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A concept of Ca2+ nanodomains established in the cytoplasm after opening
single-calcium channels helps mechanistically understand the physiological
mechanisms of Ca2+ signaling. It predicts standing gradients of cytoplasmic
free Ca2+ around single channels in the plasma membrane. The fate of bound
Ca2+ attracted much less attention. This study aimed to examine the profiles of
Ca2+ bound to low-mobility buffers such as bulky Ca2+-binding proteins. The
solution of non-linear PDEs for an immobile buffer predicts fast decay of free
[Ca2+] from the channel lumen and the traveling wave for bound Ca2+. For low-
mobility buffers like calmodulin, the calculated profiles of free and bound Ca2+ are
similar. Theoretical predictions are tested by imaging 1D profiles of Ca2+ bound to
low-mobility fluo-4-dextran. The traveling waves of bound Ca2+ are observed that
develop during the opening of single channels. The findings tempt to propose that
Ca2+ signaling may not be solely related by the absolute free [Ca2+] at the sensor
location, which is extremely localized, but determined by the time when a wave of
bound Ca2+ reaches a threshold needed for sensor activation.
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1 Introduction

Many fundamental physiological Ca2+-dependent processes are initiated by local [Ca2+]
increases generated in the vicinity of the Ca2+ entry into the cell and dubbed as Ca2+

nanodomains (Eisner et al., 2023; Augustine et al., 2003; Eggermann et al., 2011). The
processes attracted much attention from researchers, but their theoretical description is yet
far from complete. The first important result was obtained by Neher (1986), who considered
steady-state Ca2+ distributions in excess buffer approximation, EBA.

The EBA formalism has been developed to explain the different effects of the Ca2+ buffers
BAPTA and EGTA in modulating the activity of nearby Ca2+-dependent K+-channels
(blocking vs non-blocking actions, respectively). For channel activation, Ca2+ entering
into the cytoplasm must reach the neighboring K+ channel. The distance between Ca2+

and K+ channels then should be smaller than the width of free [Ca2+] transient. BAPTA and
EGTA produce Ca2+ nanodomains with different widths because EGTA captures Ca2+

apparently slower than BAPTA. The on-rate constant for Ca2+ binding by EGTA is
assumed to be 100-fold lower than that for BAPTA and corresponds to a 10-fold bigger
intrinsic space constant ro (Table 1). The smaller width of Ca2+ nanodomains in BAPTA
explains why this buffer abolishes the coupling between Ca2+ and Ca2+-dependent
K-channels, whereas EGTA has virtually no influence.
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The seemingly slow calcium binding by EGTA has been
previously explained (Mironova and Mironov, 2008; Mironov,
2019). Briefly, by dissolution, EGTA forms five species at
different proportions in the absence of Ca2+. A doubly
protonated EGTA (H2EGTA

2-) is dominant at physiological
pH. It cannot bind Ca2+ efficiently because Kd = 4 M (Smith
et al., 1984) indicates extremely low affinity to Ca2+. Another
form, HEGTA3-, has Kd = 5 µM and thus has high affinity, but in
10 mM EGTA at normal pH, [HEGTA3-] = 0.1 mM, i.e., 100 times
smaller than nominal EGTA. A calcium ion is captured by the
first buffer molecule it meets in the cytoplasm, with the on-rate
close to the diffusion limit, kon ≈ 108 M-1s-1. Because the rate of
Ca2+ binding is kon [Buffer], an apparent 100-fold difference in
kon values for BAPTA and EGTA simply reflects the ratio
[BAPTA]/[HEGTA3-] = 100. EGTA has the important
property of slowly accommodating Ca2+ after exchanging it for
protons. The equilibrium between different EGTA forms is
established slowly. This explains why EGTA minimally
disturbs fast local calcium transients but, at the same time, is
effective in preventing calcium overload, e.g., in whole-cell
recordings. On a longer time scale, EGTA virtually eliminates
deleterious long-lasting increases in cytoplasmic calcium. The
same considerations may be applied to another “slow” Ca2+

buffer, parvalbumin, which also has to free the binding sites
from Mg before capturing Ca2+.

Ca2+ unbinding from the buffer is neglected in EBA because
the reverse reaction is very slow. Therefore, Ca2+ nanodomains
established during channel opening quickly disappear after
channel closure. The measurements of local Ca2+ increases
generated by single Ca2+ channels in the oocytes, dubbed as
sparklets (Demuro and Parker, 2006), underline this notion.
Despite the undisputed importance in presenting Ca2+ profiles
around single channels, the EBA model is oversimplified.

Another limiting concept in describing Ca2+ behavior in the
cytoplasm is rapid buffer approximation (RBA). It presumes fast
equilibration between Ca2+ and the buffer (Neher and Augustine,
1992; Wagner and Keizer, 1994; Pape et al., 1995; Naraghi and
Neher, 1997; Smith et al., 2001; Mironova and Mironov, 2008;
Mironov, 2019). The corresponding equations have been known
for decades (Crank, 1979) and have been successfully applied to
describing global Ca2+ transients in bulk cytoplasm. The basic
parameters in RBA are the cytoplasmic Ca2+-buffering capacity
and apparent Ca2+ diffusion coefficient. The former depends on
the free [Ca2+] level, buffer concentration, and affinity to Ca, and the
latter also includes the buffer diffusion coefficient (Neher and
Augustine, 1992; Wagner and Keizer, 1994; Pape et al., 1995;
Naraghi and Neher, 1997; Smith et al., 2001). The current status
of RBA and EBA, with numerous examples of applications in
physiology, was recently surveyed in a comprehensive review
(Eisner et al., 2023).

In EBA, the diffusion of the buffer is completely neglected (the
steady-state Ca2+ gradients are dependent only on DCa through ro).
In RBA, the buffer diffusion coefficient Db is treated implicitly and
included in the apparent Ca2+ diffusion coefficient. It is still
imperative to better understand the role of buffer motility
because the imaging of Ca2+ with common organic indicator dyes
may not correctly deliver actual changes in cytoplasmic [Ca2+]
needed to understand fundamental physiological events. Ca2+

signaling is mostly examined using synthetic buffers and
indicators (EGTA, BAPTA, fluo-X, etc.). They all have diffusion
coefficients compatible with that of Ca2+, justifying the application of
EBA. In physiology, putative Ca2+-binding proteins have order of
magnitude smaller diffusion coefficients (Sanabria et al., 2008;
Schwaller, 2010; Matthews and Dietrich, 2015). In order to
reproduce the in vivo situations, it is more consistent to employ
genetically encoded sensors that are also bulky proteins

TABLE 1 Basic definitions and model parameters.

Abbreviation Definition Numerical value

Bo Total buffer concentration 0.2 mM

c = [Ca2+]/Bo Normalized Ca2+ concentration 0.1–10

f = [F]/Bo Normalized free buffer concentration 0–1

b = [B]/Bo Normalized Ca2+-bound buffer concentration 0–1

DCa Ca2+ diffusion coefficient 200 μm2/s

d = Db/DCa Relative buffer diffusion coefficient 0–0.03

kon On-rate binding constant 108 M-1s-1

koff Off-rate constant 102 s-1

Kd Ca2+ buffer dissociation constant 10−6 M

γ = koff/konBo Normalized dissociation constant 0.002

i Single-channel current 0.1–1 pA

A Normalized Ca2+ concentration at the channel lumen 0.1–1

τ = 1/konBo Intrinsic time constant 50 μs

ro = √DCa/Bokon Intrinsic space constant 0.1 μm

τD = x2/2DCa Diffusional time constant 2.5 ms
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(Mironov et al., 2009; Lin and Schnitzer, 2016). The changes in their
fluorescence can be expected to depict physiologically relevant
cytoplasmic Ca2+ signals better. However, care should be taken in
choosing a probe with proper fast reaction time as the changes in
fluorescence may reflect conformational kinetics to achieve the
fluorescent state of the protein and may not reflect the “true”
kinetics of local Ca2+ increase (Lock et al., 2015).

The actual free Ca2+ levels around a single channel are of
extreme importance but not yet directly measured. The problem
is that when free [Ca2+] is smaller than the concentration of
cytoplasmic buffers and/or their affinity, the assumptions of both
EBA and RBA are correct. However, the theoretical estimates
(Mironov, 1990; Mironov, 2019) and experiments (Tay et al.,
2012; Tadross et al., 2013) indicate too high calcium levels at the
channel lumen. The local [Ca2+] may be around 1 mM, which
obviously exceeds the buffer concentration (0.2 mM is a typical
value). The considerations are substantiated by a current look at
synaptic transmission. This process is triggered by Ca2+ binding to
the synaptotagmin sensor (Syt). The Ca2+–Syt dissociation constant
is in the range of KSyt = 40–100 μM, as compiled from different
studies (Bornschein and Schmidt, 2019). Half-activation of the
sensor occurs at [Ca2+] = KSyt, and 90% activation is required to
make synaptic transmission reliable. This is achieved at 10 KSyt, from
which one can deduce that the local [Ca2+] at the secretion site
should be in the range of 0.4–1 mM. This is within the
aforementioned theoretical and experimental estimates.

All these considerations prompt examination of the time and
concentration dependence of Ca2+ nanodomains in the vicinity of
single channels, with a closer look at the effects of buffer diffusion. In
the following section, I focus on slow diffusion of buffers, keeping in
mind that putative Ca2+-binding proteins (and Ca2+-sensors) diffuse
much slower than Ca2+. The analysis starts from the time-dependent
RD problem for the immobile buffer, which has an analytical
solution. It predicts that Ca2+ gradients build up relatively fast
around a single channel, and the profile of the Ca2+-bound buffer
corresponds to the traveling wave. Within a few milliseconds, such
waves can propagate over 1 μm, a typical dimension for central
synapses. The case is then extended to introduce the slow motility of
the buffer (Db << DCa) to reproduce the situation in vivo. For low-
mobility buffers, the patterns of bound Ca2+ are found to be similar
to those of immobile buffers. To test theoretical predictions, the 1D-
distributions of Ca2+ in thin pipettes were examined. Ca2+ influx was
induced by a single α-synuclein channel in inside-out patches from
hippocampal neurons. Incoming Ca2+ was captured by a low-
mobility buffer (fluo-4-dextran). 1D distributions of bound Ca2+

agreed well with theoretical predictions. The main conclusion of the
study is that although free Ca2+ profiles are well-localized to the
lumen of single Ca2+ channels, the bound species may spread out,
delivering message(s) to activate distant targets.

2 Methods

2.1 Ethical approval

All mouse experiments were approved and performed in
accordance with the guidelines and regulations by the local
authority, the Lower Saxony State Office for Consumer

Protection and Food Safety (Niedersächsisches Landesamt für
Verbraucherschutz und Lebensmittelsicherheit), and executed at
the Georg August University, Göttingen. Briefly, all animals had
free access to the shelter and to water and food, and every effort was
made to minimize animal suffering and the number of animals used.
For removal of tissues, the animals were deeply anesthetized by CO2

inhalation at a fixed concentration and rapidly killed by cervical
dislocation.

2.2 Cell preparations and solutions

Cultured hippocampal neurons were obtained from
neonatal mice (NMRI, P3–P6), as described previously
(Mironov, 2015). During the experiments, the coverslips with
cells were mounted in a recording chamber that was
continuously superfused at 34°C.

2.3 Patch-clamp and imaging

The electrophysiology and imaging in cultured hippocampal
neurons are performed as described previously (Mironov, 2015;
Mironov, 2019). Bath and pipette solutions contain 30 mM Tris
buffer (pH 7.4) and 154 mM NaCl or 88 mM CaCl2. The solutions
have an osmolality of 305–315 mosmol/l. Fluo-4 and Fluo-4 dextran
(M.W. 30 kDa) were obtained from Thermo Fisher (Osterode,
Germany). Both dyes were used at a concentration of 0.3 mM.
Fluo-4 dextran was dissolved at 1% concentration. Dextran
(10 kDa) has a diffusion coefficient of D = 15 μm2/s (Shuai and
Parker, 2005), which is close to the measured value for calmodulin,
D = 10 μm2/s (Sanabria et al., 2008). Given DCa = 200 μm2/s, both
values are close to the relative diffusion coefficients d = 0.03
(Mironova and Mironov, 2008) used in this study (Table 1).

Patch electrodes were pulled from borosilicate glass (1.4 mm o.
d., WPI, Berlin, Germany). The pipettes have a small bore (<0.1 µm)
and a long shank (≈5 mm), with a resistance of ≈40 MOhm.
Coverslips with the hippocampal neurons are placed on the
microscope stage. The cells are patched, inside-out patches are
excised, and synuclein (α-Syn) channels are forced to incorporate
into the membrane (Mironov, 2015). The horizontally oriented
pipette is then lowered to the bottom to enter the TIRF
illumination layer (≈200 nm above the coverslip).

For imaging, an upright microscope (Axioscope 2, Zeiss) is used
with a ×63 objective lens (N. A. 1.4). The fluorescence is excited by
488 nm light from an SLM Diodenlaser (Soliton, Gilching,
Germany). The laser beam is delivered from below through a
prism (TIRF Labs, Inc. Cary NC) at an angle appropriate to
evoke TIRF. The emission (525 nm) passes through a dichroic
mirror filter at 535 nm. The images are captured by using a
cooled CCD camera, iXON Ultra 888 EMCCD (ANDOR, Oxford
Instruments), operated under ANDOR software. The line-scan
mode (512 × 2 pixels at 12-bit resolution) has an acquisition
time of 0.1 ms. Because the fluorescence of fluo-4 increases >10-
fold after Ca2+ binding, this minimizes out-of-focus effects that
appear in imaging of living cells. The cell-free experimental
configuration also provides good control of the solutions bathing
the patch.
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Single-channel events were recorded in 12 patches obtained
from different neurons with the pipettes filled with Fluo-4-dextran
solution. Eight patches with synuclein channels were recorded with
Fluo-4 in the pipette. The episodes of channel opening were
collected at different holding potentials. They were analyzed
offline to examine the dependence of bound Ca2+ distributions
upon single-channel Ca2+ flux and its duration.

2.4 Basics of the reaction–diffusion
equation

To start with, consider Ca2+ diffusion from a single channel in
the presence of a single buffer as a system of two partial differential
equations (PDE)

∂ Ca2+[ ]/∂t�DCaΔ Ca2+[ ]– kon Ca2+[ ] F[ ]+koff B[ ],
∂ F[ ]/∂t�DbΔ F[ ] – kon Ca2+[ ] F[ ] + koff B[ ]. (1)

Here, Δ stands for the Laplacian; [Ca2+], [F], and [B] are the
concentrations of calcium and buffer in free and Ca2+-bound
forms, respectively; kon and koff are the rate constants of calcium-
binding to and dissociation from the buffer. The ratio koff/kon = Kd is
the dissociation constant of the buffer and measures its affinity to
calcium. DCa and Db are the diffusion coefficients for calcium and
buffer, respectively. For simplicity, the equations are set for a single
buffer, but generalization for multiple buffers is straightforward, as
discussed below. The definitions and typical parameters are
summarized in Table 1.

In the following derivations, all concentrations are normalized
by dividing by the total buffer concentration Bo. Equation 1 is then
written as

ct�Δc – cf+γ 1 − f( ), (2a)
ft� dΔf − cf+γ 1 –f( ), (2b)

where the subscript denotes the time derivative, c = [Ca2+]/Bo and f =
[F]/Bo are the normalized concentrations of free calcium and free
buffer, respectively; d = Db/DCa is the relative diffusion coefficient,
and γ = koff/konBo = Kd/Bo = 0.002 is the normalized dissociation
constant. The last term on the right-hand side in Eq. 2a describes
Ca2+ dissociation, and b = 1–f is the normalized concentration of the
Ca2+-bound buffer. The dimensionless times and distances are
defined as τ = 1/konBo = 50 μs and ro = √DCa/Bokon = 0.1 μm,
respectively. These intrinsic constants of Ca2+-buffering (Table 1)
are calculated for diffusion-limited kon = 108 M-1s-1 and Bo = 0.2 mM,
typical values for cytoplasmic calcium-binding proteins, and DCa =
200 μm2/s.

The boundary condition is specified by assuming the constant
flux through the open channel

cr� − i/2πzR2DCaF, (3)
where i is a single-channel current, F is the Faraday constant, and R
is the exit radius (R = 0.5 nm, (Malasics et al., 2009)). For radial
diffusion, it is useful to transform c = u/r, which replaces the
Laplacian Δ = 1/r2d (r2dc/dr) with the second derivative Δ = d2u/
dr2. The boundary condition transforms into

Rur – u ≈ − u � −AR, (4)

where A is the Ca2+ concentration at the channel lumen. Because R is
very small, the first term can be neglected. For i = 0.1 pA, the
constant is A = 0.7 mM.

The linearized version (EBA) assumes a fast irreversible binding
of Ca2+ to buffer. This sets f = 1 and γ = 0 in Eq. 2a and leads to a
simple ordinary differential equation (ODE) of the second order

Δc � c, (5)
which has an exponential–hyperbolic solution

c � A/r( ) exp −r/ro( ), (6)
The solution of the transcendental Equation 6 is given by the

Lambert function defined as W = exp (-W) (Olver et al., 2011). The
reference point may be r = 0.57 ro for c = A. In the 1D case, the 1/r
factor is absent, and r = 0.37ro.

2.5 Numerical solution of reaction–diffusion
equations

The PDEs derived in the text below are solved with Du
Fort–Frankel numerical integration (Du Fort and Frankel, 1953).
Its performance is better than that of the Crank–Nicolson algorithm
and unconditionally stable. For discretization of diffusion equation
ct = Dcxx, the concentrations at times tn = nΔt and space points xm =
mΔx are needed. The following parameters are calculated

d1� 1 − α( )/ 1 + α( ), d2�α/ 1 + α( ),with α�2DΔt/Δx2, (7)
and the reaction–diffusion (RD) equation is then solved explicitly at
each mesh point as

cn+1m � d1 c
n−1
m + d2 cnm+1+cnm−1( )−Δt cnm fn

m. (8)
The last term is the reaction term (-cf) specified by respective

terms in the PDEs derived below.

3 Results

3.1 Immobile buffer

Ca2+ diffusion in the presence of a single immobile buffer is
described by the PDE system as

ct�Δc – cf, (9a)
ft� −cf . (9b)

For the initial concentration of free buffer fo = 1, integration of
the second equation gives

f � foe
−y, (10)

where a new variable,

y � ∫ cdt, (11)

the integral of Ca2+ concentration, is introduced. Integration of Eq.
9a then gives a non-linear PDE

yt�Δy − 1 + e−y, (12)
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with the boundary condition yR= tcR. Equation 12 has no general
solution even in the 1D case except a self-similar particular solution
in moving coordinates z = ax–bt (Polyanin and Zaitsev, 2004).

Eq. 12 (Smith et al., 2001) was solved numerically using the Du
Fort–Frankel algorithm described in above. Figure 1 shows the
calculated radial (3D) and 1D profiles for free Ca2+ and Ca2+-bound
buffers for different Ca2+ fluxes. They are coded as relative Ca2+

levels at channel lumen A = [Ca2+]/Bo. It is seen that [Ca2+] decays
rapidly from the entry site. In the 3D case, [Ca2+] is very big due to
the hyperbolic factor 1/r, intrinsic in radial symmetry, Eq. 6
(Mironov, 2019). Large free Ca2+ values strongly violate the
EBA assumption that [Ca2+]<<Bo. The spatial profiles of the
Ca2+-bound buffer expand with time as traveling waves. They
appear already for a very small relative Ca2+ flux A = 0.01 and
widen with increasing A (Figure 1). The increment between
subsequent curves decreases with time, indicating a decrease in
wave speed.

A simple analytical argument helps understand the appearance
of traveling waves. Free Ca2+ approach fast exponential–hyperbolic
steady-state solution given by Eq. 4 in EBA. Under such conditions,
the bound Ca2+ is obtained from Eq. 9b as

Ca2+−bound[ ] � b � 1 − f� 1−exp −At/ro. exp −r/ro( )[ ]. (13)
The expression describes the traveling wave spreading out

according to the time constant proportional to the Ca2+ level at
channel lumen, A.

Another interesting feature emerges when we identify, for a
moment, the bound buffer with an immobile Ca2+-sensor

(McMahon and Jackson, 2018). The temporal and spatial
patterns of sensor activation should then be given by the profiles
for the Ca2+-bound buffer, as shown in Figure 1. From this, one may
deduce that a crucial factor in the Ca2+-mediated functional
response may be the time when a sensor at a given location is
saturated with Ca2+. A suggestion with such a role of bound Ca2+

underlines a statement that “messages diffuse faster than
messengers” (Pando et al., 2006) coined by simulating the
diffusion of particles in the presence of traps as applied for GFP-
tagged glucocorticoid receptors in the nuclei of mouse
adenocarcinoma cells. The mathematical formulation of the
problem resembles that considered in this study.

Both the 3D and 1D cases of Ca2+ diffusion are physiologically
relevant because they present Ca2+ diffusion defined by specific
geometric constraints. For radial diffusion, Ca2+ spreads out in a
semi-infinite cytoplasm free from intracellular organelles of
macromolecular aggregates that may hinder diffusion. 1D
diffusion may imitate Ca2+ diffusion through a tortuous
pathway that extends from the point of Ca2+ entry to the
sensor. A well-known 1D example is the Ca2+ waves in
neuronal dendrites (Augustine et al., 2003; Mironov, 2008). Of
note, in linear models, the 3D and 1D solutions are related: the
former is obtained from the latter by simple division of the
solution by the distance from the channel lumen. The
application of such transformation is shown in Supplementary
Figure SB.

A general conclusion from this section is that bound Ca2+

distribution in the presence of an immobile buffer is dynamic

FIGURE 1
Changes in free and bound Ca2+ in the presence of an immobile buffer. The solutions are obtained from Eq. 12. Differently colored curves are
0.25 ms apart. Time and space scales are the same in all panels. The concentrations of free and bound Ca2+ [CaB] are normalized to the total buffer
concentration, Bo. To compare the waveforms of transients of free [Ca2+], it is additionally divided by the concentration of Ca2+ at the channel lumen (A).
Radial Ca2+ increases near the channel are cut from above because they are too big due to the hyperbolical factor 1/r that appears in radial diffusion,
Eq. 6. At constant Ca2+ influx, theCa-bound buffer spreads out, whichmirrors a depletion of the free buffer. Thewaves have a tahn-like form, a hallmark of
many RD systems (Polyanin and Zaitsev, 2004). The increment between the curves decreases with time, indicating a decrease in instantaneous velocity.
Each panel is complemented with 3D plots on the right, with the axes defining time, space, and relative concentrations, respectively (the scaling is
indicated in the inset in themiddle). The concentrations in the panels are plotted on the z-axis, and increases are represented by warmer colors, with time
running from left to right along the x-axis.
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rather than static. A simple time-dependent model shows inherent
contradictions with the linear EBA model: (i) free buffer is not in
excess even for small Ca2+ fluxes (i < 0.1 pA), (ii) not constant, and
(iii) shows the time- and space-dependent changes in bound Ca2+

that mirror buffer depletion. The conclusions are also valid for low-
mobility buffers, as examined in the following section.

3.2 Slowly moving buffer

The results in the previous section are extended below to the case
of a slowly moving buffer. Eq. (2) is now given as

ct � Δc – cf,
ft � d.Δf − cf.

(14)

The system was solved in Supplementary Appendix SA1. The
calculations presented in Figure 2 were made for calmodulin, the
relative diffusion coefficient of which is set to d = 0.03. This is
compatible with a relative diffusion coefficient d = 0.07 for an

endogenous “immobile” buffer in chromaffin cells (Neher and
Augustine, 1992). The radial and linear Ca2+ profiles resemble
the data obtained for the immobile buffer (the dots in Figure 2).
A close relationship validates expansion on a small parameter d
applied in deriving the solution of Eq. B1 in Supplementary
Appendix SA1. It also indicates that immobile buffer
approximation serves as a good approximation for slowly moving
buffer.

Free Ca2+ approached the steady state quickly, but the bound
Ca2+ was never stationary. [CaB] waves became denser with time.
The speed of changes in free and bound Ca2+ changes with time
and can be characterized by the instantaneous velocity. This was
estimated as the x-distance between the half-amplitude points
divided by the time increment between the respective curves. For
linear diffusion with small Ca2+ flux (A = 0.1, the right panels in
Figure 2), it subsided from 56 to 3 μm/s, as estimated at 0.1 and
5 ms after the pulse. The velocity changed at the same time points
from 78 to 18 μm/s for bigger Ca2+ fluxes (A = 1). In contrast, the
bound Ca2+ “moved” much faster. For A = 0.1, the velocities at

FIGURE 2
Diffusion of free and boundCa2+ in the presence of a low-mobility buffer. The concentration profiles are obtained from the non-linear PDEs for low-
mobility buffer (smooth curves, Supplementary Appendix SA1) and immobile buffer [dots, Eq. 12]. The first curve is taken at 0.1 ms, and the interval
between the following curves is 0.25 ms. Each panel presents the results for different relative Ca2+ concentrations at the channel lumen, A = [Ca2+]/Bo.
Free [Ca2+] is also divided by A to compare the waveforms.
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0.1 and 5 ms after beginning the pulse were 84 and 46 μm/s, and
for A = 1, they were 107 and 85 μm/s, respectively. For the radial
diffusion (Figure 2, the left panels), the values are around 40%
smaller. This can be explained by the role of the damping
hyperbolic factor (1/r). The 1D values are in the range for
Ca2+ waves measured in neuronal dendrites (Augustine et al.,
2003; Mironov, 2008). The data thus demonstrate that the bound
Ca2+ apparently “moves” much faster than free Ca2+ and
overtakes it within a few milliseconds after switching on Ca2+

influx.

3.3 Patch-clamp and imaging

In order to test theoretical predictions, I sought for
experimental proof-of-principle and aimed to obtain the 1D
profiles of the Ca2+-bound buffer. They were imaged after
opening of single channels, and bound Ca2+ was monitored
within a thin pipette filled with fluo-4(X) indicator dyes (inset
in Figure 3A). α-Synuclein forms in the plasma membrane of
hippocampal neurons’ Ca2+-permeable channels (Mironov,
2015). A single channel in the inside-out patch influx was
used to generate controllable “outward” Ca2+ influx into the
patch pipette. The data shown are representative of recordings
made in 12 patches for fluo-4-dextran and in eight patches for
fluo-4.

This 1D experimental system for examination of CaB waves
has several advantages: (i) the number of pixels to collect is equal
to N, not to N3 as in the 3D case, which allows faster
measurements; (ii) 1D profiles are more extended because they
do not include a “hyperbolic factor”, 1/r, a distance from the
source (Figures 1, 2); (iii) the openings are longer than generated
by voltage-dependent Ca2+ channels, which open normally less
than for a couple of milliseconds, which allows more room for the
waves to develop.

The channels in the inside-out patch show stable activity for
about 20 min. The patch was held at 0 mV, where the current was
0, and the potential was periodically shifted for 1 s. Between
10 and 20 openings are observed during the pulse (Figure 3A).
Changes in fluorescence in response to channel opening were
stereotypic and depended only on opening duration and single-
channel current. The distribution of bound Ca2+ expanded with
time and formed a traveling wave (Figure 3B). After returning to
the closed state, the fluorescence decreased fast due to Ca2+

diffusion and reaction with free buffer molecules. In the 1D
case, the diffusional time constant can be estimated as x2/
2DCa = 1 μm2/(2.200 μm2/s) = 2.5 ms. When only 10% free
buffer is available, the reaction time constant is small, 1/
konBo = 1/(2 × 10−5 M) (108 M-1s-1) = 0.5 ms, which promotes
fast decay of bound [Ca2+]. The vertical cross-sections of the
kymograph in the rightmost panel in Figure 3B show the relative
fluorescence in time and space and indicate a spread out of bound
Ca2+. Experimental traces are overlaid upon thick theoretical
curves calculated using the model described above and plotted
in Figure 2. Both sets of data show a good agreement.

The experiments were also carried out with Fluo-4-filled
pipettes. The distribution of bound Ca2+ was narrower and

FIGURE 3
Changes in fluorescence of Ca2+-bound buffer due to
opening of single α-synuclein channels in inside-out patches. α-
Synuclein (α-Syn) channels are incorporated into inside-out
patches excised from cultured hippocampal neurons (see
Methods and Mironov (2015); Mironov (2019)). The pipette solution
contained fluo-4-dextran (B) or fluo-4 (C) in 154 mMNaCl, and the
bathing solution contained 88 mM CaCl2. Opening of channels in
this configuration (the inset in the left upper corner in (A) induced
“outward” Ca2+ current and local increases of Ca2+ bound to
indicator dyes. During 1-s long pulses, at different potentials from
10 to 20 openings were observed. The patterns of CaB
fluorescence were stereotypic and scaled by duration of opening,
which ranges from 3 to 20 ms, and the single channel current.
Following the return to the closed state, the fluorescence
decreased fast due to Ca2+ diffusion and reaction with remaining
free buffer molecules. (A). Experimental configuration and
simultaneous recording of channel activity at +80 mV (upper
trace) and fluorescence of Ca2+ bound to fluo-4-dextran (lower
kymograph). The record is a sample episode of 1-s-long
excursions from 0 mV. (B). Each panel shows a single-channel
current and the fluorescence of Ca2+ bound to Fluo-4 dextran
(kymographs). They present relative changes in fluorescence
(background subtracted, calibration bar on the left). The panels
depict fluorescence measured along a line on the line-scan of the
y-axis (distance from the tip), with time running from left to right
along the x-axis. Increased normalized fluorescence (F/Fo)
corresponded to an increase in bound Ca2+ (warmer colors). The
line scans made at time points are indicated by triangles below the
kymograph. They are presented on the right and indicate a spread
out of bound Ca2+. Experimental traces are overlaid upon the thick
theoretical curves, which were calculated as described in the
Results section and show good agreement. (C). The same
protocols were repeated with Fluo-4 in the pipette. Note that in
the case of the high-mobility buffer both free and bound [Ca2+]
built up the stationary gradients fast.
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quickly attained the steady state. This is expected as Fluo-4 has a
diffusion coefficient of approximately 100 μm2/s (Mironov, 2019),
which is close to that of Ca2+. These experiments may be treated
within the EBA framework by setting the relative diffusion
coefficient in Eq. (2) to d = 1. The solution is obtained in
Supplementary Appendix SB1 and used to plot the thick traces
in Figure 3C. The theoretical predictions show good correspondence
with experimental traces.

4 Discussion

Ca2+ nanodomains established in the cytoplasm in the vicinity
of a single calcium channel represent an accepted paradigm to
explain secretion during synaptic transmission (Eisner et al.,
2023; Augustine et al., 2003; Eggermann et al., 2011; Südhof,
2017). As discussed in the Introduction, the existence of local
Ca2+ gradients is based upon the simplest (and widely used)
linearized model, which uses the excessive buffer
approximation, EBA (Neher, 1986). It assumes irreversible
Ca2+ binding and a constant buffer concentration and does not
consider buffer diffusion (or implicitly assumes that the buffer
mobility is similar to that of Ca2+). The neglect of possible
saturation, and thus depletion of free buffer, may yet
invalidate a simple linearized model.

The aim of the study is to examine the time-dependent Ca2+

changes around an open Ca2+ channel. The non-linear RD
problem of Ca2+ diffusion in the presence of a low-mobility
buffer has the rationale that putative Ca2+-binding species are
bulky proteins whose diffusion coefficients are smaller than DCa

by an order of magnitude. The analysis starts with the case of an
immobile buffer. The solution of the non-linear Eq. (9) shows
that [Ca2+] transients decay and stay localized to the open
channel, similar as in EBA. More intriguing are the profiles of
bound Ca2+, which forms the traveling waves (Figure 1). This
result follows directly from EBA, as given by Eq. (9). This
obviously contradicts the assumption about the constant
concentration of free buffer that should mirror the profile of
bound Ca2+. The traveling waves of the Ca2+-bound buffer appear
already for small Ca2+ fluxes. Their speed ranges from 20 to
120 μm/s, and they are faster for 1D diffusion. The velocity is
high enough to reliably deliver Ca2+-mediated changes along
submicron distances within a few milliseconds. The scales are
compatible with the size of both post- and pre-synaptic endings
and the duration of fast synaptic events.

The low-mobility buffer only slightly modifies the waveform
of waves of bound Ca2+ (Figure 2). We may also consider a Ca2+-
bound buffer as a Ca2+-sensor (McMahon and Jackson, 2018).
Indeed, if the buffer and sensor have identical binding and
diffusion characteristics, their concentration changes should
be identical. EBA treats the width of Ca2+ nanodomains as a
major determinant of Ca2+-mediated signals. The situation is yet
dynamic, not static, and the distribution of Ca2+-bound species is
extended in time and space. This may be crucial in Ca2+ signaling,
in which the onset of related events may be determined by the
time needed for the Ca2+-bound sensor at a given location to
reach a threshold for activation. Of course, further reaction steps

may follow Ca2+ binding that would expand the activation zone in
time and space and correspondingly delay a physiological event.
The inclusion of subsequent reaction steps in sensor activation
would be possible.

The main advantage of the model is the possibility to obtain
the analytical solution and predict novel buffer-mediated effects.
Of course, it is still oversimplified and has several limitations
worth mentioning: (a) it operates on a fast time scale (<10 ms)
and neglects Ca2+ dissociation from the buffer, (b) it skips the
effects of buffer saturation, which were examined in Mironov
(2019), and (c) it considers only a single Ca2+ buffer. A careful
analysis of the effects needs further work, but it may change the
quantitative, not the qualitative, outcome of the study.

For example, the cytoplasm contains multiple buffers with
different properties, and the case of a single buffer is readily
extended to such situations. When Ca2+ unbinding is neglected,
the characteristic temporal and spatial scales (Table 1) can be
defined through the apparent rate constant k = ∑kon,nBo,n, which
is a sum of all buffers present. A good guess is to assume
approximately the same kon,n, close to the diffusion limit k =
kon,dl. Then, the introduction of apparent k = kon,dl ∑Bo is
equivalent to the consideration of a single buffer with
concentration ∑Bo, as treated in the report. “Slow” buffers like
EGTA and parvalbumin can also be included. As discussed in the
Introduction, their slow Ca2+ binding is only apparent. This is
due to the small amount of available Ca2+-binding sites, as the
others are already occupied by protons (EGTA) and Mg2+

(parvalbumin). A diffusional correction (Supplementary
Appendix SA1) is also linear and represented by a sum of
contributions from all buffers taken with appropriate weights,
i.e., the relative concentrations.

Ca2+-unbinding may become important for bigger koff >
1,000 s-1 corresponding to τoff < 1 ms, which becomes
compatible with the channel open and closed times. The case
is relevant for small organic Ca2+-binding species, such as citrate,
lactate, and oxalate Their effects on local Ca2+ transients are not
examined yet, but in such studies, at least two side effects should
be considered. The low-affinity buffers are weak electrolytes
equilibrated with neutral forms, which are membrane-
permeable. Penetration into intracellular organelles such as
mitochondria may influence physiological responses. Ca2+-
binding will also displace protons from the binding sites of
low-affinity buffers, resulting in fast changes in the
cytoplasmic pH, which may invoke specific effects.

In summary, theoretical treatment and experimental data of
Ca2+ diffusion in the presence of a slowly moving buffer show the
spread out of bound Ca, which may play an important role in
physiological events. In particular, Ca2+-mediated signaling
may be determined by the time when a threshold level of
sensor activation is reached by a wave-transported Ca2+-
bound species.
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