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Electroencephalography (EEG) serves as a diagnostic technique for measuring
brain waves and brain activity. Despite its precision in capturing brain electrical
activity, certain factors like environmental influences during the test can affect
the objectivity and accuracy of EEG interpretations. Challenges associated with
interpretation, even with advanced techniques to minimize artifact influences,
can significantly impact the accurate interpretation of EEG findings. To address
this issue, artificial intelligence (AI) has been utilized in this study to analyze
anomalies in EEG signals for epilepsy detection. Recurrent neural networks
(RNNs) are AI techniques specifically designed to handle sequential data, making
themwell-suited for precise time-series tasks. While AI methods, including RNNs
and artificial neural networks (ANNs), hold great promise, their effectiveness
heavily relies on the initial values assigned to hyperparameters, which are crucial
for their performance for concrete assignment. To tune RNN performance, the
selection of hyperparameters is approached as a typical optimization problem,
and metaheuristic algorithms are employed to further enhance the process. The
modified hybrid sine cosine algorithm has been developed and used to further
improve hyperparameter optimization. To facilitate testing, publicly available
real-world EEG data is utilized. A dataset is constructed using captured data from
healthy and archived data from patients confirmed to be affected by epilepsy,
as well as data captured during an active seizure. Two experiments have been
conducted using generated dataset. In the first experiment, models were tasked
with the detection of anomalous EEG activity. The second experiment required
models to segment normal, anomalous activity as well as detect occurrences of
seizures fromEEGdata. Considering themodest sample size (one second of data,
158 data points) used for classification models demonstrated decent outcomes.

Abbreviations: EEG, electroencephalography; AI, artificial intelligence; RNN, recurrent neural networks;
ANN, artificial neural networks; SCA, sine cosine algorithm; HASCA, hybrid adaptive sine cosine
algorithm; SHAP, SHapley Additive exPLanations.
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Obtained outcomes are compared with those generated by other cutting-edge
metaheuristics and rigid statistical validation, as well as results’ interpretation is
performed.

KEYWORDS

RNN, EEG anomaly detection, metaheuristics optimization, time series prediction, sine
cosine algorithm

1 Introduction

Electroencephalography (EEG) is a diagnostic method that
determines and measures brain waves and brain activity. As a
non-invasive, painless and relatively cheap method, it has a wide
diagnostic application. The most common indication for EEG
is diagnosing or monitoring different types of epilepsy, but it
can also be used in diagnosing numerous other neurological
disorders such as vascular diseases, tumor processes, infectious
diseases, degenerative brain diseases (dementia, Parkinson’s disease,
ALS), sleep disorders, narcolepsy, etc. The method has been
successfully applied as a scientific tool for almost 100 years (Berger,
1929). There are two primary methods for collecting EEG data.
Intracranial EEG Jobst et al. (2020) involves a surgical procedure
that places electrodes on to the surface of the brain. However,
a more popular method for catapulting EEG signals is the use
of non invasive scalp EEG. As the latte in non-invasive it is
preferred.

Although EEG is a very detailed and precise method of
measuring the electrical activity of the brain, certain factors (such as
environmental influences that act during the test itself) can affect a
completely objective and realistic picture and interpretation of EEG
records. In general, the main problem is represented by artifacts -
technical and biological. The main sources of technical artifacts are
primarily external audio and visual stimuli from the environment
- room temperature, incoming electric and electromagnetic noises
from transmission lines, electric lights or other electromagnetic
fields. Poor contact and position of the electrodes (the electric
field decreases with the square of the distance from the source,
and thus the signal strength) leads to high impedance and thus
additionally encourages the electromagnetic influence of artifacts.
Inadequate material from which the electrodes are made, wrongly
adjusted filters, quantization amplification noises during analog-
digital conversion can further problematize adequate EEG analysis.
The main sources of biological artifacts are uncontrolled muscle
movements (e.g., neck, face), blinking or eye movements of the
subject.The effect of sweating (physical discomfort during shooting)
can also be problematic. Additional complications can occur when
collecting data from patients affected by epilepsy, as it can be
difficult to discern neurological activity form involuntary musicale
spasms cased by seizures. Capturing data during a seizure episode
can also prove difficult as the occurrence can be spontaneous and
sporadic. Detecting anomalous neurological activity using an EEG
is an efficient and non invasive way for epilepsy diagnosis. Finally,
inadequate interpretation by the doctorwho interprets the recording
despite all the technical achievements that minimize the influence
of occurring artifacts can be crucial in the misinterpretation of EEG
findings (Müller-Putz, 2020).

As a non-invasive method, EEG can have advantages over other
imaging methods, especially when patients have absolute or relative
contraindications for contrast (NMR or CT) imaging - allergic
reactions, advanced chronic renal insufficiency, uncontrolled
diabetes mellitus with the risk of lactic acidosis, etc. The fact that it
is safe and significantly cheaper method (does not require the use of
contrast) additionally recommends it in the early diagnosis of these
diseases, which is of inestimable importance for timely therapy in
thesemost serious diseases. Early diagnosis of the disease is a crucial
factor that enables a timely treatment, which is of crucial importance
for improving the therapeutic outcome, especially in the population
of patients with the most severe progressive neurological diseases
(Armstrong and Okun, 2020; Symonds et al., 2021; Goutman et al.,
2022; Hakeem et al., 2022).

Preceding works have explored the application of AI for
medical diagnosis (Jovanovic et al., 2023a). However, few works
have explored the potential of time series classification for anomaly
detection in neurodiagnostics. The potential of networks capable of
accounting for temporal variables such as recurrent neural networks
(RNNs) has yet to be fully explored when applied to EEG. As EEG
data is sequential, and the RNN has been specially developed to deal
with this class of problem there is notable application potential. This
work therefore proposes amethodology based onRNNs for anomaly
detection in EEG readings. A dataset is composed of a publicly
available 1 real-world patient dataset (Andrzejak et al., 2001). The
testing dataset consists of segments of normal EEG measurements,
anomalous EEG measurements of patients suffering from epilepsy,
as well as EEG activity during an active seizure.

Two experiments have been conducted. The first experiment
involved detecting anomalous activity and was formulated as a
binary classification, as two classes exist - normal and anomalous.
The second experiment tackled the problem of determining the
type of anomalous activity and was formulated as a multi-
class classification problem, as the outcome can be classified as
normal, anomalous and seizure. Detailed description is provided in
Section 4.1.

To improve the performance of the constructed models, several
cutting-edge metaheuristic algorithms have been applied to the
challenge of optimizing hyperparameters of RNN aswell as selecting
the optimal network architecture suited to the task. A modified
version of the well-known sine cosine algorithm (SCA) (Mirjalili,
2016) algorithm is introduced specifically for this study. Due to the
ability of metahersutic algorithms to tackle even NP-hard problems,
metaheuristics are a popular choice for tackling the large search
space associated with the selection of RNN hyperparamaters. The

1 https://www.upf.edu/web/ntsa/downloads
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test outcomes of the simulations carried in this research have
been validated through rigorous statistical testing, and the best-
performingmodels are subjected to interpretation using explainable
AI techniques to determine the features that contribute to model
decisions.

The primary contributions of this work can be summarized as
the following.

• a construction of a combined EEG dataset that can be used for
the evaluation of seizure and anomaly detection;
• improvements to the classification methodologies available for

handling EEG signals using time-series classification based on
RNN;
• a proposal for a modified metaheuristic for tuning RNN for

classifying RNN signals;
• the interpretation of the best-performing models in order

to determine feature importance when considering anomaly
detection;
• the explanation of research on this topic and fill the research gap

concerning the use of RNN for EEG signal anomaly detection;

The rest of this manuscript has been structured in the following
manner. Section 2 yields the background and literature survey on
RNNs, metaheuristics optimization, and the general overview of
the applications of AI algorithms in medicine. Section 3 presents
the basic SCA algorithm, followed by the proposed alterations of
the baseline algorithm. The simulation setup that was used for the
experiments is given in Section 4, while the simulation outcomes
are shown in Section 5, accompanied by the statistical analysis
of the results and top-performing model interpretation. Section 6
summarizes the research, gives suggestions for possible future work,
and concludes this manuscript.

2 Related works and background

Despite advances in imaging, EEG remains the basic test for
the diagnosis of epilepsy. Not only can it confirm the diagnosis
(it can also clarify the type of epilepsy), but it can have a role
in making therapeutic decisions (e.g., whether to stop treatment
in patients without seizures) as well as prognostic significance
(e.g., evaluating critically ill patients for possible epileptic status
or development of encephalopathy) (Trinka and Leitinger, 2022).
Apart from mentioned diseases, this method is also widely
used in the early diagnosis of dementia (Al-Qazzaz et al., 2014),
Mb Alzheimer’s (Stam et al., 2023), brain tumors (Ajinkya et al.,
2021), sleep disorders (Kaskie and Ferrarelli, 2019; Steiger and
Pawlowski, 2019), as well as the most severe neurodegenerative
diseases (Kidokoro et al., 2020). Artificial intelligencemethods show
immense potential in detection of different medical conditions.

The improvement of new clinical systems, patient information
and records, and the treatment of various ailments are all areaswhere
AI technologies, from machine learning to deep learning, play a
critical role.The diagnosis of various diseases can also bemademost
effectively using AI approaches.

This section first introduces the recurrent neural networks and
their most important applications in different domains. Afterwards,
a brief survey of the metaheuristics optimization is provided.

Finally, the overview of general AI applications in medicine is
given.

2.1 Recurrent neural networks

A recurrent neural network (RNN) (Jain and Medsker, 1999)
is a modified version of a traditional neural network designed to
handle sequential data. While it maintains many of the components
found in neural networks, such as neurons and connections, an
RNNhas the additional capability of performing a specific operation
repeatedly for sequential inputs through recurrent connections.This
allows the RNN to store and utilize information from previously
processed values in conjunction with future inputs. When provided
with an input sequence I = i1, i2, i3,…, iT, the network performs the
operation described in Eq. 1 at each step t.

[

[

ôt

ht

]

]
= ϕW (it,ht−1) (1)

where ôt represent the output and ht denote hidden state at time t. A
neural network ϕW is characterized by a weighted network W.

Initially developed to enable artificial neural networks (ANN)
(Krogh, 2008) to handle sequences of data, recurrent neural
networks utilize recurrent connections to incorporate the influence
of previous outputs on future predictions. This unique characteristic
makes RNN particularly well-suited for accurate time-series
forecasting using simpler neural network architectures. However,
when dealing with long data sequences, certain limitations persist,
where simple RNNarchitectures struggle to provide accurate results.
To address this challenge, the attention mechanism (Olah and
Carter, 2016) offers a promising solution.

RNNs have found numerous applications across various
domains due to their ability to handle sequential data and capture
temporal dependencies. RNNs are extensively used in NLP
tasks, such as machine translation, language modeling, sentiment
analysis, speech recognition, and text generation (Jelodar et al.,
2020; Sorin et al., 2020; Zhou et al., 2020; Nasir et al., 2021).
Long Short-Term Memory (LSTM) and Gated Recurrent Unit
(GRU) are popular RNN variants commonly used in NLP tasks
(Shewalkar et al., 2019; Sherstinsky, 2020; Yang et al., 2020). They
are also well-suited for time series forecasting tasks, such as stock
price prediction, weather forecasting, and demand prediction in
sales or finance domains, as they are capable of capturing patterns
and trends in sequential data (Alassafi et al., 2022; Amalou et al.,
2022; Bhoj and Bhadoria, 2022; Freeborough and van Zyl, 2022;
Hou et al., 2022; Siłka et al., 2022). RNNs are also frequently
employed in speech recognition systems, speech synthesis (text-
to-speech), and speaker identification. RNNs can process audio
data as a sequence of frames, making them suitable for such
tasks (Shewalkar et al., 2019; Zhang et al., 2020; Oruh et al., 2022).
Finally, RNNs can be applied to video data for tasks like action
recognition, video captioning, and video summarization, where
temporal information is crucial for understanding the content
(Liu et al., 2019; Yuan et al., 2019; Zhao et al., 2019).

RNNs have also been successful in medical domain. Some of
the successful applications include medical pre-diagnostics online
support (Zhou et al., 2020), cyber-attack and intrusion detection
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FIGURE 1
Flowchart of the applied methodology.

within the medical Internet of Things devices (Saheed and Arowolo,
2021), MRI and CT images processing tasks (Rajeev et al., 2019;
Sabbavarapu et al., 2021; Islam et al., 2022), and medical time series
(Li and Xu, 2019; Tan et al., 2020), to name the few.

2.2 Metaheuristic optimization

While AI methods, like RNNs and ANN show immense
potential, their effectiveness, heavily relies on the initial values
assigned to a set of parameters known as hyperparameters.
Modern methods offer a wide range of control parameters
that enable networks to achieve good overall performance
while allowing fine-tuning of internal operations to better suit
specific problems. However, manually selecting appropriate
values for these hyperparameters can be challenging, as modern
methods often involve several dozen parameters. Thus, the
use of automated methods becomes crucial to facilitate the
selection process. Given the broad range of possible parameter
values, this task quickly becomes NP-hard, making it seemingly
impossible to solve using traditional methods. Consequently, it is
imperative to discover and adapt novel approaches to address this
challenge.

Metaheuristic algorithms present a feasible solution to this
problem. Rather than employing a deterministic approach, they
utilize a search strategy. These algorithms do not guarantee finding
the optimal solution in a single run but increase the statistical
probability of locating the true optimum with each iteration. By
adopting this approach, the feasibility of solving NP-hard problems

within a reasonable time frame and with manageable computational
resources is enhanced. This characteristic makes metaheuristic
optimization algorithms a popular choice for hyperparameter
tuning. By defining the selection of hyperparameters as a typical
maximization problem, optimal values can be determined,
thereby improving algorithm performance by further adjusting
behaviors to suit the specific task at hand. Researchers
have developed numerous metaheuristic algorithms to tackle
diverse problem domains, drawing inspiration from various
sources.

Stochastic algorithms, known as metaheuristics, are extensively
employed in computer science to address NP-hard problems,
as deterministic methods are impractical in such cases. These
metaheuristic algorithms can be classified into different categories
based on the natural phenomena they emulate to guide the
search process. Examples include evolution and ant behavior
for nature-inspired methods, physical phenomena like storms
and gravitational waves, human behavior such as teaching and
learning or brainstorming, and mathematical laws like oscillations
of trigonometric functions.

Swarm intelligence algorithms are rooted in the collective
behavior of large groups consisting of relatively simple units, such
as bird flocks or insect swarms. These groups exhibit remarkably
synchronized and sophisticated behavioral patterns during essential
survival activities such as hunting, scavenging, breeding, and
predator avoidance. Swarm intelligence methods, including ant
colony optimization (ACO) (Dorigo et al., 2006), particle swarm
optimization (PSO) (Wang et al., 2018), artificial bee colony (ABC)
(Karaboga and Basturk, 2007), bat algorithm (BA) (Yang and
Gandomi, 2012), and firefly algorithm (FA) (Yang and Slowik, 2020),
have proven effective in solving a wide range of NP-hard problems
in real-life scenarios. In recent years, a particularly efficient family of
metaheuristics has emerged that relies on mathematical functions
and their properties to facilitate the search process. Prominent
examples within this family include the sine-cosine algorithm
(Mirjalili, 2016) and the arithmetic optimization algorithm (AOA)
(Abualigah et al., 2021).

The diversity of population-based algorithms stems from the no-
free-lunch theorem (NFL) (Wolpert and Macready, 1997), which
states that there is no universal approach capable of finding the
best solution for all optimization challenges.Therefore, the selection
of an appropriate metaheuristic method becomes crucial, as a
technique that performs well for one problem may not yield the
same level of success for another. Hence, the availability of various
metaheuristic methods and the need to adapt the algorithm to the
specific optimization task at hand.

Metaheuristic algorithms have many uses in a variety of
sectors due to their high performance when taking up general
optimizations. Some fascinating examples include credit card fraud
detection (Jovanovic et al., 2022a; Petrovic et al., 2022), security
and intrusion detection (Jovanovic et al., 2023c; Jovanovic et al.,
2022b; Bacanin et al., 2022), cloud-edge computing (Bacanin et al.,
2019; Bezdan et al., 2020; Zivkovic et al., 2021b), tackling
challenging obstacles in emerging industries (Jovanovic et al.,
2023a), forecasting COVID-19 cases (Zivkovic et al., 2021c;
Zivkovic et al., 2021a), as well as in healthcare (Bezdan et al., 2021;
Zivkovic et al., 2022a; Zivkovic et al., 2022c; Jovanovic et al., 2023b;
Jovanovic et al., 2022d; Tair et al., 2022). Moreover, metaheuristics
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FIGURE 2
Visualizations of the first ten electrode readings of the constructed binary (top), multi-class (middle) dataset and dataset distribution (bottom) in each
experiment.

have demonstrated remarkable effectiveness in optimizing time
series forecasting (Jovanovic et al., 2022c; Stankovic et al., 2022;
Bacanin et al., 2023).

2.3 Brief overview of AI applications in
medicine

To identify diseases that require early diagnosis, such as those
related to skin, heart, and Alzheimer’s, researchers have utilized
a variety of AI-based techniques, including machine and deep
learning models. In order to reach the best level of accuracy,
a backpropagation neural network was utilized in a paper by
(Dabowsa et al., 2017) to diagnose skin diseases. Authors in (Uysal
and Ozturk, 2020) choose to examine T1-weighted magnetic
resonance images in order to analyze dementia in Alzheimer’s
using Logistic Regression, K-Nearest Neighbors, Support Vector
Machines, Decision Tree, Random Forest, and Gaussian Naive
Bayes methods. Artificial intelligence can be successfully applied

in monitoring and detecting medical conditions like brain tumors
(Bacanin et al., 2023; Kushwaha and Maidamwar, 2022), diabetes
(Joshi and Borse, 2016) or COVID-19 (Zivkovic et al., 2022b). In
Salehi et al. (2023) authors presented a comprehensive review of the
usage of Convolutional Neural Networks (CNN) in the context of
medical imaging. The diagnosis and treatment of diseases depend
heavily on medical imaging, and CNN-based models have shown
considerable gains in image processing and classification tasks.
It has been successfully used in liver lesion classification (Frid-
Adar et al., 2018) based on computed tomography images and tumor
identification (Dhiman et al., 2022). Metaheuristics-driven CNN
tuning has proven to be successful in COVID-19 diagnostics as well
(Pathan et al., 2021).

Machine/deep learning models for epileptic seizure
identification utilizing EEG signals have been introduced in a
number of research papers. Support vector machines (SVM),
k-nearest neighbor (KNN), artificial neural networks (ANN),
convolutional neural networks, and recurrent neural networks
are a few examples of commonly used algorithms. A hybrid

Frontiers in Physiology 05 frontiersin.org

https://doi.org/10.3389/fphys.2023.1267011
https://www.frontiersin.org/journals/physiology
https://www.frontiersin.org


Pilcevic et al. 10.3389/fphys.2023.1267011

TABLE 1 Experiment 1 - overall objective and Cohen Kappametrics for 30 runs.

Method Best Worst Mean Median Std Var

RNN-HASCA 0.001231 0.001846 0.001436 0.001231 2.90E-04 8.42E-08

RNN-SCA 0.001846 0.002462 0.002051 0.001846 2.90E-04 8.42E-08

RNN-GA 0.001231 0.003077 0.002051 0.001846 7.68E-04 5.89E-07

RNN-PSO 0.001231 0.002462 0.001641 0.001231 5.80E-04 3.37E-07

RNN-FA 0.001231 0.004308 0.002256 0.001231 1.45E-03 2.10E-06

RNN-BSO 0.001846 0.002462 0.002256 0.002462 2.90E-04 8.42E-08

RNN-RSA 0.001231 0.002462 0.002022 0.002462 5.85E-04 3.43E-07

RNN-COLSHADE 0.001231 0.004308 0.003077 0.003692 1.33E-03 1.77E-06

Cohen Kappa metrics

RNN-HASCA 0.996072 0.994114 0.995419 0.996072 9.23E-04 8.51E-07

RNN-SCA 0.994114 0.992124 0.993451 0.994114 9.38E-04 8.80E-07

RNN-GA 0.996072 0.990143 0.993443 0.994114 2.47E-03 6.08E-06

RNN-PSO 0.996072 0.992143 0.994762 0.996072 1.85E-03 3.43E-06

RNN-FA 0.996072 0.986332 0.992825 0.996072 4.59E-03 2.11E-05

RNN-BSO 0.994100 0.992124 0.992783 0.992124 9.32E-04 8.68E-07

RNN-RSA 0.996072 0.992124 0.992124 0.992124 1.88E-03 3.53E-06

RNN-COLSHADE 0.996072 0.986234 0.990183 0.988243 4.24E-03 1.80E-05

In all tables that contain simulation results, the best score in every category is marked bold.

model employing SVM and KNN was suggested in (Dorai and
Ponnambalam, 2010) to categorize EEG epochs into seizure and
nonseizure types. In the other paper, to identify epileptic seizure,
authors employed genetic algorithms, SVM, and particle swarm
optimization (Hassan and Subasi, 2016). The SVM algorithm
was successfully used in another research (Lahmiri and Shmuel,
2018) to categorize seizures with 100% accuracy. As mentioned
before, CNN was initially employed for image categorization.
In the study (Antoniades et al., 2016), the authors examine
deep learning for automatically generating features from time-
domain epileptic intracranial EEG data, specifically utilizing CNN
algorithms. A new deep convolutional network-based technique
for detecting epileptic seizures is suggested in (Park et al., 2018).
The proposed network uses 1D and 2D convolutional layers and is
built for multi-channel EEG signals. It takes into account spatio-
temporal correlation, a feature in epileptic seizure identification.
In the research (Hussein et al., 2019), authors introduced a deep
neural network architecture based on RNN to learn the temporal
dependencies in EEG data for robust detection of epileptic seizures.
The Long Short-Term Memory (LSTM) network is used by the
authors in (Hussein et al., 2018) to demonstrate a deep learning-
based technique that automatically recognizes the distinctive EEG
features of epileptic episodes.

3 Materials and methods

This section first describes the baseline variant of the SCA
metaheuristics, and highlights the known drawbacks of the
algorithm. Afterwards, the suggested improvements are presented
and enhanced version of the algorithm is proposed.

3.1 Original algorithm - SCA algorithm

The sine cosine algorithm (SCA) method is a distinct
optimization metaheuristic that draws its inspiration from the
mathematical properties of trigonometric functions (Mirjalili,
2016). By utilizing sine and cosine functions, the SCA method
updates the positions of solutions within the population, leading to
oscillations that explore the direct range of the optimal solution.
These functions ensure that the solutions undergo variation
as their output values are confined to the range of −1 to 1.
During the initialization stage, a random number of potential
solutions are generated within the search region bounds. Stochastic
configurable control variables are employed throughout the
algorithm’s execution to guide both exploration and exploitation
activities.
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TABLE 2 Experiment 1 - detailedmetrics of the best run of each algorithm.

Metric RNN-HASCA RNN-SCA RNN-GA RNN-PSO RNN-FA RNN-BSO RNN-RSA RNN-COLSHADE

Accuracy (%) 99.8769 99.8154 99.8769 99.8769 99.8769 99.8154 99.8769 99.8769

Precision Normal 0.996835 0.993691 0.996835 0.996835 0.996835 0.996825 0.996835 0.996835

Precision Anomaly 0.999236 0.999235 0.999236 0.999236 0.999236 0.998473 0.999236 0.999236

W.Avg. Precision 0.998769 0.998157 0.998769 0.998769 0.998769 0.998153 0.998769 0.998769

Recall Normal 0.996835 0.996835 0.996835 0.996835 0.996835 0.993671 0.996835 0.996835

Recall Anomaly 0.999236 0.998472 0.999236 0.999236 0.999236 0.999236 0.999236 0.999236

W. Avg. Recall 0.998769 0.998154 0.998769 0.998769 0.998769 0.998154 0.998769 0.998769

F1-score Normal 0.996835 0.995261 0.996835 0.996835 0.996835 0.995246 0.996835 0.996835

F1-score Anomaly 0.999236 0.998854 0.999236 0.999236 0.999236 0.998855 0.999236 0.999236

W. Avg. F1-score 0.998769 0.998155 0.998769 0.998769 0.998769 0.998153 0.998769 0.998769

TABLE 3 Experiment 1 - best determined RNN parameters.

Method Learning rate Dropout Epochs Number of layers Layer 1 Layer 2

RNN-HASCA 0.010000 0.050000 60 1 5 6

RNN-SCA 0.008531 0.050000 60 1 11 10

RNN-GA 0.002725 0.190960 60 1 15 5

RNN-PSO 0.004895 0.066932 60 1 15 15

RNN-FA 0.010000 0.200000 60 1 15 8

RNN-BSO 0.010000 0.200000 43 1 15 10

RNN-RSA 0.008858 0.064926 60 1 14 10

RNN-COLSHADE 0.005873 0.144412 60 1 12 8

To update the positions of individual solutions during both
exploration and exploitation, the algorithmutilizes both the sine and
cosine functions. The positional formulas for the sine and cosine
functions are represented by Eq. 2–3 respectively.

Xt+1
i = X

t
i + r1 ⋅ sin (r2) ⋅ |r3 ⋅ P

*t
i −X

t
i| (2)

Xt+1
i = X

t
i + r1 ⋅ cos (r2) ⋅ |r3 ⋅ P

*t
i −X

t
i| (3)

in which Xt
i and Xt+1i represent the position of the current

individual in the ith dimension at the tth and t+ 1-th iteration
cycles respectively, the parameters r1, r2, and r3 represent pseudo-
stochastically generated control parameters. Additionally, P*i
denotes the position of the destination point (i.e., the final best
estimation of the optimal value) in the ith dimension.

By interchanging between the equations mentioned above, as
depicted in Eq. 4, the control variable r4, which is randomly
generatedwithin the range of 0–1, is employed to determinewhether

the sine or cosine function is utilized during the search process. New
values of the pseudo-stochastic control parameters are generated for
each segment of an individual within the population.

Xt+1
i =
{
{
{

Xt+1
i = X

t
i + r1 ⋅ sin (r2) ⋅ |r3 ⋅ P

*t
i −X

t
i|, r4 < 0.5

Xt+1
i = X

t
i + r1 ⋅ cos (r2) ⋅ |r3 ⋅ P

*t
i −X

t
i|, r4 ≥ 0.5

(4)

The main SCA parameters r1, r2, r3 and r4 play a crucial
role in influencing the behavior of the algorithm under specific
circumstances. Parameter r1 governs the movement of the
subsequent solution, determining whether it moves away from
or towards a designated destination. To enhance the level of
randomization and promote exploration, the control parameter
r2 is set within the range of 0 to 2π. The inclusion of parameter r3
determines a level of randomness to the movements, emphasizing
movement when r3 > 1 and reducing it when r3 < 1. Additionally,
the parameter r4 plays a crucial role in determining the selection
between the sine or cosine function for a specific iteration.
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To achieve a better stability between exploration and
exploitation, adaptive adjustments to the function ranges are made
according to Eq. 5.

r1 = a− t
a
T

(5)

where variable t denoting the current iteration, T representing the
maximum number of iterations per run, and a representing a fixed
number.

3.2 Modified SCA algorithm

The SCA meta-heuristic demonstrates remarkable performance
on bound-constrained and unconstrained benchmarks while
maintaining simplicity and a limited set of control parameters
(Mirjalili, 2016). However, its performance on standard Congress on
EvolutionaryComputation (CEC) benchmarks reveals a tendency to
converge too rapidly towards the current best solutions, resulting in
reduced population diversity. This rapid convergence, coupled with
its directed search towards the P*, leads to unfavorable outcomes
if the initial results are distant from the optimal solution. As a
consequence, the algorithm yields unsatisfactory final results as it
converges towards a disadvantageous regionwithin the search space.

To tackle the limitations of the original algorithm, this paper
presents a modified version of SCA that incorporates two additional
procedures to the baseline SCAmetaheuristics.These enhancements
have been introduced to address the known shortcomings and
further improve the performance of the algorithm.

1. The initial population is formed by employing a chaotic
initialization of solutions, and

2. A self-adaptive search procedure that alternates the search process
between the elementary SCA search and the firefly algorithm (FA)
search procedures.

The initial modification suggested for the basic version of
SCA involves a chaotic initialization of the initial population.
This technique is intended to generate an initial collection of
individuals close to the optimal region within the search space. The
idea of incorporating chaotic maps into metaheuristic algorithms
to enhance the search phase was proposed by (Caponetto et al.,
2003). Several other notable studies, such as (Kose, 2018; Wang
and Chen, 2020; Liu et al., 2021), have demonstrated that using
chaotic sequences for the search procedure yields higher efficiency
compared to traditional pseudo-random generators.

Among the various chaotic maps available, empirical
simulations conducted with SCA metaheuristics have indicated that
the logistic map produces the most promising outcomes. As a result,
the modified SCA employs the chaotic sequence β, initialized with
the pseudo-random value β0, generated using the logistic mapping
according to Eq. 6, at the beginning of its execution.

βi+1 = μβi × (1− βi) , i = 0,1,2,…,N− 1, (6)

where N and μ denote the count of individuals in the population and
chaotic control parameter, respectively.Theparameter μ is initialized
to value 4, while respecting the provided set of limits of β0: 0 < β0 < 1
and β0 ≠ 0.25,0.5,0.75,1.

Step 1: Generate population Pop of N/2 solutions by

employing the conventional initialization method:

Xi = LB+ (UB−LB) ⋅rand(0,1),i = 1,…N, where rand(0,1)

represents the pseudo-random number within [0,1]

and LB and UB represent vectors with lower and

upper bounds of each solution’s component i,

respectively.

Step 2: Produce the chaotic population Popc of N/2

individuals by mapping the solutions that belong

to Pop to chaotic sequences by employing Eq. 6–7.

Step 3: Merge Pop and Popc(Pop∪Popc) and sort

merged collection of N individuals according to

fitness value in ascending order.

Step 4: Establish the current best solution P.

Algorithm 1. Pseudo-code that describes the chaotic-based initialization
mechanism.

The individual i is a subject of mapping with respect to the
generated chaotic sequences applied to every component i as defined
by the following equation:

Xc
i = βiXi, (7)

where Xc
i corresponds to the new position of solution i after chaotic

perturbations.
The complete process of generating the initial population using

chaos-based initialization is presented in Algorithm 1. It is essential
to highlight that this introduced initialization mechanism does
not impact the algorithm’s complexity concerning fitness function
evaluations (FFEs), as it generates only N/2 random solutions
initially and then executes mapping of those individuals to the
corresponding chaotic-based solutions.

The second modification to the baseline SCA is the self-adaptive
search method, which governs the switching between the basic SCA
search procedure and the FA’s search procedure (Yang, 2009), as
represented by Eq. 8.

Xt+1
i = X

t
i + β0 ⋅ e

−γr2i,j (Xt
j −X

t
i) + α

t (κ− 0.5) , (8)

where α is a randomization value, and κ denotes the arbitrary
number taken from the Gaussian distribution. Distance between a
pair of fireflies i and j is denoted by ri,j. Additional improvement of
the FA’s search capability is achieved by applying the dynamic α, as
described by (Yang and Slowik, 2020).

The modified SCA method alternates between the SCA and
FA search mechanisms for each component j belonging to every
solution i in the following manner: If the generated pseudo-random
numberwithin the limits [0,1] is less than the searchmode (sm), then
the jth component of solution i will update by using the FA search
(Eq. 8). Otherwise, the plain SCA search will be employed (Eq. 4).
The search mode sm control variable determines the balancing
among the SCA and FA search procedures, with a higher emphasis
on the FA search to update solutions in the early rounds. In the
later phases when the search space is explored more extensively,
the SCA search will be triggered more frequently. This behavior is
enabled by dynamic reduction of the value sm during each round t as
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Generate starting populace of N solutions by

utilizing chaotic initialization 1.

Tune the control parameters and initialize dynamic

parameters

while exit criteria has not been met do

   for each solution ido

      for each component j belonging to solution

ido

          Generate arbitrary value rnd

      if rnd < smhen

          Update component j by executing FA

search (Eq. 8)

    else

        Update component j by executing SCA search

(Eq. 4)

       end if

    end for

   end for

   Evaluate the population based on the fitness

function value

   Determine the current best solution P

   Refresh values of the dynamic parameters

end while

Return the best-discovered solution

Algorithm 2. The HASCA pseudo-code.

follows:

smt = smt−1 −
t
T
. (9)

The initial sm value was determined empirically, and assigned to
0.8 throughout the experiments in this research.

Modified SCA algorithm in fact represents a low-level hybrid,
as it integrates FA search procedure to the SCA algorithm. Novel
method was given the name hybrid adaptive SCA (HASCA).
The pseudo-code presenting the internal implementation of the
suggested algorithm is provided by Algorithm 2.

In conclusion, it is important to highlight that the HASCA does
not introduce any additional overhead to the baseline SCA method.
The complexity in terms of fitness function evaluations (FFEs) for
both the basic and enhanced methods is O(N) = N ⋅N ⋅T, where N is
the population size and T is the number of iterations.

3.3 Applied method

The introduced algorithm and the introduced modifications
aimed at improving performance are incorporated into a testing
framework and compared to several state-of-the-art algorithms as
well as the original base algorithms to determine the improvements
made. The algorithms are provided with search space constraints
for RNN hyperparameters and allocated a population and a certain
number of iterations to improve performance. Specific values are
presented in the experimental section.

The framework is provided with a dataset of real-world
EEG data, further described in the experiential section. A
segment of the data is used for training and another for testing.
Once hyperparameter optimization is performed, algorithms are
evaluated based on objective function as well as other classification
metrics described in the experiential setup.

Finally, the attained results for all the simulations are
subjected to rigorous statistical analysis to determine the statistical
significance of the introduced improvements. A flowchart of the
described process is presented in Figure 1.

4 Experimental setup

This section described the experimental setup of this work.
The utilized dataset and preparation procedure are described. This
is then followed by the metrics used for the evaluation of each
approach. Finally, the experimental setup is provided in details. All
simulations have been carried out using the Python programming
language and appropriate supporting libraries, TensorFlow, Pandas,
Seaborn, and Python SHAP libraries. Experimentation has been
carried out on a machine srunning Windows 10. With an Intel i7
CPU, 32 Gb of available RAM memory and a Nvidia 3060 GPU.

4.1 Dataset description and prepossessing

When tackling medical data several challenges arise. One major
issue is the availability of the dataset. Oftentimes, quality data is not
publicly available, limiting research capacity for outside researchers
to build upon established techniques. This work therefore uses a
publicly available 2 labeled dataset Andrzejak et al. (2001). However,
while this dataset is properly labeled and well formatted, some
reprocessing is needed to make it suited for this research. The
original dataset contains EEG data concerning five patients. Two of
these are known to be neurotypical individuals labeledA andB in the
original data. Two patients, confirmed to be suffering from epilepsy,
are labeled C and D in the original data. Finally, the fifth EEG
data segment of the dataset was captured during an active epileptic
seizure labeled E in the original data. Each sample consists of 26 s of
recorded data, totaling 4,096 data points from 100 electrodes.

These data segments have been recombined into two separate
subsets used for the two experiments conducted in this research.
The first dataset combined neurotypical individuals’ EEG (sample
A) readings with that of a person suffering from epilepsy (sample
C). Each of the samples was segmented into half-second intervals
(158 data points) and randomly recombined to formulate a single
continuous EEG reading.

A similar procedure was repeated for the dataset used in the
second dataset. However, to better explore the potential of RNNs
this experiment was formulated as a multi-class classification. A
combination of the available data was created using data from
a neurotypical individual (sample A) a patient confirmed to be
suffering from epilepsy (patient D) as well as data captured during
an active seizure (sample E). The data was once again recombined

2 https://www.upf.edu/web/ntsa/downloads
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FIGURE 3
Experiment 1 - box plot, violin plot, swarm diversity diagram and objective convergence diagram.

using half-second intervals (158 data points) and recombined into a
single continuous EEG reading.

The readings form the first ten electrodes in the constructed
datasets can be seen in Figure 2. In this figure a white background
indicates normal readings, an orange background signifies
anomalous activity, while a red background indicates readings taken
during and active seizure.

In terms of salmon tracking experiments, the first experiment
with a dataset representing a combination of classes A (normal)
and C (anomalous), using a binary classification approach, will
be labeled as ‘experiment 1.’ Meanwhile, the second experiment,
which used a dataset representing a combination of classes A
(normal), D (anomalous), and E (seizure) and employed amulticlass
classification approach, will be referred to as ‘experiment 2’.

4.2 Classification metrics

For each tested model, the traditional classification metrics
- precision, recall, accuracy and F1-score were evaluated. The
following formulas apply to those metrics:

Precision = TP
TP+ FP

(10)

Recall = TP
TP+ FN

(11)

Accuracy = TP+TN
TP+TN+ FP+ FN

(12)

F1Score = 2×
Precision×Recall
Precision+Recall

(13)

where TP and TN stand for true positive and negative, respectively,
whereas FP and FN stand for false positive and negative. The error
rate was represented by the indicator function 1− accuracy.

The Cohen’s Kappa coefficient was also reported in the
experiments (Warrens, 2015). This coefficient, as described in
(McHugh, 2012), assesses the inter-rater reliability and can also
serve as an evaluation measurement for the performance of the
regarded classification models. In contrast to the overall accuracy of
the model, which may be deceptive when dealing with imbalanced
datasets, Cohen’s Kappa considers the class distribution imbalance
to yield more dependable outcomes. This coefficient is calculated
according to Eq. 14:

κ =
po − pe

1− pe
= 1−

1− po

1− pe
(14)

where po denotes the observed values, and pe marks the expected
values.
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FIGURE 4
Experiment 1 - confusion matrix, objective indicator joint plot, PR and ROC curves of the proposed HASCA method.

4.3 Optimization setup

To facilitate the proper application of ML algorithms, proper
hyperparameter values should be selected for the algorithm to yield
acceptable performance for the problem being tackled. However, the
process of selection can be considered an NP-hard challenge given
the large number of possible combinations, rendering traditional
methods an inadequate approach. This work utilizes mechanistic
optimization to select hyperparameters that attained the desired
performance outcomes.

As stated above, two sets of experiments were conducted. The
first experiment (experiment 1) focused on detecting anomalous
activity, presented as a binary classification problem. The second
experiment (experiment 2) dealt with determining the type
of anomalous activity, structured as a multi-class classification
problem.

For both conducted experiments, the datasets were split in a
standard way, 70% was allocated to training, 10% for validation, and
finally, the remaining 20% was used to test the approaches. Dataset
was normalized. The number of lags was set to 15.

Two types of parameters are optimized in this work. Firstly
training parameters of the RNN are selected including the learning
rate from a range of [0.0001,0.01] and dropout within the range
[0.05,0.2] for both experiments. The number of training epochs

was selected from the range of [30,60] for the first experiment,
and from the range of [50,150] for the second experiment. It is
important to note that an early stopping criterion is also used
during training equaling 1/3 of the maximum number of training
epochs. Secondly, due to the significant influence of network
architecture on performance, RNN structures are optimized. The
number of network layers is selected from the range of [1,2]
for both experiments. Finally, the number of neurons in each
layer was selected from the interval [lags/3, lags] for the first
experiment, and from the interval [lags/2, lags ⋅ 2] for the second
experiment. The values used for the second experiment (training
epochs and number of neurons) have been increased due to
the increased complexity of the multiclass-classification problem.
Parameter ranges have been empirically determined through trial
and error and based on previous experience with hyperparameter
optimization.

To evaluate the optimization potential of the introduced
algorithm, several state-of-the-art metaheuristics have also been
tasked with optimizing RNNparameters under identical conditions.
The tested algorithms include the original SCA (Mirjalili, 2016)
as well as the GA (Mirjalili and Mirjalili, 2019), PSO (Kennedy
and Eberhart, 1995), FA (Yang, 2009), BSO (Shi, 2011), RSA
(Abualigah et al., 2022), and COLSHADE (Gurrola-Ramos et al.,
2020). Each metaheuristic was issued a total of six individual agents
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FIGURE 5
Experiment 2 - box plot, violin plot, swarm diversity diagram and objective convergence diagram.

and allowed eight iterations to improve performance. Finally, to
facilitate statistical analysis and account for randomness associated
with metaheuristic algorithms, testing was carried out through 30
independent runs.

The classification error was used as the objective function for
both experiments, since datasets are balanced. Additionally, values
of the Cohen Kappa indicator are presented as well.

5 Experimental outcomes,
comparative analysis, validation and
interpretation

This section brings forward the detailed simulation outcomes
for both executed experiments. Afterwards, the statistical analysis
of the experimental outcomes has been conducted to determine if
the performance improvements are statistically significant. Finally,
the best model’s interpretation is provided at the end of this section.
In all tables that contain simulation results, the best score in every
category is marked bold.

5.1 Experiment 1 - Binary classification

The simulation outcomes of the proposed RNN-HASCA
method and seven competitor methods for the binary classification
problem are summarized in Table 1. Again, it is worth highlighting

that the objective function was classification error, and the scores
of the Cohen’s Kappa coefficient are provided as well. When
observing the overall metrics of the objective function across
30 independent executions, shown in Table 1, it is possible to
note that several metaheuristics algorithms were capable to reach
the same best value. However, due to the stochastic nature of
metaheuristics algorithms, important metrics are also the worst
and mean results, where the proposed HASCA algorithm exhibited
superior performance. Regarding the worst metric, SCA, PSO,
BSO and RSA finished second, behind HASCA. Additionally,
regarding the mean metrics, PSO attained second place, while
RSA finished third. It is also worth noting that RNN-HASCA
method obtained the best scores for Cohen’s Kappa coefficient as
well.

Detailed metrics achieved in the best individual run of every
observed method are provided in Table 2. It must be highlighted
that all observed algorithms attained respectable results. Finally,
Table 3 depicts the best set of RNN hyperparameters obtained by
each algorithm. It is noteworthy that all methods determined the
networks with one layer.

Aiming to present the obtained results clearer, Figure 3 shows
the box plots, violin plots, convergence diagram and swarm
diversity plots. It can be observed that the HASCA method
exhibits satisfactory converging speed, and also the box plots
show that the results are very stable across the independent
runs, as other methods have significantly larger deviation. Finally,
Figure 4 depicts the confusion matrix, PR and ROC curves, as
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FIGURE 6
Experiment 2 - confusion matrix, objective indicator joint plot, PR and ROC curves of the proposed HASCA method.

well as objective indicator joint plot of the suggested HASCA
algorithm.

5.2 Experiment 2 - Multiclass classification

The simulation outcomes of the proposed RNN-HASCA
method and seven competitor methods for the mutliclass
classification problem are summarized in Table 4. Similarly to
the first experiment, it is worth highlighting that the objective
function was classification error, and the scores of the Cohen’s
Kappa coefficient are provided as well. When observing the overall
metrics of the objective function across 30 independent executions,
shown in Table 4, it is possible to note that the proposed HASCA
algorithm exhibited superior performance, achieving the best scores
for best, worst and mean metrics, as well as for standard deviation
and variance. SCA attained the second best score, and COLSHADE
finished third. Regarding the worst metric, SCA again finished
second, behind HASCA. Additionally, regarding the mean metrics,
SCA attained second place, while COLSHADE finished third. It
is also worth noting that RNN-HASCA method obtained the best
scores for Cohen’s Kappa coefficient as well.

Detailed metrics achieved in the best individual run of every
observed method are provided in Table 5. It must be highlighted

that in this scenario (multiclass classification), suggested HASCA
obtained superior results, with achieved accuracy of 96.56%. Finally,
Table 6 depicts the best set of RNN hyperparameters obtained by
each algorithm. It is noteworthy that HASCA again determined the
network with one layer.

Aiming to present the obtained results clearer, Figure 5 shows
the box plots, violin plots, convergence diagram and swarm
diversity plots. It can be observed that the HASCA method
exhibits excellent converging speed, and also the box plots show
that the results are very stable across the independent runs,
as other methods have significantly larger deviation. Finally,
Figure 6 depicts the confusion matrix, PR and ROC curves, as
well as objective indicator joint plot of the suggested HASCA
algorithm.

5.3 Statistical validation

To facilitate statistical analysis, the best samples were captured
from 30 independent runs of each optimizer. Following this step, the
safe use of parametric tests needed to be justified. To accomplish this,
several criteria needed to be fulfilled (LaTorre et al., 2021) including
independence, normality, and homoscedasticity of the data
variance.
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TABLE 4 Experiment 2 - overall objective and Cohen Kappametrics for 30 runs.

Method Best Worst Mean Median Std Var

RNN-HASCA 0.034370 0.124386 0.054874 0.124386 2.64E-02 6.99E-04

RNN-SCA 0.047872 0.139525 0.103928 0.124386 4.01E-02 1.61E-03

RNN-GA 0.146481 0.243453 0.204719 0.224223 4.19E-02 1.76E-03

RNN-PSO 0.101064 0.321604 0.222995 0.246318 9.15E-02 8.38E-03

RNN-FA 0.224223 0.386661 0.300600 0.290917 6.67E-02 4.44E-03

RNN-BSO 0.224223 0.332242 0.271686 0.258592 4.51E-02 2.03E-03

RNN-RSA 0.132160 0.319558 0.219585 0.207038 7.70E-02 5.93E-03

RNN-COLSHADE 0.087152 0.224223 0.136661 0.098609 6.21E-02 3.86E-03

Cohen Kappa metrics

RNN-HASCA 0.910288 0.708847 0.863479 0.878882 5.89E-02 3.47E-03

RNN-SCA 0.878882 0.652979 0.746903 0.708847 9.61E-02 9.23E-03

RNN-GA 0.643423 0.208901 0.284108 0.208901 2.68E-01 7.18E-02

RNN-PSO 0.755973 0.167649 0.297728 0.167649 3.34E-01 1.12E-01

RNN-FA 0.245910 −0.028157 0.072584 0.000000 1.23E-01 1.52E-02

RNN-BSO 0.000000 −0.103654 −0.043166 −0.025843 4.41E-02 1.94E-03

RNN-RSA 0.710155 0.411494 0.502563 0.411494 1.47E-01 2.17E-02

RNN-COLSHADE 0.788920 0.000000 0.516435 0.760384 3.65E-01 1.33E-01

In all tables that contain simulation results, the best score in every category is marked bold.

The initial independence condition is fulfilled, as each
algorithm is initialized with a different random seed and
accordingly a new set of random solutions is generated. To
determine if the normality condition is met, the Shapiro-Wilk
(Shapiro and Francia, 1972) test for individual problem analysis
is used for both binary and multi-class experiments’ objective
function outcomes. Testing is independently conducted for each
algorithm and the determined p-values can be observed in
Table 7.

Based on the null hypothesis (H0) that the data originates
form a normal distribution, the p-values attained by the Shapiro
Wilk shown in Table 7 indicate that the samples for Experiment
1 originate for a near-normal distribution, while samples for
Experiment 2 deviate significantly. Nevertheless, as non of the
samples meet the normality condition with all p-values below the
0.05 H0 can be rejected.

As the outcomes of the Shapiro-Wilk normality tests indicate
that the samples do not fulfill the normality condition, the safe use
of parametric tests is not justified. Therefore, the non-parametric
Wilcoxon signed-rank test (Wilcoxon, 1992) is utilized. For this
analysis, the proposed RNN-HASCA approach is utilized as the
control. The outcomes of the Wilcoxon signed-rank test are shown
in Table 8.

The outcomes provided in Table 8 indicate that statistical
significance criteria are met in most cases except in one. In
experiment 1, the introduced metaheuristic does not show a
statistically significant improvement when compared to the PSO
algorithm. This can be due to a positioning advantage attained
by the PSO algorithm during randomized initialization. An
additional observation can be made concerning experiment one,
where several algorithms attained matching p-values, which can
be further confirmed by observing preceding results indicating
that these algorithms attain similar objective function outcomes
during experimenting. Nevertheless, in all cases except the PSO in
experiment 1, the improvements of the introduced algorithm are
noticeable and statistically significant.

5.4 Best model interpretation

Traditionally, AI algorithms have often been treated as
a black box. While with simple models further importance
can be determined empirically, as model complexity increases,
interpretability becomes more difficult. In recent years more focus
has been placed on interpreting model decisions. Interpretation
techniques help researchers understand and debug models but also
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TABLE 5 Experiment 2 - detailedmetrics of the best run of each algorithm.

Metric RNN-HASCA RNN-SCA RNN-GA RNN-PSO RNN-FA RNN-BSO RNN-RSA RNN-COLSHADE

Accuracy (%) 96.563 31.3830 85.3519 89.8936 77.5777 77.5777 86.7840 91.2848

Precision Normal 0.902148 0.158545 0.521622 0.862155 0.000000 0.000000 0.874439 0.856492

Precision Anomaly 0.830601 0.069825 0.000000 0.420195 0.000000 0.000000 0.348780 0.492537

Precision Seizure 0.993485 0.779940 0.997653 0.991945 0.775777 0.775777 1.000000 0.991940

W.Avg. Precision 0.968380 0.634874 0.857194 0.934271 0.601831 0.601831 0.937864 0.938041

Recall Normal 0.969231 0.558974 0.989744 0.882051 0.000000 0.000000 1.000000 0.964103

Recall Anomaly 0.962025 0.177215 0.000000 0.816456 0.000000 0.000000 0.905063 0.835443

Recall Seizure 0.965190 0.274789 0.896624 0.909283 1.000000 1.000000 0.837553 0.908755

W.Avg. Recall 0.965630 0.31383 0.853519 0.898936 0.775777 0.775777 0.867840 0.912848

F1-score Normal 0.969231 0.558974 0.989744 0.882051 0.000000 0.000000 1.000000 0.964103

F1-score Anomaly 0.962025 0.177215 0.000000 0.816456 0.000000 0.000000 0.905063 0.835443

F1-score Seizure 0.965190 0.274789 0.896624 0.909283 1.000000 1.000000 0.837553 0.908755

W.Avg. F1-score 0.965630 0.31383 0.853519 0.898936 0.775777 0.775777 0.867840 0.912848

In all tables that contain simulation results, the best score in every category is marked bold.

TABLE 6 Experiment 2 - best determined RNN parameters.

Method Learning rate Dropout Epochs Number of layers Layer 1 Layer 2

RNN-HASCA 0.001781 0.200000 150 1 30 30

RNN-SCA 0.003387 0.142190 139 2 22 22

RNN-GA 0.001236 0.088814 50 2 30 9

RNN-PSO 0.001725 0.115795 50 2 18 11

RNN-FA 0.000100 0.200000 138 1 23 16

RNN-BSO 0.000100 0.200000 120 2 21 13

RNN-RSA 0.000945 0.105523 150 2 30 13

RNN-COLSHADE 0.001196 0.200000 101 2 18 30

TABLE 7 ShapiroWilk normality tests.

Problem HASCA SCA GA PSO FA BSO RSA COLSHADE

Experiment 1 0.046 0.047 0.044 0.041 0.048 0.045 0.044 0.042

Experiment 2 0.029 0.035 0.030 0.027 0.031 0.033 0.036 0.029

provide a deeper understanding of the influence of features onmodel
decisions and therefore outcomes. One promising technique that
leverages model approximations to determine feature importances

is SHapley Additive exPlanations (SHAP) (Lundberg and Lee, 2017).
This approach relies on concepts from game theory to interpret and
explain the output of any ML model.

Frontiers in Physiology 15 frontiersin.org

https://doi.org/10.3389/fphys.2023.1267011
https://www.frontiersin.org/journals/physiology
https://www.frontiersin.org


Pilcevic et al. 10.3389/fphys.2023.1267011

TABLE 8 Wilcoxon signed-rank test scores representing p-values for all four scenarios (XG-MFA vs. others).

Problem/p-values SCA GA PSO FA BSO RSA COLSHADE

Experiment 1 0.036 0.036 0.053 0.033 0.033 0.037 0.028

Experiment 2 0.038 0.029 0.026 0.016 0.021 0.027 0.034

In all tables that contain simulation results, the best score in every category is marked bold.

FIGURE 7
SHAP interpretation outcomes for feature impacts.

In this work, SHAP interpretation has been leveraged to
interpret the best-performing classification models generated by
metaheuristics. These interpretations can prove useful for future
research suggesting what segments of the available data can be
improved or improved to augment future research. Additionally,
the interpretations can prove critical for diagnostic works,
reducing the number of electrodes needed to determine outcomes.
The interpretation of the best-performing model optimized by
metaheuristics is provided in Figure 7.

Shown in Figure 7 are the importance each electrode plays
in the classification of the best prediction model, as well as the
ranges in which these features impact a decision towards a normal
or abnormal outcome. As it can be observed the impacts of all
features is reasonable. However, electrodes labeled 95, 63, 91, and
47 play a more significant role in the decision-making process of the
model.

6 Conclusion

The research provided in this manuscript focused on medical
EEG dataset classification, through application of the hybrid
machine learning andmetaheuristics approach. First, a novel hybrid
variant of the well-known SCA metaheuristics was introduced,
where the deficiencies of the baseline SCA were addressed by
adding a chaotic initialization of the population, and incorporating
FA search to enhance the exploration. The devised metaheuristics
was named HASCA, and it was later employed to tune the
hyperparameters of the RNN.

The RNN-HASCA method was evaluated on EEG medical
dataset, and the results have been compared to the performance
of other contending cutting-edge metaheuristics algorithms. The
introduced algorithm attained an accuracy of 99.8769%, The
simulation outcomes unambiguously indicate the superiority of the
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suggested method, that was also validated by applying thorough
statistical analysis of the simulation results. The statistical tests have
shown that the RNN-HASCA performs statistically significantly
better than other regarded methods. Finally, the top-performing
model was subjected to SHAP analysis, in order to interpret the
results, and better understand the influence of the features on model
decisions. The outcome of the SHAP analysis can be leveraged
to reduced the number of features needed for detection and thus
reduce the computational demands of constructed classification
models.

Future work in this domain should focus in two directions.
First, the applications of the proposed methodology should
be examined further by testing it on other medical data
structured as time series, such as electrocardiogram (ECG).
The second direction would include examining the proposed
HASCA method’s capabilities in tuning the hyperparameters of
other machine learning models in other application domains,
such as intrusion detection, image classification and stock
predictions.
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