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Accurate segmentation of themedical image is the basis and premise of intelligent
diagnosis and treatment, which has a wide range of clinical application value.
However, the robustness and effectiveness of medical image segmentation
algorithms remains a challenging subject due to the unbalanced categories,
blurred boundaries, highly variable anatomical structures and lack of training
samples. For this reason, we present a parallel dilated convolutional network
(PDC-Net) to address the pituitary adenoma segmentation inmagnetic resonance
imaging images. Firstly, the standard convolution block in U-Net is replaced by a
basic convolution operation and a parallel dilated convolutional module (PDCM),
to extract the multi-level feature information of different dilations. Furthermore,
the channel attention mechanism (CAM) is integrated to enhance the ability of the
network to distinguish between lesions and non-lesions in pituitary adenoma.
Then, we introduce residual connections at each layer of the encoder-decoder,
which can solve the problemof gradient disappearance and network performance
degradation caused by network deepening. Finally, we employ the dice loss to
deal with the class imbalance problem in samples. By testing on the self-
established patient dataset from Quzhou People’s Hospital, the experiment
achieves 90.92% of Sensitivity, 99.68% of Specificity, 88.45% of Dice value and
79.43% of Intersection over Union (IoU).
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1 Introduction

As an important medical imaging technology, magnetic resonance imaging (MRI) has
been widely used in the examination of pituitary adenoma because it can display the
anatomical information of soft tissues (Gavirni et al., 2023). At present, the analysis and
processing of medical images mainly rely on the visual discrimination of brainMR Images by
clinicians. This process is not only inefficient and time-consuming, but also has significant
subjective limitations. In addition, it may not be replicable. With the development of
computer science and artificial intelligence, the introduction of multidisciplinary medical
imaging technology can design accurate treatment plans and give more reliable factors to the
diagnosis. Therefore, the research on the segmentation method of pituitary adenoma MR
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image has important theoretical significance and practical
application value for the development of modern medical
informatization and intelligent computing of medical image.

Over the past few decades, various medical image segmentation
algorithm have been presented, which can be broadly grouped into
thresholding (Jain and Singh, 2022; Rawas and El-Zaart, 2022),
watershed (Mohanapriya and Kalaavathi, 2019; Sadegh et al., 2022),
clustering (Xu et al., 2022; Zhou et al., 2022), conditional random
field (Sun et al., 2020; Li et al., 2022), dictionary learning (Yang Y Y
et al., 2020; Tang et al., 2021), graph cut (Gamechi et al., 2021; Zhu
et al., 2021), region growing (Rundo et al., 2016; Biratu et al., 2021),
active contour (Dake et al., 2019; Shahvaran et al., 2021), quantum-
inspired computing (Sergioli et al., 2021; Amin et al., 2022),
computational intelligence (Vijay et al., 2016; Zhang et al., 2022).
These traditional methods rely on developers to design algorithms
for specific applications. They are highly interpretable, require few
hardware devices, and do not require extensive data annotation.
However, some algorithms or models need complex parameter
tuning during in the process of implementation, so their
generalization ability and robustness will be affected for specific
segmentation problems.

Currently, with the development of computer hardware, deep
learning methods have brought tremendous changes to the field of
medical image segmentation, especially the convolutional neural
networks (CNNs) framework. Among these new CNNs
architectures, the most famous is U-Net proposed by
Ronneberger et al. (2015). The main innovation lies in the
rational design of the upper and lower sampling layer and the
jump connection, so that the spatial information lost in the
contraction path and the spatial information lost in the
expansion path can be fused to produce a higher resolution local
output. Since then, many scholars have integrated many theories
into the U-Net framework according to the application
requirements, so that U-Net system has been greatly expanded.
For example, Lu et al. (2021) proposed a WBC-Net that
automatically screens for white blood cells from smear images.
Firstly, the residual network is added to deepen the network
structure and enhance the ability of feature extraction. Then,
WBC-Net introduces a mixed jump path, which can better fuse
the features of different levels in the encoding structure and
decoding structure, and thus improve the segmentation accuracy.
According to the structural characteristics of vestibular, Zhang et al.
(2021) constructed a deep learning network architecture based on
supervision. Based on an encoder-decoder network, the model fuses
the characteristic information of different receiving domains and
attention mechanisms, which greatly improves the accuracy of
network segmentation. AboElenein et al. (2022) proposed
IRDNU-Net for the automatic segmentation of brain tumours in
MRI images. The network used convolution cores of different sizes
in the encoding path and decoding path, then reduced the
dimension of the channel through 1 × 1 convolution to reduce
the computational complexity, and finally carried out superposition
and output to the next layer of the network. Due to the different sizes
of the convolution kernel, the network can effectively extract the
image features of different regions. Zhang et al. (2022) used
DenseNet blocks to replace the convolution blocks of the original
U-Net for the segmentation of skin lesions. This operation makes
the current layer not only related to the output of the previous layer

but also dependent on all previous layers, significantly promoting
the propagation of the gradient.

Although the above deep learning algorithms have achieved
good results in medical data, there is still a big gap between it and
clinical application. This primarily has two reasons. First, the
generalization ability of most deep neural network models is
limited, and their performance in the real data of hospitals will
be greatly reduced, mainly due to the differences of individual
patients, the diversity of data types and the difficulty in the
characterization of diseases. Second, in the current network
architecture, the lack of capturing multi-scale context
information leads to the deficiency of feature learning ability.

Inspired by the above thoughts, we propose a new U-Net
architecture for pituitary adenoma segmentation. Based on the
classical encoder-decoder framework, our network contains three
core strategies: parallel dilated convolutional module, channel
attention mechanism and residual connections. The combination
of these strategies provides good segmentation ability for pituitary
adenoma, and the Dice value, Intersection over Union and F1-score
reach 88.34%, 79.25%, and 91.52%, respectively. The contributions
of this study can be summarized as follows:

(1) A parallel dilated convolutional neural network based on U-Net
architecture is built for pituitary adenoma segmentation.

(2) Replacing the traditional standard convolution block with
PDCM, to extract more abundant multi-level feature
information. Furthermore, we integrate the channel attention
mechanism into PDCM to further strengthen the capability of
the network.

(3) The introduction of residual connections at each layer can
eliminate gradient disappearance and improve segmentation
precision by constructing deeper networks.

2 Materials and methods

2.1 Overview of the network

As shown in Figure 1, the pituitary adenoma lesions that need to
be segmented take up a small part of the entire image, far less than
the background area. The dataset consists of 38 brain MRI scans of
patients. There are 1,200 cases in the training set, 400 cases in the
validation set, and 400 cases in the test set. The annotation work was
manually outlined by three medical experts, and then segmented
and annotated by five computer annotators using Lableme. After the
dataset was generated, it was finally reviewed by three medical
experts to obtain the final dataset (Pusparani et al., 2023).
Another problem is the shape is irregular and the contrast with
its surrounding tissue is not obvious. For the above difficulties, the
architecture of PDC-Net is derived from the U-Net network, as
shown in Figure 2. Our PDC-Net consists of two parts: an encoder
module and a decoder module. The encoder branch consists of five
layers, each of which contains a basic convolution operation and a
PDCM, connected by residuals. After that, a 2 × 2 max-pooling
operation is used for downsampling. In each downsampling process,
the image size will be reduced to half of the original size, and the
number of feature channels will be doubled. Accordingly, in the
decoder branch, an equal amount of upsampling processing is
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performed to obtain an output image with the same size as the input
image. During the upsampling process, the image size is doubled
using deconvolution operations and connected with the features of
the same resolution from the encoder path, followed by a
convolution layer and a PDCM layer. In this network structure,
the application of a large number of batch normalization layers (Jha
et al., 2021) and ReLU activation function (Bai et al., 2021) can not
only accelerate the training speed, but also improve the network
generalization performance and stability. In addition, the DropBlock
strategy is introduced in the convolutional layer to prevent network
over-fitting. To generate the final segmentation result, the 1 ×
1 convolution and sigmoid functions are used at the last layer to
get the desired categories. Detailed introduction can be found in the
following subsections.

2.2 Parallel dilated convolutional module

In the traditional convolutional neural network, continuous
convolution and pooling operations will lead to a decrease in
image resolution and the loss of spatial structure information,
which has a great impact on the task of medical image
segmentation, and directly lead to the blurred boundary and
pixel classification errors after segmentation. With the
appearance of atrous spatial pyramid pooling (ASSP) structure
(Chen et al., 2018b), the above problems can be solved well, and
many optimized models are proposed continuously (Ni et al., 2021;
Xie et al., 2021; Lan et al., 2022; Liang et al., 2022). By connecting
convolution layers with different expansion rates in parallel, ASSP
can alleviate the problem of spatial information loss caused by

FIGURE 1
Examples of problems in segmenting pituitary adenoma fromMR images. The first row: original images. The second row: the gold standard sketched
by experts.

FIGURE 2
Network architecture of our PDC-Net.
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downsampling, and enlarge the receptive field without increasing
the amount of computation, to obtain more regional information.
However, these methods ignore the boundary information when
fusing multi-scale features, which is not effective for small objects.
Therefore, a parallel dilated convolutional module integrated with
the channel attention mechanism is proposed.

As shown in Figure 3, the PDCM consists of five parallel
channels: four convolution layers (with different dilated rates)
and a channel attention mechanism. Firstly, the first branch is a
1 × 1 convolution, which aims to maintain the original receptive field
while reducing the number of channels in the feature map. The
second to fourth branches use convolution of different dilated rates

to obtain different receptive fields, to fuse the feature information of
different scales. However, due to the very small proportion of
pituitary tumour region in the whole MR image, too large dilated
rate will cause discontinuity of the receptive field, so we set the
dilated rate from {6,12,18} to {2,4,6}. The fifth branch is the channel
attention mechanism, as shown in Figure 4. CAM module obtains
the weight information on the channel by pooling, channel
convolution, and sigmoid of the input feature, so it can not only
retain the underlying features of the target boundary information,
but also obtain more context information. In addition, we do not
fuse five different scales of information simply. We incorporate the
feature output from the previous branch into the input feature of the
next branch, and then perform the scale transformation. For
example, assuming that Fin is the input feature, and its output is
F1 after the first branch. Then, we will take (F1 + Fin) as the input of
the second branch, followed by a convolution operation with a
dilated rate of 2. Similarly, the inputs of the third to fifth branches
are (F2 + Fin), (F3 + Fin) and (F4 + Fin), respectively. Finally, the
output feature Fout of PDCM is (F1 + F2 + F3 + F4 + F5). By using
this connection option, the network can get a feature map with
additional dimensions and scale context information, which will
help it classify border pixels more accurately.

2.3 Residual connections

The experimental results show that the performance of a deep
network does not increase consistently with the increase in the
number of layers. When there are too many layers in the network,
the phenomenon of gradient disappearing and dispersion may
occur. Therefore, to improve the stability of the network in the
deep learning training process and alleviate the problem of
gradient disappearance, the residual connections are
introduced into our model. As shown in Figure 5, we add a
shortcut branch outside the main network, and then connect the
main branch input x with the main branch output F(x). After
adding the residual connections, we could make full use of each
feature graph before and after convolution, which solved the
degradation problem and greatly improved the learning ability of
the network.

FIGURE 3
Structure of PDCM.

FIGURE 4
Structure of CAM.
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2.4 Loss function

Due to the small data set, different lesion sizes, uneven foreground
and background, it is easy to produce class imbalance problem. Dice
Loss function (Arora et al., 2021; Liu et al., 2021; Phan et al., 2021) can
judge from a global perspective and reduce the influence of the
foreground image, which is adopted to train the network in this
paper, and its calculation formula is defined as follows:

LDice � 1 −
2∑
N

i�1
yiŷi

∑
N

i�1
y2i + ∑

N

i�1
ŷ2i

(1)

where LDice is the Dice loss, N denotes the number of pixels, ŷi
represents the prediction probability that the ith pixel belongs to the
lesion, yi is the actual label of the ith pixel.

3 Results and discussion

All models were based on NVIDIA Quadro RTX 6000 GPU
memory of 24 GB, CUDA 11.0.2, cuDNN v8.0.4, and TensorFlow

2.4.0. These models were trained with the batch size set to 16 and the
epochs set to 300. In addition, the Adam optimizer (Ji and Wu,
2022) whose momentum was 0.999 and learning rate of 1e-5 was
adopted. Besides, the kernel size was set to (3,3), and the dropout
rate was set to 0.1. The validation loss was monitored at every epoch
and the best weight of the model would be saved when the validation
loss is smallest in the iterative process.

3.1 Evaluation metrics

To evaluate the performance of the PDC-Net on the dataset,
Sensitivity (Shen et al., 2022; Siar and Teshnehlab, 2022), Specificity
(Rai and Chatterjee, 2021; Ramachandran et al., 2021), Dice value
(Yang Y et al., 2020; You et al., 2021), and Intersection over Union
(Ahmed et al., 2021; Zou et al., 2021) are utilized as evaluation
metrics, which can be defined as:

Sensitivity � TP

TP + FP
(2)

Specificity � TN

FP + TN
(3)

Dice � 2TP
2TP + FN + FP

(4)

IoU � TP

TP + FN + FP
(5)

where TP represents the number of adenoma pixels judged to be
adenoma, TN represents the number of non-adenoma pixels judged
to be non-adenoma, FP represents the number of non-adenoma
pixels judged to be adenoma, and FN represents the number of
adenoma pixels judged to be non-adenoma.

3.2 Results of PDC-Net

As shown in Figure 6A, the change in loss value during training is
demonstrated. After 220 steps, although the loss on the training set is in

FIGURE 5
Residual connections.

FIGURE 6
Iterative process parameters change. (A) Loss. (B) Evaluate metrics.
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a slow decline state, the loss on the validation set gradually tends to be
flat or even rises slowly, which indicates that the optimal weight can be
obtained when the number of iterations of the model is set at 300 steps.
Finally, the model obtained 0.9092, 0.9968, 0.8845, 0.7943 on the four
metrics of Sensitivity, Specificity, Dice and IoU, respectively. The
iterative change of evaluation metrics is shown in Figure 6B.

The example of the results of the PDC-Net model on the
pituitary adenoma segmentation dataset is illustrated in Figure 7.
The results show that the proposed model can segment the
boundaries of pituitary adenomas from brain MR Images
through different angles. Although the labelling process is carried
out by several experts and reviewed repeatedly, it is difficult to
accurately mark manually with human eyes. It is gratifying that for
some segmentation results, PDC-Net is more accurate than manual
labeling results, as shown in the third row of Figure 7.

3.3 Ablation experiment

To verify the function of the suggested module and the
associated structure, ablation experiments were conducted, and
the relevant conclusions were discussed as follows.

3.3.1 PDCM module
To expand the receptive field, raise the capacity of the model to

extract multi-scale information, and improve the network
segmentation accuracy, the PDCM was proposed. The proposed
PDCM modules are of two types, one without the previous branch
and the other is the fusion of previous branch features (PDCM). As
shown in Table 1, the segmentation results of several structures are
presented. The results show that the model with the previous branch
features has a slight improvement in every metric compared with the
model without previous branch features. It is worth noting that the
model incorporating small receptive field features has relatively large
improvements in each evaluation metric.

As displayed in Figure 8, the segmentation results of the three
structures in Table 1 are presented. By comparing the results in
the second row of Figure 8, it can be found that the model without
the PDCM module does not understand the global information
enough, leading to false detection of the non-adenoma region.
Although the simple PDCM connection concatenates the
convolution results of different receptive fields, it lacks the
connection between small receptive fields and large receptive
fields. PDCM with previous branch can solve this problem well,
as shown in Figures 8D, E.

FIGURE 7
Pituitary adenoma image segmentation results of PDC-Net model. The first row: original images. The second row: the gold standard sketched by
experts. The third row: results of PDC-Net.

TABLE 1 Ablation experiment of the PDCM module.

Sensitivity Specificity Dice IoU

No PDCM 0.8949 0.9965 0.8696 0.7721

PDCM without previous branch 0.8993 0.9966 0.8705 0.7722

PDCM with previous branch 0.9092 0.9968 0.8845 0.7943
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3.3.2 Residual connection
For deep learning, simply increasing the depth of the network to

improve the learning ability of the network often leads to the
problem of gradient disappearance. The feature of the residual
network is to improve the learning ability and accuracy of the
deep network by adding jump connections. As shown in Table 2,
ablation experiments concerning residual connection were
presented. The results show that when the PDCM module was
not added, the addition of residual gave a small boost to the model
due to the relatively shallow network. When PDCM with previous

branch was added, the model with residual was improved by more
than one percentage point in Dice and IoU due to the relatively deep
network.

The segmentation results concerning the Residual structure
were shown in Figure 9. As shown in Figures 9C, D, for the
network with PDCM structure, the addition of residual structure
affects the segmentation accuracy of the adenoma boundary, even if
there is a slight improvement in the evaluation metrics. On the
contrary, when the PDCM with previous branch structure is added
to the network, the learning ability of the model is reduced due to the

FIGURE 8
Comparison of segmentation results of different PDCM modules. (A) Original images. (B) Label images. (C) No PDCM. (D) PDCM without previous
branch. (E) PDCM with previous branch.

TABLE 2 Ablation experiment of residual connection.

Sensitivity Specificity Dice IoU

No Residual + No PDCM 0.8827 0.9963 0.8655 0.7660

Residual + No PDCM 0.8949 0.9965 0.8696 0.7721

No Residual + PDCM with previous branch 0.9077 0.9964 0.8762 0.7810

Residual + PDCM with previous branch 0.9092 0.9968 0.8845 0.7943
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too-deep structure, as shown in Figure 9E. At this time, the addition
of residual can effectively improve the segmentation accuracy of the
model and provide a more accurate description of the adenoma
boundary.

3.4 Comparison with different models

To evaluate the performance of the model more
comprehensively, the proposed model is compared with some

FIGURE 9
Comparison of segmentation results of residual structures. (A) Original images. (B) Label images. (C) No Residual + No PDCM. (D) Residual + No
PDCM. (E) No Residual + PDCM with previous branch. (F) Residual + PDCM with previous branch.

TABLE 3 The results of comparison with other models.

Sensitivity Specificity Dice IoU

U-Net (Ronneberger et al., 2015) 0.8821 0.9868 0.8661 0.7715

AttUNet (Oktay et al., 2018) 0.8904 0.9965 0.8683 0.7802

SegNet (Badrinarayanan et al., 2017) 0.8689 0.9961 0.8680 0.7695

ODSegmentation (Wang J K et al., 2021) 0.8899 0.9968 0.8735 0.7771

CLNet (Zheng et al., 2021) 0.8860 0.9966 0.8679 0.7685

MMDC-UNet (Jin et al., 2022) 0.8777 0.9966 0.8828 0.7927

DeepLabV3+ (Chen et al., 2018a) 0.8930 0.9961 0.8618 0.7589

SK-UNet (Byra et al., 2020) 0.9091 0.9963 0.8736 0.7775

SAR-UNet (Wang L et al., 2021) 0.8850 0.9926 0.7936 0.6613

PDC-Net 0.9092 0.9968 0.8845 0.7943
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classical and newly proposed models, and the evaluation metrics are
shown in Table 3. The results illustrate that the performance of the
proposed PDC-Net on the pituitary adenoma dataset is better than
other models involved in the comparison.

The segmentation results of different models are illustrated in
Figure 10. Despite the fact that the site of the pituitary adenoma varies
for distinct brain MR images, the location is almost certain for brain
MR images taken in the same direction. Due to the lack of correlation
between high and low semantic features, U-Net will produce missing
pixels when facing some dermoscopic images with large background
interference and complex color changes, as shown in Figure 10C.
Since the attention mechanism is more for the localization of
adenomas and lacks the connection of high and low-scale features,
the network with the attentionmechanism cannot better complete the
description of the boundary contour, as shown in Figures 10D, J, K.
Some network architectures cannot produce better results on the
pituitary adenoma data set because of the complicated network
connections and inappropriate depth of the network, as illustrated
in Figures 10F–I. The experimental results show that the proposed
network structure can accurately segment pituitary adenomas from
brain MR images in all directions, which has important research
significance for intelligent and automatic analysis of medical images.

4 Conclusion

Taking pituitary adenomas as the research object, this study
constructed a deep learning model based on U-Net architecture

to segment the boundaries of adenomas, and the relevant
conclusions were as follows: firstly, the proposed PDCM
module with previous branch can effectively combine the
feature information of different scales and describe the
adenoma boundary more accurately. Secondly, the integration
of residual connection makes the deep network structure
combined with the PDCM module obtain stronger learning
ability and improves the performance of the model on the
dataset. The results show that the proposed method has
research significance for the automatic and intelligent
detection of pituitary adenoma. Finally, the proposed PDC-
Net can accurately segment pituitary adenomas from brain
MR images, and it determines 90.92% of Sensitivity, 99.68% of
Specificity, 88.45% of Dice value and 79.43% of Intersection over
Union.
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