vector of N particles is
continuously updated for M rounds to find a better value of x
(corresponding to the position of the particle), thus obtaining a
lower SSR value corresponding to the optimized parameter x. The
main flow of the proposed Algorithm 1 is shown in the pseudo-code.
The NCP in the pseudo-code stands for non-coefficient parameters.
P_SSRbest, G_SSRbest, Pbest, Gbest, represent the particle best SSR

value, the global best SSR value, the particle best location, and the
global best location, respectively.

input:

Data -- Respiratory mechanical data P(t), V’ (t),

and V(t)

D -- Number of NCPs

M -- Max number of iterations

N -- Swarm size

LB -- Lower boundary of the search space

UB -- Upper boundary of the search space

output:

Gbest -- the best positions (NCPs) found so far

(1) Initialization;

(2) for each particle i = 1 to N do

(3) for each NCP j = 1 to D do

(4) Initialize particle velocity and position randomly

within [LB, UB]D;

(5) end for

(6) Substituting Data into Eq. 37 to determine all the

model parameters;

(7) Compute predicted respiratory volume V̂ (t) based on

respiratory mechanical model;

(8) Substituting V̂ (t) and V(t) to Eq. 38 to initialize

P_SSRbest to the initial value;

(9) end for

(10) Initialize Gbest and G_SSRbest based on the lowest P_

SSRbest;

(11) while iteration < max generation M

(12) for each particle i = 1 to N do

(13) Update the velocity and position of particle i

(14) if the position of particle i exceeds the boundary

[LB, UB]D then

(15) the position of particle i is set to the boundary

value;

(16) Substituting Data into Eq. 37 to determine all the

model parameters;

(17) Compute predicted respiratory volume V̂ (t) based

on respiratory mechanical model;

(18) Substituting V̂ (t) and V(t) to Eq. 38 to calculate

temporary SSR (fitness) value;

(19) if P_SSRbest > temporary SSR value then

(20) P_SSRbest = temporary SSR value;

(21) Pbest = location of particle i

(22) if G_SSRbest > P_SSRbest then

(23) G_SSRbest = P_SSRbest;

(24) Gbest = Pbest;

(25) end for

(26) end while

Algorithm 1. Pseudo-code for models with PSO algorithm.

Furthermore, for the Grünwald-Letnikov discretization
calculation formula of the open-source vfoderiv3 module in
Simulink, you can refer to the following Eqs 41, 42 or the
instruction file and related literature of this module (Scherer
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et al., 2011; Sierociuk et al., 2015; Sierociuk, 2023; Xue and Bai,
2023). When the step size h is sufficiently small and the start
time involved in the calculation is t0, the calculation of
fractional calculus under the Grünwald-Letnikov definition is
as follows:

Dα
t0
f t( ) � 1

hα
∑
j�0

t−t0
h

ωjf t − jh( ) (41)

where the coefficient ωj in the above formula (41) has the following
recursive formula that is convenient for numerical calculation:

ω0� 1,ωj � 1 − α+1
j

( )ωj−1, j� 1, 2,/ (42)

For instance, applying it to calculate the α fractional derivative of
the respiratory volume V(t) at a certain moment t, is to substitute the
measured values of V (t0) to V(t) into Eq. 41 for calculation. The
coefficients ωj of Eq. 41 are determined by recursive calculation
from Eq. 42.

3 Results

3.1 Our results indicate that the parameter
estimation and model simulation methods
proposed in this paper are fast and effective
for all the considered classes of models

Four representative different models have been employed to
analyze 150 s of PC-AC mode data (corresponding to
case1PCAC1.txt, 15,000 data points) for parameter estimation
and model simulation. Results for the different models are
summarized in Table 1 along with their mean computation time
obtained from three runs (all the calculations are retained to four
decimal places).

As it is apparent from Table 1, the fractional model has the best
performance, although the computation time is slightly higher than
the other models. For all the models, parameter estimation and
model simulation and evaluation may be completed within seconds.
Figure 2 shows that models reproduce accurately the measured
respiratory volumes V(t) data.

TABLE 1 Parameter estimation and simulation results of four representative models.

Model Parametric estimation BIC Correlation Time (s)

P = EV + RV’ + P0 p = 26.1130 V + 7.1716 V’ + 3.3972 8138.3069 0.9975 0.2721

P = EV + RV’ + IV’’ + P0 p = 26.1135 V + 7.1716 V’ + 0.0085 V’’ + 3.3972 8427.2498 0.9975 0.4648

P = EV + RV’ + P0 + a*V̂2 p = 22.0017 V + 7.1795 V’ + 11.4413 V̂2 + 3.4846 9474.4923 0.9973 0.2880

P = EV + RV’ + a*D1.1(V) + P0* p = 26.3247 V + 6.6647 V’ + 0.4388D1.1(V) + 3.3804 1772.4650 0.9984 0.6916

Note: *D1.1(V) represents the 1.1-order fractional derivative of V.

That the bold values indicates the important BIC indicator results.

FIGURE 2
Comparison of experimental and simulated V-T curves for different representative models. Models 1 to 4 correspond to P = EV + RV’ + P0, P = EV +
RV’+ IV’’+ P0, P = EV + RV’+P0 + a*V̂2, and P = EV + RV’+ a*D1.1 (V) + P0 respectively. (A) 10 s simulation results for eachmodel, (B) zoomof the orange
region in (A).
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Looking at the first row of Table 1 as an example, we see that the
values of respiratory system elastance E = 26.1130 cmH2O/L and
respiratory system resistance R = 7.1716 cmH2O*s/L obtained from
Eq. 37 both fall within the known range of normal measurements
(Protti et al., 2011; Henderson et al., 2017).

In addition, compared to the study by Albanese et al. (2016), our
modelling provides an improvement in accuracy by an order of
magnitude in terms of the CV(RMSE). In particular, their model
achieved an optimal CV(RMSE) = RMSE/average (V(t)) = 0.079 for
the volume V(t). While just using the most basic Eq. 1 we find
CV(RMSE) = 0.0089 (the results of other models are even better).
This demonstrates the accuracy and reliability of our modelling and
parameter estimation methods.

3.2 The double-exponential model can be
chosen as a representative of exponential
models

As mentioned above, we have proposed the exponential Eqs
30–32 to describe data measured in three different ventilation
modes: PC-AC, VC-AC, VC-SIMV (corresponding to data files
case1PCAC1.txt, case1VCAC1.txt, case1VCSIMV1.txt). The x

parameter in the exponentials of Eqs 30–32 is optimized using
PSO to obtain the most suitable value, and the criterion for
optimization is the SSR value (lower SSR value is better). The
number of particles N and the number of iterations M are taken
as 5, 10, 20, respectively. The SSR and computation time of each
model are summarized as shown in Figure 3.

Overall, the computational results improve (lower SSR values) as
the exponent increases (i.e., at a faster growth rate), suggesting that
the respiratory system elasticity E has certain step characteristics
(the exponential term corresponding to the component separated
from the elasticity E), and the closer is to the step characteristics, the
better are the results.

Looking at the dashed line in the graph, we conclude that Eq. 32
shows a significant improvement compared to Eq. 30 (with a
significant difference of p-value = 0.0001009, and an average
difference rate of 12.91% in the three ventilation modes).
However, there are no significant differences between Eq. 32 and
31 (with a non-significant difference of p-value = 0.8271, and an
average difference rate of 1.05% in the three ventilation modes).
Further increasing the exponential order results only in an increase
of the computational time. We thus recommend using the double
exponential model as a representative of this type of models. The
particle number N and iteration rounds M for this type of model

FIGURE 3
Comparison of SSR and computation time for Eqs 30–32 in three respiratory modes. The left y-axis in the Figure denotes time (in seconds),
corresponding to the line graph, while the right y-axis represents the SSR values, corresponding to the bar graph. The x-axis is the particle number N
(equal to the number of iterations M). The purple line and bar denote results for Eq. 30, green is for Eq. 31, and blue is for Eq. 32. (A) reports results for the
PC-AC ventilation mode, (B) for the VC-AC ventilation mode and (C) for the VC-SIMV ventilation mode.
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PSO optimization are both set to 10, which allows us to achieve
saturation in calculations.

3.3 Exponential models provide superior
results compared to the polynomial models
in volume-controlled ventilation mode

In order to investigate and find out a suitable nonlinear model to
describe the actual respiratory data, we simulate the dynamics of Eq. 27,
with the exponent ranging from 1 to 11, and select the best model based
on its SSR value. When x = 1 Eq. 27 is equivalent to Eq. 29, whereas for
y = 1 Eq. 27 is equivalent to Eq. 28. When both x = 1 and y = 1, Eq. 27
reduces to (1). We use three different ventilation modes, PC-AC, VC-
AC and VC-SIMV, to estimate the parameters of each model using
measured data (corresponding to data files case1PCAC1.txt,
case1VCAC1.txt, case1VCSIMV1.txt), and only the parameter values
that meet the Routh-Hurwitz criterion and the actual physical meaning
are taken for subsequent simulation calculations of SSR values. The
results may be summarized as follows:

Figure 4 shows that the exponent y only weakly influences the
overall SSR. To reduce the undetermined parameters Eq. 28 is thus
taken as the more suitable model for the discussion in the subsequent
sections.

The SSR decreases with the exponent x in the term aV(t)x with
an approximately exponential behaviour. We take the mean and the

logarithm of the mean of the SSR values of all curves in Figures
4A–C respectively, and through linear regression analysis, we find
that the logarithm of the mean of the SSR is more significantly
correlated to the independent variable x (higher coefficient of
determination r2, see Supplementary Material Section 11). This
suggests that the SSR of Eq. 28 converges slowly and other may be
more convenient in terms of convergence and model fitting.

To simplify and more clearly illustrate our results, we further
take the best results obtained by using polynomial Eqs 27–29 of
orders 1–11, and compare them with results obtained from Eq. 31.
Comparison is made in terms of SSR for the three different
ventilation modes, PC-AC, VC-AC, VC-SIMV, for parameter
estimation and simulation (corresponding to data files
case1PCAC1.txt, case1VCAC1.txt and case1VCSIMV1.txt). For
the double exponential Eq. 31, the exponent x is optimized by
PSO for a number of particles N = 10 and iterations M = 10.

As can be seen from the results in Table 2, in theVolume-Controlled
ventilation mode (VC-AC, VC-SIMV), the double exponential model
Eq. 31 has significantly superior BIC and SSR, obtained in a
computational time of the same order of magnitude compared with
the other models. According to Eq. 26, the exponential term
aeexV(t)V(t) in Eq. 31 and the aV(t)x term in Eq. 28 are physically
related to the elasticity E (component of respiratory elasticity E), and the
results of this Section indicates that the elasticity E of the respiratory
system has a step-like characteristic, which is more suitable to be
modeled and described by exponential or similar fast-growing functions.

FIGURE 4
SSR of nonlinear polynomial models. (A–C) illustrate the behaviour of the SSR as a function of the exponent x of the aV(t)x term in Eq. 27. The fitting
functions corresponding to the mean of all curves in the 3 ventilation modes are shown in Figures 5A–C, respectively (retaining 2 decimal places). (D–F)
illustrate the behaviour of the SSR as a function of the exponent y of the bV′(t)y term in Eq. 27. The numbers in x1, x2. and y1, y2. in the legend represent the
values corresponding to x and y in Eq. 27.
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3.4 The fractional calculus model provides
superior results compared to integer-order
differential models in Pressure-Controlled
ventilation mode

We further compare results for the Pressure-Controlled
ventilation mode, introducing the fractional calculus term into
the respiratory mechanical model.

Before comparing Eq. 21 with other different models, the
undetermined fractional order in the fractional calculus model of Eq.
21 should be estimated using the PSO algorithm to obtain the optimal
solution. First, we use PSO algorithm to determine for which values of
the particle number N and iteration rounds M one obtains a stable
optimal solution for Eq. 21. We use data files from three different
breathing patterns: case1PCAC1.txt, case1VCAC1.txt, case1VCSIMV1.txt,
and compare SSR for N and M ranging from 3 to 30.

The results are shown in Figure 5. Using M = N = 5, PSO already
reaches a stable optimal solution, and increasingN andMprovides only
little improvement on the final result. For N = M = 5, the maximum
difference rate from the optimal SSR (N = 30 and M = 30) in the three
ventilation modes is 0.14% for the PC-AC mode. Hence, for the PSO
algorithm optimization of Eq. 21 we consistently set N = M = 5.

After determining that Eq. 21 has reached a stable optimal solution
based on the PSO algorithm with particle number N = 5 and iteration
number M = 5, we can further compare the single-compartment model
Eq. 1, fractional calculus model Eq. 21, polynomial model Eqs 27–29,
and double-exponential model Eq. 31 based on the actual measured data
from the three ventilation modes case1PCAC1.txt, case1VCAC1.txt,
case1VCSIMV1.txt.We calculate their respective BIC values, SSR values,
and computation time. The PSO algorithm is used to optimize the
fractional order of Eq. 21 and the exponential parameter of Eq. 31, with
the goal of minimizing SSR. In the optimization calculation based on the
PSO algorithm, for Eq. 21, the particle number N = 5 and the iteration
number M = 5 are taken, while for Eq. 31, according to the previous
results, N =M= 10 is taken to achieve saturation. To simplify and clearly
present our results, the best results from the polynomial models up to
order 11 are compared, and the results are shown in Table 3.

From the above results, it is apparent that the fractional calculus
model performs better (lower BIC and SSR values) compared to the
single-compartment Eq. 1 for all the ventilation modes. The running
time is generally within half a minute on our computing platform.
The additional computation time of the fractional order model is
mostly due to the iterative search, required to find the suitable order,
whereas the computational time required for saturation is shorter
compared to the exponential Eq. 31. In particular, for the Pressure-
Controlled ventilation mode (PC-AC), the fractional calculus model
of Eq. 21 is superior to other types of models.

3.5 Significant improvement of respiratory
model fitting based on hybrid model

As illustrated in the previous Sections, Eq. 21 is optimal for the
Pressure-Controlled ventilation mode and Eq. 31 for the Volume-
Controlled ventilation mode. In this Section, we investigate whether the
hybrid model in Eq. 33, which has features of both models may achieve
better results (lower BIC and SSR values) for all the ventilation modes.

Since the fractional order α and the exponential term parameter
β in the hybrid Eq. 33 are obtained by PSO algorithm, we first
calculate the number of particles N and the number of iterations M

TABLE 2 Comparison of double-exponential model and polynomial models.

Ventilation modes Model BIC SSR RSME Time (s)

PC-AC best of Eqs 1, 27–29 3513.5670 1.2583 0.0092 39.3937

Eq. 31 3955.5499 1.2976 0.0093 46.6033

VC-AC best of Eqs 1, 27–29 −5009.2941 0.7138 0.0069 43.7812

Eq. 31 −7615.9289 0.5999 0.0063 74.0008

VC-SIMV best of Eqs 1, 27–29 −692.1555 0.95063 0.0080 55.3215

Eq. 31 −2916.1684 0.8207 0.0074 127.8307

That the bold values indicates superior model results in volume-controlled ventilation modes.

FIGURE 5
SSR values as obtained from different PSO parameters in the
three ventilation modes for Eq. 21. The black line is for the PC-AC
mode, green for VC-AC mode, and blue for VC-SIMV mode. The
horizontal axis represents the values of M and N in the PSO
algorithm, for example, the position of x = 5 denotes N = 5 and M = 5.
The SSR value data points calculated from different M and N values are
marked with red “x” in the Figure.
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required to achieve stable optimal solution based on data from the
three different ventilation modes, case1PCAC1.txt, case1VCAC1.txt
and case1VCSIMV1.txt.

From Figure 6, we see that the hybrid Eq. 33 reaches stable
optimal solutions for all ventilation modes when N = M = 20, and
that there is no statistical difference compared with the optimal SSR
(N = 50 and M = 50) (p-value = 0.1835, average difference rate
0.0087% in three ventilation modes). In the following, we use N =
M = 20 to optimize the parameters of the hybrid model Eq. 33.

Next, we compare the BIC and computational time of the single-
compartmentmodel Eq. 1, fractional calculusmodel Eq. 21, polynomial

model Eqs 27–29, double-exponential model Eq. 31 and hybrid model
Eq. 33 using the same data (case1PCAC1.txt, case1VCAC1.txt,
case1VCSIMV1.txt). For the polynomial model Eqs 27–29, we take
the best results from orders 1–11. For Eqs 21, 31, 33, which need to be
optimized based on the PSO algorithm, we take their corresponding
stable optimal solutions, i.e., N = M = 5, N = M = 10 and N = M = 20,
respectively. The results are shown in Figure 7A. After parameter
estimation, we further use the relationship between pressure P(t)
and respiratory volume V(t) in the data of case1PCAC2.txt,
case1VCAC2.txt, case1VCSIMV2.txt for cross-validation (i.e., the
pressure in the second time period is used as the input, and the
model parameters estimated in the first time period are used for
model simulation. The simulated volume V̂(t) results are compared
with the actual measured respiratory volume V(t) in the second time
period to calculate SSR andBIC values), and the results of their BIC, SSR
values and computational time correspond to Figure 7B.

Results in Figure 7A show that our proposed hybrid model Eq.
33 is the optimal model for all ventilation modes, and that its BIC
value is significantly better than other models. When applied to
actual measured data from different time periods of the same mode
after estimating themodel parameters (Figure 7B), similar results are
obtained (the behaviour of the BIC for each model is similar), that is,
the hybrid model is the optimal model within a given time period
and for cross-validation in different time periods.

In terms of computation time, the optimal hybrid model also
takes the longest time for parameter estimation stage. The single-
compartment model has the worst BIC value and the shortest
calculation time (average 0.26 s). Since the hybrid model involves
two parameters to be estimated, the main overhead in computation
is the optimization of parameters by the PSO algorithm. However, if
the personalized characteristic parameters are known, the single-
round running time for each model is on the same order of
magnitude (Figure 7B), i.e., less than 1 s on our computing platform.

In addition, in order to verify the consistency of the results of
each model in different experimental animals, we validated results
on measured data from another two Bama pig for the VC-ACmode.
First, based on the measured data file case2VCAC1.txt, we estimated

TABLE 3 Comparison of fractional calculus model and integer-order differential models.

Ventilation modes Model BIC SSR RMSE Time (s)

PC-AC Eq. 1 8138.3069 1.7171 0.0107 0.2692

Eq. 21 1571.9530 1.1069 0.0086 24.7259

best of Eqs 27–29 3513.5670 1.2583 0.0092 39.3937

Eq. 31 3955.5499 1.2976 0.0093 46.6033

VC-AC Eq. 1 −1352.4948 0.9120 0.0078 0.2641

Eq. 21 −2223.0448 0.8595 0.0076 26.7856

best of Eqs 27–29 −5009.2941 0.7138 0.0069 43.7812

Eq. 31 −7615.9289 0.5999 0.0063 74.0008

VC-SIMV Eq. 1 4106.5277 1.7494 0.0108 0.2403

Eq. 21 2887.3673 1.2084 0.0090 27.9563

best of Eqs 27–29 −692.1555 0.9506 0.0080 55.3215

Eq. 31 −2916.1684 0.8207 0.0074 127.8307

FIGURE 6
SSR values obtained from different PSO parameters in three
ventilation modes for Eq. 33. The horizontal axis denotes the values of
M = N in the PSO algorithm, and the SSR value data points calculated
from different M and N values are marked with red “x” in the
Figure.

Frontiers in Physiology frontiersin.org12

Li et al. 10.3389/fphys.2023.1273645

https://www.frontiersin.org/journals/physiology
https://www.frontiersin.org
https://doi.org/10.3389/fphys.2023.1273645


the parameters and calculated the BIC and SSR values to evaluate the
results of each model. Meanwhile, the model parameters obtained
from case2VCAC1.txt were used for cross-validation of the
relationship between pressure P(t) and respiratory volume V(t) in
the measured data of case2VCAC2.txt. Moreover, the validation for
case3 data (case3VCAC1.txt and case3VCAC2.txt) is the same. The
calculated results of BIC and SSR values are summarized in Table 4.

The validation results are consistent with the results in Figure 7,
indicating that the hybrid model Eq. 33 can achieve significantly
better results for different ventilation modes. Compared with the
basic single-compartment model Eq. 1, the SSR value of hybrid
model Eq. 33 is nearly halved and the difference in BIC value is even
more significant. In addition, the results of Table 4 also re-verify that
if personalized characteristic parameters are obtained based on
several respiratory cycle data, they can be used for simulations
under the same ventilation mode, and even predict the respiratory
volume V(t) curve based on the specified pressure P(t), without
having to recalculate the parameter values, with a single round of
calculation that can be completed in seconds.

In summary, if there is sufficient computing power or quick
calculations is not required, the hybrid model is recommended as
the optimal model to universally describe different ventilation modes.
When quick calculations are required, the fastest model is the basic Eq.
1. For the same individual, the model parameters that conform to its
personalized characteristics can also be pre-calculated based on
measured data (Figure 7B), and respiratory volume V(t) can be
directly calculated based on pressure P(t) in the same conditions.

4 Discussion

We have addressed effective modelling of respiratory mechanics
and put forward a set of methods for rapid parameter estimation

based on measured data (each model round calculation is less than
1 s), model simulation and evaluation system, also providing the
corresponding executable code (https://gitee.com/lizwtest/
mechanical_ventilation) and measured data. Using our approach,
different models and parameters can be selected and tailored to
different applications to further explore the mechanical
characteristics of the respiratory system, improve the ventilation
mode of the ventilator, and lay the foundation for the
implementation of rapid adaptive parameter ventilation.

Some models analyzed in the article have time-domain general
solutions, and so when P(t) in the respiratory system is very close to
some elementary functions (or multiple superpositions), the volume
V(t) curve (ormultiple solutions superposition in linear systems) can be
obtained directly through the time-domain general solution. However,
considering certain autonomous randomness of individual’s breathing
and the presence of background, more realistic simulations may be
obtained by substituting each point in time order.

In addition, the actual elasticity E of respiratory systems shows a
step characteristic. In Volume-Controlled ventilation modes, the
pressure P(t) is not fixed, and decreases as it approaches the expected
tidal volume, causing a sudden change in the pressure P(t) and
respiratory volume V(t) curve. In Pressure-Controlled ventilation
modes, the pressure is fixed, which reflects the memory-dependent
viscoelasticity and heterogeneity characteristics of lung tissue,
whereas in volume-controlled ventilation modes, the pressure
P(t) has not a fixed value. The pressure P(t) decreases when it is
close to the expected tidal volume, and if it reaches the thoracic/lung
volume, the elasticity E of the respiratory system will significantly
increase (a larger pressure increment ΔP is required to produce the
same volume increment ΔV). This corresponds to a sudden change
in the pressure P(t) and volume V(t) curve, and the volume V(t)
curve is more likely to reflect the plateau feature. In Pressure-
Controlled ventilation modes, the pressure is fixed to reflect the

FIGURE 7
BIC and computational time for the three respiratorymodes. The left axis in the figure represents BIC value (bar graph), while the right axis represents
time (line graph). The horizontal axis represents three different ventilation modes [black for Eq. 1, green for (Eq. 21), cyan for (Eqs 27–29), blue for (Eq. 31),
and purple for (Eq. 33)]. (A) The results based on data from the first time period (case1PCAC1.txt, case1VCAC1.txt, case1VCSIMV1.txt). (B) The cross-
validation results based on data from the second time period (case1PCAC2.txt, case1VCAC2.txt, case1VCSIMV2.txt), with the parameter estimation
based on data from the first time period.
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memory-dependent viscoelasticity and heterogeneity characteristics
of lung tissue.

Finally, using the systematic approach proposed in this paper,
we have proposed and validated an optimal hybrid model useful for
various ventilation modes. To this aim, we have for the first time
applied fractional calculus and double exponential terms to the
modelling of respiratory mechanics. Compared to other models, the
hybrid one shows significantly better BIC and SSR results for
different ventilation modes, i.e., it better describes the actual
pressure P(t) and respiratory volume V(t) relationship. This
implies that we can more accurately describe and simulate the
characteristics of respiratory mechanics. Based on this model, we
can further study the mechanical characteristics of the respiratory
system, deepen our understanding of the impact of mechanical
ventilation on patients, and optimize the ventilation mode of the
ventilator to improve ventilation effects and reduce ventilation
damage.

Furthermore, after pre-calculating personalized parameters using
several respiratory cycles of different individuals, we can also implement
rapid adaptive parameter ventilation based on the hybrid model.
Traditional ventilation mode parameters are generally fixed and
cannot be dynamically adjusted according to the patient’s real-time
respiratory characteristics. However, in the hybrid and other models
and methods mentioned in this article, we can dynamically adapt the
model and estimate the corresponding model parameters according to
the actual data measured at different time intervals of individuals. This

makes the overall approach more personalized and adaptable to the
actual situation of the patient, thereby achieving better results.

5 Conclusion

We have proposed a system for parameter estimation, model
simulation, and evaluation based on actual measured data, and
after carefully comparing different models, we have put forward an
optimal hybrid model valid for various ventilation modes. It may
not only help doctors to better understand the mechanical
characteristics of the respiratory system, but also improve the
ventilation mode of the ventilator, enhance the effect of respiratory
therapy, and provide strong support for the realization of rapid
adaptive parameter ventilation, which is a relevant feature to
improve the safety, effectiveness, and personalization level of
mechanical ventilation.
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TABLE 4 Validation of results based on VC-AC mode case2 and case3 data.

Data Model BIC SSR RMSE Time (s)

case2VCAC1 Eq. 1 1248.1023 1.0847 0.0085 0.2199

Eq. 21 160.5779 1.0075 0.0082 18.9196

best of Eqs 27–29 −4093.9475 0.7587 0.0071 29.5528

Eq. 31 −6729.8034 0.6364 0.0065 164.6210

Eq. 33 −8165.1034 0.5776 0.0062 354.8269

case2VCAC2 Eq. 1 43.8811 1.0010 0.0082 0.2289

Eq. 21 −1070.1428 0.9282 0.0079 0.5648

best of Eqs 27–29 −4286.4003 0.7490 0.0071 0.2439

Eq. 31 −6738.7875 0.6361 0.0065 0.3261

Eq. 33 −8535.8186 0.5635 0.0061 0.6710

case3VCAC1 Eq. 1 6291.3048 1.5182 0.0101 0.2427

Eq. 21 5104.4553 1.4009 0.0097 20.0965

best of Eqs 27–29 −531.4728 0.9609 0.0080 30.1726

Eq. 31 −3296.9257 0.8001 0.0073 100.0014

Eq. 33 −5174.8426 0.7051 0.0069 365.5986

case3VCAC2 Eq. 1 6846.6370 1.5754 0.0102 0.1550

Eq. 21 6359.7085 1.5231 0.0101 0.1769

best of Eqs 27–29 −1166.6333 0.9210 0.0078 0.5751

Eq. 31 −4718.4334 0.7278 0.0070 0.1951

Eq. 33 −5374.2667 0.6958 0.0068 0.2108
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