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Background: The triceps surae muscle plays important roles in fundamental
human movements. However, this muscle is relatively unresponsive to
resistance training (difficult to hypertrophy) but prone to atrophy with inactivity
compared with other muscles. Thus, identifying an effective training modality for
the triceps surae is warranted. This study compared triceps surae muscle
hypertrophy after standing/knee-extended versus seated/knee-flexed
plantarflexion (calf-raise) training, where the gastrocnemius is lengthened and
shortened, respectively.

Methods: Fourteen untrained adults conducted calf-raise trainingwith one leg in a
standing/knee-extended position and the other leg in a seated/knee 90°-flexed
position at 70% of one-repetition maximum. Each leg performed 10 repetitions/
set, 5 sets/session, 2 sessions/week for 12 weeks. Before and after the
intervention, magnetic resonance imaging scans were obtained to assess
muscle volume of each and the whole triceps surae.

Results: Muscle volume significantly increased in all three muscles and the whole
triceps surae for both legs (p ≤ 0.031), except for the gastrocnemiusmuscles of the
seated condition leg (p = 0.147–0.508). The changes in muscle volume were
significantly greater for the standing than seated condition leg in the lateral
gastrocnemius (12.4% vs. 1.7%), medial gastrocnemius (9.2% vs. 0.6%), and
whole triceps surae (5.6% vs. 2.1%) (p ≤ 0.011), but similar between legs in the
soleus (2.1% vs. 2.9%, p = 0.410).

Conclusion: Standing calf-raise was by far more effective, therefore
recommended, than seated calf-raise for inducing muscle hypertrophy of the
gastrocnemius and consequently the whole triceps surae. This result and similar
between-condition hypertrophy in the soleus collectively suggest that training at
long muscle lengths promotes muscle hypertrophy.
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Introduction

The triceps surae muscle is the main plantarflexor and plays
important roles in fundamental human movements such as walking
(Ericson et al., 1986), running (Willer et al., 2021) and jumping (Hof
et al., 2002). Since the triceps surae also functions as a stabilizer of
our body (Honeine et al., 2013), the fall risk is related to the size/
strength of the triceps surae (Allison et al., 2018; Epro et al., 2018).
However, this muscle is relatively unresponsive to resistance
training (difficult to hypertrophy) (Weiss et al., 1988; Ferri et al.,
2003) but prone to atrophy with inactivity (Akima et al., 2001;
Alkner and Tesch, 2004) compared with other muscles. Thus,
enhancing our knowledge of effective training modalities for the
triceps surae will be highly useful in sports and clinical settings, and
will consequently benefit a wide range of population.

The triceps surae consists of the lateral gastrocnemius (LG),
medial gastrocnemius (MG), and soleus (SOL). The LG and MG are
biarticular muscles crossing the knee joint, and are lengthened more
in a knee-extended than knee-flexed position (Delp et al., 2007;
Wakahara et al., 2007) (Figure 1). Recent studies (Maeo et al., 2021;
Maeo et al., 2023) have shown that, by manipulating an angle of one
of the two joints the associated biarticular muscles cross, training-
induced muscle hypertrophy is greater after training at long than
short muscle lengths. For example, hamstring muscle hypertrophy

was greater after seated (hip-flexed) than prone (hip-extended) leg
curl training (Maeo et al., 2021). In addition, triceps brachii muscle
hypertrophy was greater after overhead (shoulder-flexed) than push
down (shoulder-extended) cable elbow extension training (Maeo
et al., 2023). Based on these, triceps surae muscle hypertrophy may
be greater after standing than seated calf-raise training. Both
standing and seated calf-raise are common exercises to train the
triceps surae, and have been often implemented alone (Carson et al.,
2010; Gavanda et al., 2020; Kudo et al., 2020) or in combination
(Schoenfeld et al., 2020; Kataoka et al., 2022; Van Every et al., 2022)
in previous studies. However, no study has compared their
hypertrophic effects through training interventions. Thus,
clarifying their comparative hypertrophic effects will provide
simple yet highly practical information for developing evidence-
based training programs for the triceps surae, and consequently
other muscles as well.

The purpose of this study was to compare triceps surae muscle
hypertrophy after standing (more stretched) versus seated (less
stretched) calf-raise training. To this end, we designed a 12-week
training intervention study using a within-person comparison
model (Maeo et al., 2021; Maeo et al., 2023). This model is
powerful when comparing hypertrophic effects of two training
modalities by largely reducing the potential influence of between-
person variability in gene expression and other factors (e.g., habitual

FIGURE 1
Postures of the standing and seated calf-raise exercises and operating ranges of each triceps surae muscle on the normalized force–length curve
during the exercises. These were obtained using the OpenSim Gait 2392 model (Delp et al., 2007), with the knee joint 0° and 90° for the standing and
seated conditions, respectively, and the ankle joint angle ranging from 20° dorsiflexed to 30° plantarflexed positions for both conditions. It can be clearly
seen that the lateral andmedial gastrocnemius (LG andMG) operate at longer muscle lengths in the standing than seated condition, while there is no
difference between the conditions in the soleus (SOL).
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diet and activity/sleep) on the results obtained (MacInnis et al.,
2017). This study solely focused on muscle hypertrophy because
training effects on muscle strength and other functional
performances may be confounded (e.g., by the cross-education
effect) in this comparison model (MacInnis et al., 2017). We
hypothesized that triceps surae muscle hypertrophy would be
greater after standing than seated calf-raise training.

Methods

Participants and overview

Fourteen untrained healthy adults (7 females/males, age:
23.3 ± 2.4 years, height: 167.3 ± 7.9 cm, body mass: 56.6 ±
19.7 kg) participated in this study, which was approved by the
Ethics Committee of Ritsumeikan University (BKC-LSMH-2019-
019). We did not control female participants’ menstrual cycle.
This was because of 1) no apparent effect of its cycle on training-
induced muscle hypertrophy (Colenso-Semple et al., 2023) and 2)
our within-person comparison approach as explained above
(MacInnis et al., 2017). Written informed consent was
obtained from each participant. They performed calf-raise
training with one leg in a standing/knee-extended position
(Standing-Leg) and the other leg in a seated/knee 90°-flexed
position (Seated-Leg). Before and after intervention of
12 weeks, magnetic resonance imaging (MRI) scans were
obtained to assess muscle volume, the gold-standard muscle
size measure (Cruz-Jentoft et al., 2010), of each and the whole
triceps surae (Whole-TS).

Training program

Each leg was assigned to Standing-leg or Seated-leg with the
dominant and non-dominant legs counterbalanced, and trained
unilaterally using standing (IMH703, Coming Health Tech,
Qingdao, China) and seated (GSCR349, Bodysolid, Forest Park,

Illinois, United States) calf-raise machines. Participants were
instructed to place/keep their foot in a neutral position (Figure 2)
to avoid potential confounding influence of foot positioning (Nunes
et al., 2020). Following warm-up repetitions at 50% (x10) and 80%
(x5) of each session’s training load (detailed below), participants
performed the standing or seated calf-raise 10 repetitions per set for
5 sets, taking 2 s for each of the concentric/lifting and eccentric/
lowering phases with the guide of a metronome (60 bpm). This
duration/tempo was chosen so that the exercises were performed in
a controlled manner (Maeo et al., 2021; Maeo et al., 2023). Two-min
rest intervals were taken in between sets. After training one leg
(5 sets), the other leg was trained, the order of which was switched
every session. Training was conducted twice per week on non-
consecutive days for 12 weeks. Training set was gradually increased
from 3, 4, and 5 sets at the first, second, and third sessions,
respectively, using a consistent load of 70% of one-repetition
maximum (1RM) measured pre-training. At least one examiner
always supervised the training sessions, provided verbal
encouragement, and corrected the joint positions and/or
movement speed when necessary. The examiner also assisted/
spotted the participants when they could no longer repeat the
repetitions up to 10 in each set. If the participants could
complete all the prescribed protocol at the third session and
thereafter without the examiner’s assistance, +5% of 1RM was
added at the subsequent sessions, with the load of the unloaded
machines considered for the load calculation. The above training
protocol was based on the ACSM guidelines (ACSM, 2009; Garber et
al., 2011) and our previous studies (Maeo et al., 2021; Maeo et al.,
2023) on other muscles that found typical/greater hypertrophy
compared to the values reported in their relevant literature.

MRI

Longitudinal relaxation time-weighted cross-sectional MRI
scans were obtained for each leg using body array and spine coils
(Body 18 and CP Spine Array Coil, Siemens Healthineers, Erlangen,
Germany) with the following basic parameters: field of view, 200 ×
200 mm; slice thickness and gap, 5 mm; voxel size, 0.39 × 0.39 ×
5 mm; TR, 700 ms; TE, 10 ms, number of slices, 20 × 2 blocks.
Participants lay supine with their legs extended and muscles relaxed
in a 3-T magnet bore (MAGNETOM Skyra, Siemens Healthineers,
Germany).

Images were analyzed by using image analysis software (Horos,
v3.3.6, Horos Project), with the MRI data anonymized and
investigators blinded to the training conditions. Anatomical
cross-sectional areas (ACSAs) of the individual triceps surae were
manually outlined in every other image from the most proximal to
the most distal image in which the muscle was visible. ACSAs for the
skipped images and gaps were estimated based on linear
interpolation between the images in which ACSAs were outlined.
The volume of individual muscle was determined by summing all
ACSAs for that muscle multiplied by the slice thickness. TheWhole-
TS volume was calculated by summing the volumes of the individual
muscles. Intra-rater repeatability for measuring muscle volume of
each muscle was assessed on eight legs. The coefficient of variation
(CV) was 9.8%, 2.2%, and 1.8% for the LG, MG, and SOL,
respectively.

FIGURE 2
Pictures of standing (A) and seated (B) calf-raise training,
targeting the left and right leg, respectively.
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Statistical analysis

Descriptive data are presented as mean ± SD. All data were
analyzed using SPSS software (version 28.0, IBM, Armonk, New
York, United States). Statistical significance was set at p < 0.05.
Males and females were analyzed together because training-induced
muscle hypertrophy is known to be similar between sexes (Roberts
et al., 2020) and separate analyses largely reduce statistical power
(MacInnis et al., 2017). We ensured independence of observations
(each participant was only counted as one observation in each
condition). Normality was confirmed for all dataset by the Shapiro-
Wilk test. A two-way repeated-measures ANOVA (time×leg) was
used for a comparison of muscle volume for each muscle and the
Whole-TS. Homoscedasticity and sphericity was checked by

scatterplots and Mauchly’s test in ANOVA, respectively, and p
values were modified with Greenhouse–Geisser correction when
necessary. When a significant interaction was found, then post hoc
tests were conducted. Specifically, a paired t-test was used to test the
difference between the pre- and post-training values within each leg.
Additionally, absolute change values were also calculated and
compared between legs by using an unpaired t-test. Effect sizes
of between-condition differences were calculated as Cohen’s d
values based on absolute change values, and were interpreted as
trivial <0.2; small 0.2–0.49; moderate 0.5-0.79; and large ≥0.8
(Cohen, 1988). Finally, their bootstrap 95% confidence interval
(5,000 samples, bias-corrected and accelerated) was assessed for
each leg by using estimation statistics (Ho et al., 2019) to improve
statistical inference.

FIGURE 3
Muscle volume before and after the training and its change. In each subfigure/muscle(s), the raw data is plotted on the upper axes for the standing (A)
and seated (B) conditions; each paired set of observations at Pre and Post is connected by a line. On the lower axes, each pairedmean difference is plotted
as a bootstrap sampling distribution. Mean differences are depicted as dots with horizontal dashed lines; 95% confidence intervals are indicated by the
ends of the vertical error bars. ***p < 0.001, **p < 0.01 and *p < 0.05 difference between times (pre vs. post). ##p < 0.01 and #p < 0.05 difference
between conditions (legs). LG, lateral gastrocnemius; MG, medial gastrocnemius; SOL, soleus; Whole-TS, whole triceps surae.
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Results

Significant time×leg interactions were found in the muscle volume
of the LG (p = 0.001), MG (p = 0.002), and Whole-TS (p = 0.011), but
not in the SOL (p = 0.411) which albeit had a main effect of time (p =
0.031). Paired t-tests within each leg for the LG, MG, andWhole-TS, as
well as the main effect of time for the SOL, revealed that muscle volume
significantly increased in all three muscles and the Whole-TS for both
legs (p ≤ 0.031), except for the LG and MG of the Seated-Leg (p =
0.147–0.508) (Figure 3). The changes in muscle volume were
significantly greater for the Standing-Leg than Seated-Leg in the LG
(12.4% vs. 1.7%, p= 0.001, Cohen’s d= 1.53 [large]),MG (9.2% vs. 0.6%,
p = 0.002, d = 1.58 [large]) andWhole-TS (5.6% vs. 2.1%, p = 0.011, d =
0.88 [large]), but similar between legs in the SOL (2.1% vs. 2.9%, p =
0.410, d = 0.2 [trivial]) (Figures 3, 4).

Discussion

The main finding of this study was that muscle hypertrophy of
the gastrocnemius, and consequently the Whole-TS, was
significantly greater after standing than seated calf-raise training,
indicating that training at long muscle lengths promotes muscle
hypertrophy. Furthermore, no significant hypertrophy was found in
the gastrocnemius after seated calf-raise training. This suggests that
training at short muscle lengths could result in no/negligible
hypertrophy of the otherwise trained/hypertrophied muscles.

To the authors’ knowledge, this is the first study to reveal changes in
MRI-measured muscle volume for each and the Whole-TS after calf-
raise training. Importantly, the results clearly showed that muscle
hypertrophy was greater after standing than seated calf-raise
training, indicating greater hypertrophic effects of training at long
muscle lengths. While beyond the scope of this study, potential
mechanisms for greater hypertrophy after training at long muscle
lengths, examined using isometric or traditional (involving both
concentric/eccentric) exercises, include greater muscle hypoxia/
metabolic stress (Kooistra et al., 2008), IGF-1 expression (McMahon

et al., 2014), and muscle damage (Allen et al., 2018). These alone or in
combination could promote muscle hypertrophy/regeneration
(Wackerhage et al., 2018). Additionally, other studies using
electromyography (Price et al., 2003; Arampatzis et al., 2006;
Wakahara et al., 2007), ultrasonography (Kassiano et al., 2023a), and
functional MRI (Price et al., 2003) showed that the LG and/or MG are
more activated when isometric or traditional plantarflexion/calf-raise
exercise is performed in a knee-extended position. These would
collectively explain why standing calf-raise training produced greater
hypertrophy of the gastrocnemius and consequently the Whole-TS,
compared to seated calf-raise training.

Interestingly, there were no significant changes in the gastrocnemius
muscle volumes after seated calf-raise training. Among the studies that
conducted training at short muscle lengths, some reported small yet
significant hypertrophy (McMahon et al., 2014; Maeo et al., 2021; Maeo
et al., 2023), but others found no significant changes in muscle size
(Noorkoiv et al., 2014; Kassiano et al., 2023b). No significant hypertrophy
in the previous two studies (Noorkoiv et al., 2014; Kassiano et al., 2023b)
could be at least partly due to their relatively short training periods
(6–8 weeks). However, this study adopted a training period of 12 weeks,
and therefore our result is less likely attributed to the lack/shortness of
training period. Rather, no significant hypertrophy in the previous studies
(Noorkoiv et al., 2014; Kassiano et al., 2023b) and this studymay be partly
attributable to the fact that all studies targeted antigravity muscles of the
legs (the triceps surae or quadriceps), which are known to be less prone to
hypertrophy (Usui et al., 2016; Maeo et al., 2018) than other muscles
(Kohiruimaki et al., 2019; Maeo et al., 2021; Maeo et al., 2023), likely due
to being habitually activated in daily activities (Folland and Williams,
2007). Thus, while there are some differences among studies in the
methodologies adopted, this study provides the first convincing evidence
that training at short muscle lengths could lead to no/negligible
hypertrophy even after 12 weeks of training, in other words could
“minimize” muscle hypertrophy.

This study has some limitations. First, we did not set a control
group. However, the CV of intra-rater repeatability for measuring
muscle volume was 9.8%, 2.2%, and 1.8% for the LG, MG, and SOL,
respectively. The first two values, especially for the MG, were smaller
than the significant between-condition differences in the LG (12.4%
vs. 1.7%) and MG (9.2% vs. 0.6%). Furthermore, the CV for the SOL
was smaller than the significant hypertrophy of both conditions
(2.1% vs. 2.9%). Given that we analyzed the data in a blinded/
anonymized manner, the findings obtained here would be robust/
unchanged even if we had a control group. The somewhat higher CV
for the LG than the other two muscles may be due to its small size
(Figure 3). Such information may be useful when selecting which
muscle to analyze within the triceps surae (i.e., MG or SOL may be
better) when any muscle can be analyzed depending on a research
purpose. Additionally, no functional data is available in this study.
As mentioned earlier, this study prioritized muscle size
measurement/comparison. Therefore, we used the within-person
comparison model, which may not be best suited for comparisons of
functional performances (MacInnis et al., 2017). Because muscle
strength and power are strongly related to muscle size (Kordi et al.,
2020; Maden-Wilkinson et al., 2020; Balshaw et al., 2021),
improvements in functional performances would have been also
better for the standing vs. seated calf-raise training. Nevertheless,
more studies are needed to directly investigate the effect of standing
vs. seated calf-raise training on various functional performances.

FIGURE 4
The summary in percentage change based on themean changes
for each muscle and the whole triceps surae. ***p < 0.001, **p <
0.01 and *p < 0.05 difference between times (pre vs. post). ##p <
0.01 and #p < 0.05 difference between conditions (legs). LG,
lateral gastrocnemius; MG, medial gastrocnemius; SOL, soleus;
Whole-TS, whole triceps surae.
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Conclusion

The degrees of muscle hypertrophy of the triceps surae were
relatively small (~2–6%), as previously reported, compared to other
muscle groups (e.g., +9–20% in the hamstrings and triceps brachii,
Maeo et al., 2021; Maeo et al., 2023) after 12 weeks of training.
However, we found a clear difference in the hypertrophic responses
after standing vs. seated calf-raise training. Specifically, standing
calf-raise was by far more effective than seated calf-raise for inducing
muscle hypertrophy of the gastrocnemius and consequently the
whole triceps surae (Cohen’s d = 0.88–1.58 [large]). Considering the
limited hypertrophic response of the triceps surae and its proneness
to atrophy with inactivity, the finding of this study will be readily
useful in sports and clinical settings in maximizing hypertrophy and
minimizing atrophy of the triceps surae.
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