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Background:Magnetic resonance imaging (MRI) plays a crucial role in diagnosing
anterior disc displacement (ADD) of the temporomandibular joint (TMJ). The
primary objective of this study is to enhance diagnostic accuracy in two
common disease subtypes of ADD of the TMJ on MRI, namely, ADD with
reduction (ADDWR) and ADD without reduction (ADDWoR). To achieve this,
we propose the development of transfer learning (TL) based on Convolutional
Neural Network (CNN) models, which will aid in accurately identifying and
distinguishing these subtypes.

Methods: A total of 668 TMJ MRI scans were obtained from two medical centers.
High-resolution (HR) MRI images were subjected to enhancement through a deep
TL, generating super-resolution (SR) images. Naive Bayes (NB) and Logistic
Regression (LR) models were applied, and performance was evaluated using
receiver operating characteristic (ROC) curves. The model’s outcomes in the
test cohort were compared with diagnoses made by two clinicians.

Results: The NB model utilizing SR reconstruction with 400 × 400 pixel images
demonstrated superior performance in the validation cohort, exhibiting an area
under the ROC curve (AUC) of 0.834 (95% CI: 0.763–0.904) and an accuracy rate
of 0.768. Both LR andNBmodels, with 200× 200 and 400×400 pixel images after
SR reconstruction, outperformed the clinicians’ diagnoses.

Conclusion: The ResNet152 model’s commendable AUC in detecting ADD
highlights its potential application for pre-treatment assessment and improved
diagnostic accuracy in clinical settings.
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Introduction

As the sole craniomandibular joint in humans and the only left-
right joint in the body, temporomandibular joint (TMJ) stands as
one of the most complex joints in the human anatomy (Alomar
et al., 2007). In contemporary society, temporomandibular disorders
(TMD) are becoming increasingly prevalent, affecting the quality of
life for approximately 5%–12% of the population (Dworkin et al.,
1990; Nishiyama et al., 2012), with a higher incidence among women
(Nekora-Azak, 2004). Typically, the disc becomes displaced
anteriorly (Oğütcen-Toller et al., 2002), leading to impaired joint
function, pain, and other symptoms. The two most prevalent forms
of TMJ disc displacement are anterior disc displacement (ADD)
with reduction (ADDWR) and ADDwithout reduction (ADDWoR)
(Bas et al., 2012). Clinicians typically conduct a comprehensive
clinical examination, which includes the assessment of joint sounds,
range of motion, pain patterns, and palpation. Diagnostic imaging,
such as magnetic resonance images (MRI), proves invaluable in
visualizing the disc’s position and confirming the diagnosis
(Limchaichana et al., 2007).

Deep learning (DL) and transfer learning (TL) have
demonstrated significant potential in medicine for diagnosing
diseases, largely due to their capacity to identify complex patterns
within extensive datasets and provide valuable insights for clinical
decision-making. DL algorithms can autonomously learn features
from raw data, achieving high diagnostic accuracy that frequently
surpasses traditional machine learning methods and, in some cases,
even human experts (Asch et al., 2019). TL, on the other hand,
employs pre-trained models that have already learned features from
related tasks, reducing the time and computational resources
necessary for training new models (Choudhary et al., 2023).
Numerous studies have demonstrated the utilization of DL and
TL techniques in the early detection and classification of oral cancers
by analyzing histopathological slides and medical images (Bansal
et al., 2022). Convolutional Neural Networks (CNNs), a pivotal
component of deep learning technology, are designed to extract
intricate and discriminative features from input images by
employing multi-layered convolution operations (Suzuki, 2017).
These extracted features serve as the foundation upon which the
model can make precise determinations, ranging from discerning
the presence or absence of tumors to performing tumor grading and
other complex diagnostic tasks (Truong et al., 2020). Despite notable
advancements, current medical imaging radiomics signatures often
encounter challenges related to anisotropic resolution and limited
voxel statistics (de Farias et al., 2021). To improve the specificity and
sensitivity of radiomics models, it is imperative to generate higher
resolution images. Super-resolution (SR) technology focuses on
enhancing the spatial resolution of digital images derived from
lower-resolution observations (Van Reeth et al., 2012). In recent
years, the integration of DL techniques has propelled SR to achieve
remarkable advancements in the field of medical imaging (Li et al.,
2021). Notably, a recent study conducted by Hossein et al.
(Mohammad-Rahimi et al., 2023) demonstrated the potential of
SR images in enhancing the quality of oral panoramas.

The primary premise of this study is to develop a TL model
utilizing SR reconstruction technique MRI data for the diagnosis of
ADDWR and ADDWoR. Our aim is to enhance diagnostic
efficiency for clinicians through the implementation of this model.

Methods

Patients

This retrospective study’s inclusion criteria and participant
recruitment procedures adhered to the guidelines outlined in the
1964 Helsinki Declaration. This retrospective analysis was approved
by the ethical review board (2023-KY-0256), and informed consent
was waived. The patient registration process is illustrated in Figure 1.
This study included patient samples who underwent TMJ MRI
examinations at the First Affiliated Hospital of Zhengzhou
University from January 2012 to December 2022 and at the First
Affiliated Hospital of Fujian Medical University from October
2018 to December 2022. The exclusion criteria included: (Alomar
et al., 2007): without clear MRI scan (n = 26), (Dworkin et al., 1990),
without clinical data (gender, age, etc.) (n = 17), (Nishiyama et al.,
2012), ADD combined with other lesions (joint disc perforation,
joint mass, etc.) (n = 8), and (Nekora-Azak, 2004) prior treatment of
ADD (conservative treatment or surgical treatment) (n = 35). In
accordance with the sequence of patient examinations, a total of
668 MRI images from the First Affiliated Hospital of Zhengzhou
University were partitioned into two distinct groups: the training
cohort (n = 501) and the test cohort (n = 167). MRI images from the
First Affiliated Hospital of Fujian Medical University were the
validation cohort (n = 125). Simultaneously, 125 MRI images
from the test cohort and 125 MRI images from the validation
cohort were randomly chosen to create a new mixed validation
cohort. This cohort was employed to assess the performance of the
model by incorporating mixed multicenter data for evaluation.

Image acquisition and processing

The First Affiliated Hospital of Zhengzhou University
consistently employs a 3T superconducting magnetic resonance
scanner (Siemens, Germany) along with a TMJ surface coil. In
this study, T2-weighted imaging (T2WI) sequence images were
selected for analysis. The parameters are as follows: oblique
sagittal plane T2WI: TR 2,000 ms, TE 76 ms, FOV 256 mm ×
256 mm. The thickness for the above sequence layers is 3 mm.
Similarly, the First Affiliated Hospital of Fujian Medical University
utilizes a 3T superconducting magnetic resonance scanner (Siemens,
Germany) and a TMJ surface coil. Scanning parameters include:
oblique sagittal plane T2WI: TR 4,000 ms, TE 79 ms, FOV
220 mm × 220 mm. The thickness for the above sequence layers
is 5 mm.

Employing the widely-used MRI oblique sagittal reading
method, oblique sagittal images of open position was selected for
evaluation (Orhan et al., 2021). Based on the position of the
posterior band of the joint disc and the condyle in the open
position, patients were judged to have either ADDWR (posterior
band located anterior to the condylar head in the closed-mouth
position but with a normal disc-condyle relationship in the open-
mouth position) or ADDWoR (posterior band positioned anterior
to the condyle in both the closed-mouth and open-mouth positions).
All MRI image assessments in this study were conducted by two
highly experienced physicians in the imaging department, each
specializing in diagnosing TMD for over 10 years. In the event of
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any disagreement in the diagnosis, a senior imaging physician with
over 30 years of experience in diagnosing TMD will make the
final judgment.

We standardized the preprocessing methodology for all images
acquired from two distinct medical centers. Initially, we employed a
resampling technique on the selected MRI images, adjusting the
pixel dimensions to 1 mm× 1 mm× 1 mm (Huang et al., 2023). This
resampling procedure ensured the preservation of spatial
consistency across images possessing varying resolutions.
Subsequently, we applied a standardization process to the
resampled images, harmonizing the parameters of the two
medical centers of images to conform to a unified standard (Nyúl
et al., 2000). Images were manually selected, ensuring the condyle
was visible and positioned within 1/3 of the image center. To avoid
any potential impact on model recognition, the image size was
reduced to improve training efficiency. The images were cropped to

50 × 50 pixel and 100 × 100 pixel. Building upon the acquired high-
resolution (HR) images, we employ a deep DL network to enhance
the longitudinal resolution by quadrupling the pixel count. First,
Gaussian noise was added to the MRI to reduce the out-plane
resolution with a factor of four to generate a new low-resolution
image. Then, the low-resolution and synthetic HR image pairs were
used to train a lightweight parallel generative adversarial network
(GAN) model. Finally, the trained model was applied to HR by TL.
Consequently, the resulting images are referred to as SR images.

Feature extraction

The model process is depicted in Figure 2. The workflow
employed in this study involved the input of cropped images into
three CNN models (ResNet152, DenseNet201 and GoogLeNet)

FIGURE 1
Flow diagram of the study population. MRI, magnetic resonance images; ADD, anterior disc displacement.

FIGURE 2
Workflow of the study. ADDWR, anterior disc displacement with reduction; ADDWoR, anterior disc displacement without reduction; HR, high-
resolution; SR, super-resolution.
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separately, which, in turn, facilitated the extraction of salient image
features through TL. Following this feature extraction step, our
investigation leveraged two distinct machine learning models: Naive
Bayes (NB) and Logistic Regression (LR). The primary objective was
to meticulously assess and quantify the performance of the model
under scrutiny. The CNN model, which was pre-trained on the
ImageNet dataset, was used for TL. On one hand, the HR image with
pixel dimensions of 50 × 50 and 100 × 100 is inputted into the model
structure. On the other hand, the above two groups of images with
different pixels are subjected to SR reconstruction. The obtained
images with 200 × 200 and 400 × 400 pixel are then input into the
same structure. These HR and SR images serve as the original inputs
for four distinct groups of models. Model training was performed by
updating the network weights using a cross-entropy loss function for
the prediction task. An adaptive moment estimation optimizer was
implemented with a learning rate of 0.1 for 30 epochs using a batch
size of 64. The network parameters were fixed after training was
completed and the fixed model was used as a feature extractor.
Finally, DL features were extracted from the penultimate layer of the
fine-tuned model for each patient in the training and validation
cohorts. The model was subsequently assessed visually to
comprehend its functioning. The classification activation heatmap
was employed to emphasize the most crucial anatomical regions
utilized by the model when categorizing images as ADDWR and
ADDWoR. Classification activation heatmaps are heat gradient
maps that employ warmer colors to indicate regions of greater
significance in the classification process.

Feature selection

In this study, the Mann-Whitney U test and feature screening
were conducted on all DL features. Only features with p < 0.05 were
considered for further analysis. Spearman’s rank correlation
coefficient was employed to assess the correlation between
features with high repeatability. To avoid redundancy, only one
feature from any pair exhibiting a correlation coefficient greater than
0.9 was retained (Wang et al., 2021). In order to maximize the
informative value of the feature set, a greedy recursive deletion
strategy was employed for feature filtering (Farahat et al., 2013). The
Least Absolute Shrinkage and Selection Operator (LASSO)
regression model was utilized to construct a signature based on
the discovery dataset. LASSO regression shrinks all regression
coefficients towards zero and sets many coefficients of
uncorrelated features to exactly zero. The optimal regularization
weight λ was determined using a minimum criterion and 10-fold
cross-validation. After LASSO feature screening, the final features
were input into machine learning models, including LR and NB for
constructing the model.

Comparison of DL model and clinicians’
diagnostic performance

Two oral and maxillofacial clinicians were selected, one with
3 years of experience and the other with 5 years. Subsequently, the
MRI images of the test cohort were entrusted to these two clinicians
for evaluation. This training encompassed the identification and

diagnosis of ADDWR and ADDWoR from oblique sagittal images
obtained from SR-processed MRI scans. Subsequently, the two
clinicians participated in the training session and applied their
acquired knowledge to diagnose the disease within the test
cohort. Notably, the test cohort consisted of 167 oblique sagittal
MRI images that had undergone SR processing. It is important to
note that these 167 images in the test cohort were distinct from those
in the training cohort.

Statistical analysis

The predictive power of NB and LR models was assessed
using receiver operating characteristic (ROC) curves; the area
under the ROC curve (AUC) was calculated and the balanced
sensitivity and specificity of the cut-off point giving the
maximum value of the Youden index was calculated. The 95%
confidence interval (CI) of AUC was calculated using the
bootstrap method (1,000 intervals). The AUC ranges from
0.5 to 1.0 and serves as a metric for evaluating the
discriminative power of a test. An AUC value of 1.0 indicates
a perfect discriminant test, while an AUC ranging from 0.8 to
1.0 signifies a good discriminant test. In cases where the AUC
falls between 0.6 and 0.8, the discriminant test is considered
moderate. However, if the AUC ranges from 0.5 to 0.6, the
discriminant test is regarded as poor (Weinstein et al., 1980;
Meehan et al., 2022). Statistical analyses were performed using
SPSS software (version 21.0). Statistical significance was defined
as a two-sided p ≤ 0.05.

Sensitivity, specificity, and accuracy were computed to evaluate
the performance of the classification model. The definitions are as
follows: where TP (true positives) and TN (true negatives) represent
correct classifications, while FP (false positives) and FN (false
negatives) indicate incorrect classifications.

Sensitivity � TP

TP + FN

Specificity � TN

TN + FP

Accuracy � TP + TN

TP + FN + FP + TN

Results

Patient characteristics

A total of 391 patients, encompassing 668 TMJs, were identified
in the First Affiliated Hospital of Zhengzhou University. Among
these, 295 patients with a mean age of 30.31 ± 16.14 (age range of
11–90 years, 45 males, 250 females) and 501 MRI images were
selected as the training cohort, while 96 patients with a mean age of
30.75 ± 16.04 (age range of 12–70 years, 10 males, 86 females) and
167 MRI images were chosen as the test cohort. The First Affiliated
Hospital of Fujian Medical University contributed a total of
96 patients with a mean age of 25.90 ± 10.63 (age range of
12–68 years, 19 males, 77 females) and 125 MRI images for the
validation cohort.
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Model comparation

Table 1, Table 2 and Supplementary Tables S1–S4 summarize
the performance of NB and LR models utilizing TL based on
ResNet152, DenseNet201 and GoogLeNet separately. The
training and validation cohort’s ROC and AUC with 95% CI
of NB and LR models are provided in Figure 3, Figure 4 and
Supplementary Figures S1–S4. The mixed validation cohort’s
ROC and AUC with 95% CI of NB and LR models based on
ResNet152 are provided in Table 1 and Table 2. Between the
models that compared the input of four different types of images,
the validation cohort demonstrated superior performance for the

400 × 400 pixel model utilizing SR reconstruction based on
ResNet152 with the NB algorithm. The AUC of this model
reached 0.834 (95% CI: 0.763–0.904), accompanied by an
accuracy rate of 0.768. The next step of performance
evaluation was conducted for the ResNet152 model. Figure 5
showcases the confusion matrix and histogram of predicted
outcomes for each patient within the NB model groups using
the four types of images, alongside their corresponding true
outcomes. Furthermore, Figure 6 presents the comparative
results relative to the LR model. Supplementary Figures S5, S6
presents the comparative results based on mixed
validation cohort.

TABLE 1 Performance measures in Naive Bayes models of two different pixels for images based on validation cohort (ResNet152).

Type Task Accuracy Sensitivity Specificity AUC 95% CI

HR 50 × 50 Training cohort 0.772 0.767 0.787 0.845 0.807–0.882

Validation cohort 0.640 0.400 0.900 0.647 0.550–0.744

Mixed validation cohort 0.620 0.598 0.634 0.628 0.558–0.698

SR 200 × 200 Training cohort 0.739 0.706 0.823 0.837 0.798–0.876

Validation cohort 0.696 0.769 0.617 0.701 0.607–0.794

Mixed validation cohort 0.656 0.639 0.671 0.679 0.611–0.747

HR 100 × 100 Training cohort 0.812 0.822 0.787 0.864 0.828–0.900

Validation cohort 0.680 0.662 0.700 0.719 0.631–0.807

Mixed validation cohort 0.680 0.670 0.686 0.717 0.652–0.782

SR 400 × 400 Training cohort 0.932 0.919 0.965 0.988 0.981–0.994

Validation cohort 0.768 0.938 0.583 0.834 0.763–0.904

Mixed validation cohort 0.700 0.856 0.601 0.800 0.744–0.857

HR, high-resolution; SR, super-resolution; AUC, area under ROC, curve; CI, confidence interval; ROC, receiver operating characteristic.

TABLE 2 Performance measures in logistic regression models of two different pixels for images based on validation cohort (ResNet152).

Type Task Accuracy Sensitivity Specificity AUC 95% CI

HR 50 × 50 Training cohort 0.733 0.675 0.879 0.850 0.814–0.887

Validation cohort 0.728 0.769 0.683 0.728 0.636–0.820

Mixed validation cohort 0.672 0.701 0.654 0.691 0.625–0.757

SR 200 × 200 Training cohort 0.768 0.747 0.823 0.845 0.806–0.883

Validation cohort 0.672 0.923 0.400 0.697 0.605–0.789

Mixed validation cohort 0.672 0.526 0.770 0.661 0.592–0.730

HR 100 × 100 Training cohort 0.826 0.856 0.752 0.873 0.839–0.907

Validation cohort 0.688 0.877 0.483 0.722 0.634–0.810

Mixed validation cohort 0.696 0.536 0.797 0.720 0.656–0.783

SR 400 × 400 Training cohort 0.960 0.953 0.979 0.995 0.990–0.999

Validation cohort 0.768 0.923 0.600 0.820 0.746–0.895

Mixed validation cohort 0.704 0.784 0.654 0.776 0.717–0.836

HR, high-resolution; SR, super-resolution; AUC, area under ROC, curve; CI, confidence interval; ROC, receiver operating characteristic.
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Classification activation heatmap

Figure 7 depicts the class activation maps for the four types of
image pixel. The red color on the heatmap represents the most
influential area, while the blue color signifies the least influential area
in the decision-making process. It is evident that in the 400 ×
400 pixel image post SR reconstruction, the mandibular condyle
serves as the reference point, with the surrounding regions being
identified as significant areas.

The results of test cohort

Table 3 demonstrates that the AUC of both NB and LR models,
with pixel of 200 × 200 and 400 × 400 pixel images after SR
reconstruction, surpass those of the two clinicians. Specifically,
the AUC for the NB model with 400 × 400 pixel image after SR
reconstruction technology is 0.754 (95% CI: 0.666–0.842), indicating
moderate performance. However, the AUC for the LR with 400 ×
400 pixel image after SR reconstruction technology slightly
decreases to 0.743 (95% CI: 0.653–0.834). Furthermore, the AUC
for the 200 × 200 pixel image reconstructed using SR is even lower.
Notably, the AUC values for the 50 × 50 and 100 × 100 pixel images
interpreted by the two clinicians show minimal disparity.

Discussion

TMD encompass a group of conditions involving pain and
dysfunction of the TMJ, masticatory muscles, and surrounding
structures. An increasing number of studies have discovered that
the disorder progressively results in emotional and psychological
disturbances (Sójka et al., 2019), negatively impacting patients’
quality of life (Tjakkes et al., 2010). ADD represents a subgroup
of TMD and is one of the most common TMD. It occurs when the
articular disc, a fibrocartilaginous structure situated between the
mandibular condyle and the temporal bone, becomes displaced
forward relative to the condyle. ADD may lead to osteoarthritis,
joint ankylosis, and reduced condylar height (Zhuo et al., 2015),
potentially affecting mandibular development or causing
mandibular asymmetry.

MRI serves as a non-invasive imaging modality, offering
valuable insights into the soft tissues of the TMJ, such as the
articular disc, ligaments, and surrounding muscle tissue. In
ADDWoR, the joint space may appear narrower and the condyle
may be situated more anteriorly, while in ADDWR, the joint space
and condyle position exhibit a more normal appearance during
mouth opening. Consequently, by selecting MRI images of the
patient’s oral opening position for disease diagnosis, clinicians
can differentiate between these two types of ADD, thereby

FIGURE 3
Receiver operating characteristic (ROC) curves of the different pixel in the Naive Bayes models (ResNet152). (A) 50 × 50 pixel images (HR). (B) 200 ×
200 pixel images (SR). (C) 100 × 100 pixel images (HR). (D) 400 × 400 pixel images (SR). AUC, area under ROC curve; HR, high-resolution; SR, super-
resolution.
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FIGURE 4
Receiver operating characteristic (ROC) curves of the different pixel in the Logistic Regressionmodels (ResNet152). (A) 50 × 50 pixel images (HR). (B)
200× 200 pixel images (SR). (C) 100 × 100 pixel images (HR). (D) 400× 400 pixel images (SR). AUC, area under ROC curve; HR, high-resolution; SR, super-
resolution.

FIGURE 5
Confusion matrix and sample prediction histogram in the Naive Bayes models of different pixel images (ResNet152) (Validation cohort). (A) 50 ×
50 pixel images (HR). (B) 200 × 200 pixel images (SR). (C) 100 × 100 pixel images (HR). (D) 400 × 400 pixel images (SR). ADDWR: anterior disc
displacement with reduction; ADDWoR, anterior disc displacement without reduction; HR, high-resolution; SR, super-resolution.
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supporting the development of subsequent individualized and
tailored treatment plans, as well as predicting the prognosis of
TMD (Ahmad et al., 2009). The application of the diagnostic
model developed in this study has the potential to significantly
enhance the diagnostic accuracy and efficiency of physicians in
clinical practice. By leveraging the model’s capabilities, clinicians
may experience improved accuracy in identifying TMJ anterior
displacement conditions, namely, ADDWR and ADDWoR.
Additionally, the integration of this model into clinical workflows

has the potential to mitigate the time-consuming process of
manually interpreting MRI films.

In this study, a total of 793 TMJs from 487 patients, spanning
two hospitals in southern and northern China. The diverse and
representative patient sample increases the potential for
generalizability of the study’s results to a broader population.
Simultaneously, the multi-center data not only reduces the risk of
overfitting but also bolsters confidence in the model’s ability to
generalize to new, unseen data (Falconieri et al., 2020). Referring to

FIGURE 6
Confusion matrix and sample prediction histogram in the Logistic Regression models of different pixel images (ResNet152) (Validation cohort). (A)
50 × 50 pixel images (HR). (B) 200 × 200 pixel images (SR). (C) 100 × 100 pixel images (HR). (D) 400 × 400 pixel images (SR). ADDWR: anterior disc
displacement with reduction; ADDWoR, anterior disc displacement without reduction; HR, high-resolution; SR, super-resolution.

FIGURE 7
Classification activation heatmap. ADDWR, anterior disc displacement with reduction; ADDWoR, anterior disc displacement without reduction; HR,
high-resolution; SR, super-resolution.
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Tables 1, 2, the comparison demonstrates that there is no significant
disparity in the model’s performance evaluation between validation
cohort and mixed validation cohort. Our inference is that following
the resampling and standardization procedures, the distinctions
observed in the multi-center imaging data appear to exert
minimal influence on the model’s performance.

DL models have been employed for the identification of TMD.
Jung et al. (2023) utilized a TL model to classify images of normal
TMJs and osteoarthritis, and their results demonstrated the model’s
effectiveness in recognizing osteoarthritis. Choi et al.’s research (Choi
et al., 2021) indicates that image-based artificial intelligence models
for diagnosing TMJ osteoarthritis offer diagnostic performance
comparable to that of oral and maxillofacial radiology experts,
suggesting that this model can play a crucial role in most clinics
lacking such experts. However, there are currently limited reports on
the application of SR reconstruction technology in the diagnosis of
TMD. In the SR-processed 200 × 200 pixel group and 400 × 400 pixel
group, the image resolution has been enhanced fourfold, resulting in
finer texture and sharper edges. Upon analyzing the feature extraction
outcomes of this image set, the NB model demonstrated superior
performance. Comparing these results with those obtained without
super-resolution reconstruction, it is observed that the AUC of the
200 × 200 pixel group, despite using SR technology, did not exhibit
significant improvement. However, in the 400 × 400 pixel group, the
AUC value increased from 0.719 to 0.834, signifying a notable
enhancement from a moderate to a good performance level.
Furthermore, the model’s confusion matrix and histogram of
prediction results exemplify the ideal diagnostic effect. NB offers
computational efficiency and the ability to effectively handle high-
dimensional features extracted by DL models, resulting in faster
training and inference times while simplifying complex
representation processing (Singh et al., 2017). Comparing the
models constructed using the four types of pixel collectively, it is
evident that the AUC value of the 100 × 100 pixel group consistently
surpasses that of the 50 × 50 pixel group. This finding implies that
larger image pixel offers enhanced resolution and finer details, thereby
aiding DL algorithms in capturing underlying patterns and features
within the data more effectively (Cha et al., 2017). Moreover, the
utilization of larger image pixel enables CNN to extract a more
extensive range of diverse and discriminative features, empowering
models to learn from richer datasets (Mopuri et al., 2018).

Within the 400 × 400 pixel group, which has undergone SR
reconstruction, the categorical activation heatmaps of the two
samples (ADDWR and ADDWoR, respectively) exhibit more
precise focus regions. This improved accuracy can be attributed
to the utilization of SR-processed 400 × 400 pixel groups, which offer
the model more comprehensive and detailed information.
Consequently, the model can better prioritize the most relevant
and discriminative features within the image (Dusmanu et al., 2019).

In predicting ADD classification, the ROC of the model ranks
higher than two clinicians when comparing a ResNet152 model
based on DL to trained clinicians. In terms of specificity, the
ResNet152 model performs exceptionally well and surpasses that
of the clinicians. High specificity models can make the diagnosis of
TMD more effective. Since clinicians demonstrate higher sensitivity
in determining the presence or absence of ADD, the appropriate use
of these machines by clinicians could improve diagnostic accuracy.

The novelty of this article resides in the utilization of advanced
techniques such as deep transfer learning and super-resolution
reconstruction within the context of ADD diagnosis, thereby
enhancing the efficiency of model evaluation. Significantly, this
study presents advancements in various aspects compared to prior
research, including enhancements in sample selection, data
preprocessing, and model construction. However, our research,
while promising, is not without its limitations. Firstly, the current
system’s capabilities are confined solely to recognizing ADD, with no
capacity to identify the relatively infrequent instances of posterior and
lateral displacement frequently encountered in clinical practice.
Addressing this limitation necessitates an expansion of our dataset
to encompass a more comprehensive array of TMJ images. We are
committed to this pursuit and intend to develop a multi-classification
model, empowered by DL, that can aptly discern and categorize
various forms of TMJ displacement. Secondly, we acknowledge that
our study, though enriched by data from two medical centers, was
restricted by the limited number of images employed for model
training. Amplifying the size of our dataset, through the
incorporation of more diverse images, is a logical next step that
promises to enhance the model’s overall performance. Additionally,
we recognize that our current model’s scope is confined to the analysis
of a single sagittal MRI image. Nevertheless, it is crucial to underscore
that a substantial reservoir of valuable information is embedded
within the coronal images. Hence, our future research endeavors

TABLE 3 Performance measures in Naive Bayes and logistic regression models for test cohort SR images, compared with judgments by oral and maxillofacial
clinicians (ResNet152).

Type Accuracy (%) Sensitivity (%) Specificity (%) AUC 95% CI

LR 200 × 200 0.671 0.636 0.761 0.711 0.625–0.798

LR 400 × 400 0.695 0.678 0.739 0.743 0.653–0.834

NB 200 × 200 0.653 0.595 0.804 0.707 0.622–0.793

NB 400 × 400 0.713 0.694 0.761 0.754 0.666–0.842

Clinician I 200 × 200 0.509 0.543 0.496 0.520 0.422–0.618

Clinician I 400 × 400 0.551 0.500 0.570 0.535 0.437–0.633

Clinician II 200 × 200 0.713 0.810 0.457 0.633 0.534–0.732

Clinician II 400 × 400 0.755 0.868 0.457 0.662 0.563–0.761

LR, logistic regression; NB, naive bayes; AUC, area under ROC, curve; CI, confidence interval; ROC, receiver operating characteristic.
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will entail the development of advanced DL models capable of
comprehensively recognizing and interpreting all image orientations.

Conclusion

In this investigation, we conducted a rigorous analysis of SR
reconstruction applied to MRI images obtained from patients
diagnosed with ADD of the TMJ. Through a meticulous
comparative analysis of various models, our findings elucidate a
notable trend: the SR reconstruction using 400 × 400 pixel group, in
conjunction with the NB model, yielded superior performance
outcomes. SR reconstruction, as exemplified by our investigation,
represents an innovative approach that transcends the realm of MRI
images. Indeed, this technique bears the potential to revolutionize
the efficiency of diverse medical imaging modalities and, more
significantly, facilitate the seamless translation of cutting-edge
technology into the intricate landscape of clinical practice.
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