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Introduction: Lactobacillus plantarum PS128 (PS128) could be considered an
antioxidant supplement to reduce muscle fatigue and improve exercise capacity
recovery after vigorous exercise.

Purpose: The purpose of this study is to investigate the effect of PS128 on muscle
fatigue and electromyography (EMG) activity after a half-marathon (HM).

Methods: The experimental design used a repeated-measures design with a
double-blind approach. The participants either took two capsules of PS128 for
4 weeks as the PS128 group (PSG, n = 8) or took two capsules of a placebo for
4 weeks as the placebo group (PLG, n = 8) to ensure counterbalancing. The time
points of themaximal voluntary isometric contraction (MVIC) and EMG activity test
were set before probiotics were taken (baseline), 48 h before HM (Pre), and
immediately at 0 h, 3 h, 24 h, 48 h, 72 h, and 96 h after HM.

Results: EMG activity included median power frequency (MDF), integrated EMG
(iEMG), and neuromuscular efficiency (peak torque/iEMG). The MVICs of knee
extensors, analyzed by using an isokinetic dynamometer, showed a decrease from
the Pre to 0 h (p = 0.0001), 3 h (p < 0.0001), 24 h (p < 0.0001), 48 h (p < 0.0001),
72 h (p = 0.0002), and 96 h (p = 0.0408) time points in the PLG. Sidak’s multiple
comparisons tests showed that the PLGwas significantly lower than the PSG at 0 h
(p=0.0173), 3 h (p < 0.0001), 24 h (p < 0.0001), 48 h (p < 0.0001), 72 h (p < 0.0001),
and 96 h (p=0.0004) time points. TheMDF of vastusmedialis oblique (VMO) in the
PLG was significantly decreased 24 h after HM and significantly lower than that in
the PSG at all times points after HM. The iEMG of VMO in the PLG was significantly
decreased 48 h after HM and significantly lower than that in the PSG at 0 h, 3 h,
24 h, 48 h, and 72 h after HM.

Conclusion: The PS128 supplementationmay prevent the decrease in MDF, iEMG,
and peak torque after vigorous exercise. Recreational runners may consider
implementing a probiotic supplementation regimen as a potential strategy to
mitigate muscle fatigue following HM.
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1 Introduction

Long-distance running, like marathons and half-marathons
(HMs), is incredibly demanding due to its prolonged exertion,
eccentric movements, and high intensity (Hill et al., 2014). Post-
exercise muscle fatigue is the result of complex factors involving
the terminal end of the alpha motor neuron within skeletal
muscles, which remain incompletely understood. This fatigue
often leads to a significant decrease in muscle performance
lasting several days (Petersen et al., 2007; García-Manso et al.,
2011). To aid recovery and promote athlete wellbeing, strategies
are needed to expedite their return to regular training without
increasing injury or illness risks (Elias et al., 2012; Delextrat et al.,
2013). Muscle fatigue is a temporary reduction in the maximum
force or power that a muscle can produce, which is caused by
physical exercise (Mackey et al., 2008; Carroll et al., 2017). This
condition can cause a decrease in muscle function and joint
stability (Rowlands et al., 2001; Paschalis et al., 2007), which can
negatively impact exercise performance (Cheung et al., 2003;
Burt and Twist, 2011). The factors believed to cause muscle
fatigue include the accumulation of metabolites in the muscle
and inadequate motor command within the neuromuscular
system (Enoka and Duchateau, 2008).

Surface electromyography (EMG) is commonly used to evaluate
muscle fatigue, as it can non-invasively and quantitatively measure
myoelectrical activity in real time. Different indexes have been
proposed to analyze EMG signals, including the median
frequency (MDF), mean frequency (MNF), root mean square
(RMS) for integrated EMG (iEMG), fractal dimension, and
average rectified value (De Luca, 1984; Kahl and Hofmann, 2016;
Hou et al., 2021). The shift in MDF primarily reflected biochemical
changes in type 2 muscle fibers, indicating fatigue in the fast-twitch
motor units (Gerdle and Fugl-Meyer, 1992). The functional state of
the neuromuscular system could be described in terms of its capacity
to generate a specific level of muscle activation, known as
neuromuscular efficiency (NME) (David and Mora, 2008). The
amplitude of the bioelectric activity in the muscles could be
evaluated through EMG signals, which provide insights into both
peripheral and central strategies employed by the neuromuscular
system, especially during muscle contractions and force production
(Farina et al., 2004). In individuals with type 2 diabetes, training-
related enhancement in NME was associated with higher peak
torques, while the neural signals controlling muscle activation,
indicated by RMS, showed minimal change. This implies that
improved NME may be influenced by the central nervous system
(CNS) (Gabriel et al., 2006).

Peripheral fatigue involves a decrease in neuromuscular junction
effectiveness and metabolic changes within muscles (Ament and
Verkerke, 2009; Korzeniewski, 2019). Muscular fatigue likely results
frommetabolite accumulation due to reactive oxygen species (ROS),
including inorganic phosphates, calcium ions, lactate, ADP,
magnesium, and glycogen depletion, disrupting homeostasis
(Myburgh, 2004). This type of fatigue is particularly pronounced
during high-intensity exercise, as the buildup of metabolites can
disrupt the interaction between actin and myosin cross-bridges.
Consequently, this leads to a reduction in the activity of the ATPase
enzyme, which is directly related to the contraction rate. The
metabolic environment fostering peripheral and central fatigue is

characterized by acidosis with low pH levels and an accumulation of
phosphates. These factors work in synergy, reducing the muscle
fiber’s ability to generate force (Woodward and Debold, 2018).
Peripheral fatigue, linked to homeostasis, arises significantly
when surpassing the onset of blood lactate accumulation (OBLA)
during exercise, leading to the buildup of substances like lactate,
hydrogen, and ammonia in the blood. Exercise-induced fatigue may
also affect the action potential speed along the sarcolemma due to
changes in the muscle fiber environment. Increased release of
potassium ions (K+) from muscle fibers is another critical factor,
obstructing tubular action potential within the T-tubules and
reducing force output due to excitation–contraction coupling
decline (Ament and Verkerke, 2009).

Lactobacillus plantarum PS128 (PS128) is a beneficial probiotic
known to enhance the immune system, reduce inflammation, and
modulate immune responses (W.H. Liu et al., 2015). It has also
shown promise in alleviating anxiety-like behaviors, potentially
aiding in the management of neuropsychiatric disorders (W. H.
Liu et al., 2016). Recent research has emphasized its efficacy in
reducing oxidative stress and muscle damage in endurance athletes
after prolonged exercise (Huang et al., 2019). During exercise, ROS
are produced in active muscles, leading to the formation of products
such as lipid peroxides and oxidized proteins (Davies et al., 1982;
Diaz et al., 1993). These ROS products might play a crucial role in
the development of fatigue, particularly during moderate-to-intense
exercise such as running (Parker et al., 2018; Thirupathi et al., 2021).
Using PS128 as an antioxidant might reduce muscle fatigue and
improve exercise capacity recovery after HM. This performance
improvement is thought to be due to an increase in antioxidant
capacity and a reduction in muscle damage. (Huang et al., 2019; Fu
et al., 2021).

This study aimed to investigate how PS128 affects NME in the
context of exercise. It was hypothesized that after HM, PS128 intake
could a) prevent a decrease in force and iEMG in knee extensors,
thus maintaining NME, and b) prevent a reduction in MDF,
indicating a lesser reduction in the recruitment of lower fast-
twitch muscles.

2 Materials and methods

2.1 Study design

A double-blind, repeated-measures design was used to evaluate
the effectiveness of PS128 in preventing the reduction of iEMG,
MDF, and NME following HM and its potential to improve muscle
fatigue. The participants took two capsules of PS128 before breakfast
and dinner for 4 weeks as the PS128 group (PSG, n = 8) or took two
capsules of placebo for 4 weeks as the placebo group (PLG, n = 8) to
ensure counterbalancing. After all the experimental protocols, they
were going to execute a 3-month washout period. Subsequently, the
two groups switched capsules and executed the same experimental
protocols again. The time points for exercise capacity and the EMG
activity test were set before probiotics were taken (baseline), 48 h
before HM (Pre), and immediately at 0 h, 3 h, 24 h, 48 h, 72 h, and
96 h after HM (Figure 1). The exercise capacity test included lower
limb strength. EMG activity included MDF, iEMG, and NME (peak
torque/iEMG).
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This study was conducted according to the guidelines of the
Declaration of Helsinki and approved by the Institutional Review
Board of the University of Taipei (Protocol number IRB-2020-
054 and date of approval: 18 September 2020). All participants
gave their informed written consent.

2.2 Participants

Eight recreational runners (four males and four females; age:
26.6 ± 1.9 years; height: 166.8 ± 10.4 cm; and weight: 66.6 ±
15.3 kg) were recruited for this study from the University of
Taipei according to the following inclusion criteria: a) age
18–25 years; b) no engagement in professional physical
training. Exclusion criteria were as follows: a) the presence of
known cardiovascular, pulmonary, metabolic, bone, or joint
diseases; b) muscle and joint injuries during the last 6 months;
and c) use of fermented products (e.g., Yakult or yogurt),
minerals, vitamins, antibiotics, and traditional Chinese
medicines in the last 6 months. Participants were instructed to
continue their regular dietary habits throughout the study period
without the use of any performance-enhancing substances or
supplements and maintain their daily living without additional
exercise. They were informed about the objectives, procedures,
and potential risks of this study.

2.3 Procedures

2.3.1 Lactobacillus plantarum PS128
PS128 was a capsule dosage form manufactured by Bened

Biomedical Co., Ltd. [Taipei City, Taiwan (R.O.C)], containing a
milky white powder. PS128 is deposited at the DSMZ German
Collection of Microorganisms and Cell Cultures, accession
number DSM 28632. Each capsule contains 400 mg of
lyophilized bacterial powder, which contains 300 mg of
lyophilized PS128 powder [1.5 × 1010 colony forming units
(CFU)] and 100 mg of microcrystalline cellulose as excipients.
The placebo group (PLG) took the same type of capsules filled
with 400 mg of microcrystalline cellulose twice daily. The
PS128 group took one capsule twice daily, equivalent to a dose
of 3 × 1010 CFU/day. Products were refrigerated at 4–8°C.

2.3.2 Half-marathon
HM was conducted on a 400-m track and field stadium made of

polyurethane, situated on the Tianmu campus of the University of
Taipei. Participants were required to complete a 5-min jogging
session and a 15-min dynamic warm-up before 5 o’ clock in the
morning. The distance of HM is 21 km, so the participants should
have run 52 laps and 200 m. The first aid station was set near the
starting line to offer water or emergency medical care. All the
subjects were instructed to fast during HM, with water
consumption being the only exception.

2.3.3 Lower limb muscle strength test
The lower limb strength was tested using an isokinetic

dynamometer (Biodex System Pro 4; Biodex Medical Systems,
Shirley, NY, USA), and the maximal voluntary isometric
contraction (MVIC) of knee extensors was measured.
Familiarization was executed 2 weeks before the MVIC test. The
sitting position was hip flexion at 85° and knee flexion at 30° with the
dominant leg, and the chest, hip, and non-dominant thigh were fixed
with straps. The participants executed the MVICs of the knee
extensor for 3 s, repeating the procedure thrice with a 1-min
interval. The best of three attempts was considered.

2.3.4 Electromyographic activity
EMG signals were recorded using myoMUSCLE EMG Analysis

Software (myoRESEARCH 3.14, Noraxon, Scottsdale, AZ,
United States) to measure the MDF and iEMG of knee extensor
muscles, including vastus medialis oblique (VMO), vastus lateralis
oblique (VLO), and rectus femoris (RF). Skin preparation involved
shaving and cleaning it with alcohol. Wireless EMG sensors, with a
10 mm diameter and 20 mm electrode spacing, were placed on the
muscle belly in a bipolar configuration (H. J. Hermens et al., 2000;
Hermie J Hermens et al., 1999). The data were sampled at 1,000 Hz.
MDF analysis involved fast Fourier transformation (FFT). iEMG
was derived through full-wave rectification, smoothed using RMS at
100 Hz, and integrated. NME was calculated as [force/iEMG].

2.4 Statistical analysis

All dependent variables were described by the mean ± SD. The
data were analyzed using GraphPad Prism software (Version 8;

FIGURE 1
Experimental design flowchart.
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GraphPad Software, San Diego, CA, United States). Statistical
significance was set at p ≤ 0.05. The normality assumption of the
variable was verified using the Shapiro–Wilk test. Homogeneity of
variance and sphericity were assessed using Levene’s test and
Mauchly’s test, respectively. Then, a two-way repeated-measures
analysis of variance (ANOVA) was applied to test the changes in
variables over time between the two groups, considering the within-
subject factor time (baseline, Pre, 0 h, 3 h, 24 h, 48 h, 72 h, and 96 h).
Post hoc tests included Tukey’s and pairwise comparisons with
Sidak’s adjustments after one-way repeated-measures ANOVA.
Paired t-tests were used to analyze the performance of HM
between the PLG and PSG. All data were normalized by
calculating the percentage of the premeasurement (post-test/pre-
test) × 100% for comparison. The results were presented as the
percentage (%) ± standard deviation (%).

3 Results

3.1 Test of homogeneity

The results of the test of homogeneity are shown in Table 1.
Mean ± SD was used to describe all dependent variables. All
statistical tests were conducted using SPSS 20.0 with statistical
significance set at p ≤ 0.05. The results of the t-test show that
there was no significant difference between the PLG and PSG at
baseline.

3.2 Half-marathon

The environmental conditions of the first trial to HM were a
temperature of 17.1°C–18.6°C (05:00 a.m.–09:00 a.m.), wind speed of
1.0–1.1 m/s, and relative humidity of 81%–84%. The second trial
was executed after a 3-month washout period, and the nutritional
supplements were exchanged in two groups. The environmental
conditions were a temperature of 17.5°C–18.9°C (05:00 a.m.–09:
00 a.m.), wind speed of 1.2–1.3 m/s, and relative humidity of 76%–
79%. The accomplished time of HM by the PLG varied from 02:01:

40 to 04:08:52 (HH:MM:SS), with a mean duration of 03:00:43 ± 00:
34:18 (02:45:24 ± 00:29:37 in males and 03:16:03 ± 00:35:15 in
females). The accomplished time of HM by the PSG varied from 01:
56:55 to 03:46:42, with a mean duration of 02:46:36 ± 00:29:55 (02:
30:59 ± 00:23:31 in males and 03:02:14 ± 00:29:43 in females). The
t-tests showed no significant difference between the PLG and PSG in
HM (p = 0.198) (males in the PLG and PSG: p = 0.238; females in the
PLG and PSG: p = 0.286) (Figure 2).

3.3 Electromyography activity

Descriptive statistics (mean ± SD) for the investigated variables
are presented in Table 2. According to the aforementioned results,
significant differences were found only in VMO. Individual
variation should be avoided so that all data are normalized by
calculating the percentage of the premeasurement (post-test/pre-
test) × 100% for comparison. The results were shown as the
percentage (%) ± standard deviation (%). Figures 3A–C show the
results of the MDF, iEMG, and NME of VMO. The results from a
two-way repeated-measures ANOVA presented a significant time-

TABLE 1 Test of homogeneity.

Electromyography activity Baseline PLG (n = 8) Baseline PSG (n = 8) p-value

MDF of VMO 60.81 ± 5.78 55.45 ± 7.30 0.06

MDF of VLO 59.19 ± 5.05 61.19 ± 6.47 0.29

MDF of RF 63.45 ± 5.77 66.38 ± 10.65 0.30

iEMG of VMO 750.88 ± 312.29 750.25 ± 415.63 0.50

iEMG of VLO 796.00 ± 283.30 665.25 ± 279.94 0.29

iEMG of RF 828.13 ± 287.86 897.75 ± 381.98 0.24

NME of VMO 0.35 ± 0.21 0.33 ± 0.22 0.41

NME of VLO 0.30 ± 0.10 0.32 ± 0.12 0.41

NME of RF 0.30 ± 0.15 0.23 ± 0.03 0.09

MDF, median power frequency; VMO, vastus medialis oblique; VLO, vastus lateralis oblique; RF, rectus femoris; iEMG, integrated electromyography; HM, half-marathon; PLG, placebo group;

PSG, Lactobacillus plantarum PS128 group; NME, neuromuscular efficiency. * indicates a significant difference between the PLG and PSG. p < 0.05 indicates a statistically significant difference.

FIGURE 2
Accomplished time of half-marathon. PLG, placebo group; PSG,
Lactobacillus plantarum PS128 group.
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by-group interaction for the MDF of VMO (p = 0.042) and the
iEMG of VMO (p = 0.0012). After that, Tukey’s multiple
comparisons tests showed that the MDF of VMO decreased from
the Pre to 0 h (p = 0.0144), 3 h (p = 0.0163), and 24 h (p = 0.0144)
time points in the PLG (Figure 3A); the iEMG of VMO decreased
from the Pre to 0 h (p < 0.0001), 3 h (p < 0.0001), 24 h (p < 0.0001),
and 48 h (p = 0.0101) time points in the PLG (Figure 3B). Sidak’s
multiple comparisons tests showed that the MDF of VMO for the
PLG was significantly lower than that for the PSG at 0 h post (p =
0.0022), 3 h post (p = 0.0006), 24 h post (p = 0.0003), 48 h post (p =
0.0071), 72 h post (p = 0.0042), and 96 h post (p = 0.0019) time
points (Figure 3A); the iEMG of VMO for the PLG was significantly
lower than that for the PSG at 0 h post (p = 0.0111), 3 h post (p <

0.0001), 24 h post (p < 0.0001), 48 h post (p = 0.0014), and 72 h post
(p = 0.0221) time points (Figure 3B). The NME of VMO in the PLG
and PSG showed no significant difference after HM (Figure 3C).

3.4 Analysis of lower limb muscle strength

The MVICs of knee extensors analyzed using an isokinetic
dynamometer are shown in Figure 3D. The results from a two-
way repeated-measures ANOVA showed a significant time-by-
group interaction (p < 0.0001). After that, Tukey’s multiple
comparisons tests showed a decrease from the Pre to 0 h (p =
0.0001), 3 h (p < 0.0001), 24 h (p < 0.0001), 48 h (p < 0.0001), 72 h

TABLE 2 Mean ± SD for the MDF of VMO, VLO, and RF; iEMG of VMO, VLO, and RF; and NME of VMO, VLO, and RF, at baseline, 48 h before (Pre), and 0 h, 3 h, 24 h,
48 h, 72 h, and 96 h after HM for the PLG and PSG.

Baseline Pre 0 h 3 h 24 h 48 h 72 h 96 h

MDF of VMO †* † †

PLG 60.81 ± 5.78 61.03 ± 5.98 54.63 ± 2.66 54.63 ± 2.66 54.34 ± 4.53 56.78 ± 4.77 57.29 ± 4.64 54.63 ± 2.66

PSG 55.45 ± 7.30 55.36 ± 7.63 55.50 ± 6.66 56.55 ± 7.80 56.40 ± 5.25 56.85 ± 4.63 57.83 ± 8.76 58.03 ± 6.10

MDF of VLO

PLG 59.19 ± 5.05 59.25 ± 5.24 60.19 ± 5.50 60.03 ± 6.07 61.43 ± 7.53 61.96 ± 6.60 62.45 ± 5.14 62.10 ± 4.05

PSG 61.19 ± 6.47 61.28 ± 6.31 58.98 ± 6.99 60.09 ± 7.99 57.35 ± 6.80 57.45 ± 3.82 57.58 ± 10.13 62.35 ± 5.71

MDF of RF

PLG 63.45 ± 5.77 63.53 ± 5.74 65.16 ± 8.96 63.34 ± 5.72 63.53 ± 8.65 65.63 ± 7.77 66.28 ± 10.76 64.74 ± 8.07

PSG 66.38 ± 10.65 66.59 ± 10.73 65.36 ± 10.23 64.21 ± 13.15 63.54 ± 8.28 65.20 ± 11.21 64.36 ± 10.39 65.33 ± 13.28

iEMG of VMO † †* †* †* *

PLG 750.88 ± 312.29 751.13 ± 321.97 616.13 ± 252.12 550.13 ± 219.55 563.25 ± 211.54 651.38 ± 246.53 692.00 ± 281.89 706.75 ± 270.41

PSG 750.25 ± 415.63 750.38 ± 419.59 688.13 ± 357.73 700.13 ± 377.13 703.75 ± 379.21 755.75 ± 403.15 770.25 ± 415.85 772.00 ± 411.99

iEMG of VLO

PLG 796.00 ± 283.30 794.00 ± 281.47 768.00 ± 282.11 693.13 ± 418.97 783.88 ± 267.67 910.38 ± 492.08 980.63 ± 544.82 1,084.50 ± 558.79

PSG 665.25 ± 279.94 665.75 ± 278.48 735.38 ± 438.18 691.75 ± 432.36 843.50 ± 427.00 872.50 ± 477.92 927.88 ± 445.32 910.13 ± 528.12

iEMG of RF

PLG 828.13 ± 287.86 827.63 ± 287.96 701.25 ± 235.22 612.38 ± 301.80 679.25 ± 200.47 752.75 ± 293.59 794.88 ± 332.49 842.50 ± 288.85

PSG 897.75 ± 381.98 884.13 ± 403.84 903.75 ± 522.20 720.38 ± 380.56 956.50 ± 560.28 953.50 ± 519.44 1,029.88 ± 646.93 970.13 ± 460.85

NME of VMO

PLG 0.35 ± 0.21 0.35 ± 0.22 0.35 ± 0.18 0.33 ± 0.15 0.31 ± 0.14 0.31 ± 0.16 0.31 ± 0.18 0.33 ± 0.19

PSG 0.33 ± 0.22 0.32 ± 0.23 0.32 ± 0.21 0.31 ± 0.21 0.32 ± 0.25 0.31 ± 0.20 0.31 ± 0.22 0.32 ± 0.22

NME of VLO

PLG 0.30 ± 0.10 0.30 ± 0.11 0.26 ± 0.08 0.29 ± 0.17 0.20 ± 0.05 0.22 ± 0.08 0.23 ± 0.09 0.21 ± 0.08

PSG 0.32 ± 0.12 0.32 ± 0.13 0.28 ± 0.12 0.27 ± 0.07 0.25 ± 0.09 0.24 ± 0.07 0.22 ± 0.07 0.25 ± 0.08

NME of RF

PLG 0.30 ± 0.15 0.30 ± 0.16 0.28 ± 0.09 0.46 ± 0.39 0.36 ± 0.27 0.36 ± 0.15 0.26 ± 0.08 0.25 ± 0.08

PSG 0.23 ± 0.03 0.23 ± 0.04 0.21 ± 0.03 0.26 ± 0.06 0.22 ± 0.05 0.22 ± 0.03 0.21 ± 0.05 0.22 ± 0.04

MDF, median power frequency; VMO, vastus medialis oblique; VLO, vastus lateralis oblique; RF, rectus femoris; iEMG, integrated electromyography; HM, half-marathon; PLG, placebo group;

PSG, Lactobacillus plantarum PS128 group; NME, neuromuscular efficiency. † indicates a significant change from Pre to post time points in the PLG; * indicates a significant difference between

the PLG and PSG at the same time point. p < 0.05 indicates a statistically significant difference within and between groups.
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(p = 0.0002), and 96 h (p = 0.0408) time points in the PLG. Sidak’s
multiple comparison tests showed that the PLG was significantly
lower than the PSG at 0 h (p = 0.0173), 3 h (p < 0.0001), 24 h (p <
0.0001), 48 h (p < 0.0001), 72 h (p < 0.0001), and 96 h (p = 0.0004)
time points.

4 Discussion

This study aimed to continue the research results of the effect of
daily oral PS128 on exercise capacity recovery after HM mentioned
by Fu Szu-Kai et al. (2021) and confirmed with different evidence.
Therefore, this study investigated the effect of PS128 on muscle
fatigue and EMG activity after HM. The eight subjects in this study
differed from those in the study by Fu Szu-Kai (2021). This study
aimed to contribute to scientific knowledge regarding the
effectiveness of PS128 on muscle fatigue and EMG activity to
find out the underlying mechanisms. We hypothesized that
taking PS128 could prevent the decrease in NME, iEMG, and
MVIC on knee extensors after HM. In addition, we expected that
the decrease in MDF could be prevented. The results of this study
support the hypothesis that there was no significant decrease in
MDF, iEMG, and MVIC in the PSG compared to the PLG.
Recreational runners might consider adopting a probiotic
supplementation protocol as a potential strategy to mitigate
muscle fatigue following HM.

After HM, it was found that the MDF, iEMG, and MVIC of
VMO in the PLG exhibited a significant downward trend. MDF
showed a frequency decline, indicating reduced fast-twitch
muscle recruitment (Wang et al., 2015). One potential
contributing factor might be the heightened release of
potassium ions (K+) from muscle fibers. Elevated potassium
levels within the T-tubules could impede the tubular action
potential, resulting in diminished force production due to a
disruption in excitation–contraction coupling (Ament and
Verkerke, 2009). During running, the quadriceps play a crucial
role in decelerating knee flexion in the standing phase. VLO and
VMO worked together in the late swing phase to extend the knee
and stabilize the patella and knee during running. They also
contribute to decelerating knee flexion in the early and middle
swing phases. RF collaborates with the vastus intermedius
(Montgomery et al., 1994). RF contracts during the early and
middle swing phases to facilitate hip flexion and control knee
flexion (Montgomery et al., 1994). It is worth noting that the
optimal joint angle for VMO output is between 0 and 30° (Bagheri
et al., 2005), while VLO output is optimal at 90° (Marchetti et al.,
2016). The running movement pattern, with a knee joint angle of
approximately 20° (Petit et al., 2013), might lead to greater fatigue
in VMO but not VLO. The decrease in MDF in the PLG reflected
reduced recruitment of fast-twitch muscles, and there was a
significant decrease in the total amount of iEMG, which could
affect exercise performance.

FIGURE 3
Comparison of electromyography of vastus medialis oblique and lower limb muscle strength. The data are represented as the mean ± standard
deviation.C represents the placebo group; ■ represents the PS128 group. (A)MDF of VMO; (B) iEMG of VMO; (C)NME of VMO; and (D) peak torque of the
MVIC of knee extensors. HM, half-marathon; † indicates a significant change from Pre to post time points in the PLG; and * indicates a significant
difference between the PLG and PSG at the same time point. p < 0.05 indicates a statistically significant difference within and between groups.
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In addition to the physiological changes associated with
peripheral fatigue, there are metabolic, neuromuscular, and
mechanical implications for muscle cells stemming from fatigue.
These can be attributed to three primary factors: energy metabolism
failure, inefficiency in excitation–contraction coupling, and
metabolic acidosis. Energy metabolism failure occurs when the
muscle consumes adenosine triphosphate (ATP) at a faster rate
than it can regenerate. As muscle phosphocreatine stores deplete,
there is an increase in muscle creatine and circulating phosphates.
Consequently, levels of adenosine diphosphate (ADP) rise, as do
concentrations of adenosine monophosphate (AMP). AMP is
metabolized by AMP deaminase, becoming phosphate-free and
capable of binding to ADP molecules to form ATP, thereby
supplying the muscle tissue (Allen et al., 2008). The
excitation–contraction coupling mechanism is affected in various
ways. First, damage occurs, particularly during eccentric
contractions, to the protein junctophilin, which plays a role in
the connection between the T-tubule and sarcoplasmic reticulum
(McKenna and Hargreaves, 2008). The metabolic acidosis is related
to the accumulation of Pi and H+, which has a negative effect on the
affinity of the thin filaments with calcium, directly reducing its
release from the sarcoplasmic reticulum and, therefore, its
mycoplasma concentration, with the consequent reduction in
force production (Debold et al., 2016).

Encarnación-Martínez et al. (2022) organized a study
involving 18 male recreational runners who ran on a treadmill
for 30 min at a 0% slope, maintaining a pace corresponding to
85% of their maximal aerobic speed, which led to CNS fatigue.
Boccia et al. (2018) conducted an HM intervention with
21 amateur runners, comprising 11 males and 10 females. The
results indicated moderate CNS fatigue and minor peripheral
fatigue. The NME of the PLG and PSG had no significant
differences after the HM intervention because the peak torque
of the PLG had a similar downward trend after the decrease in
iEMG. Such results could infer the absence of peripheral fatigue
in the two groups. The intervention of long-distance running
would cause CNS fatigue, but peripheral fatigue needed to be
induced in the form of higher-intensity resistance exercise. For
example, Soleimanifar et al. (2012) executed 120°/s of continuous
concentric/concentric knee flexion and extension during a
peripheral fatigue intervention in 24 healthy young women,
maximizing strength throughout the range of motion without
rest. The fatigue protocol ends when the concentric peak torque
falls below 50% for three consecutive times in both directions.
Given the well-established association between long-distance
running and CNS fatigue, the absence of CNS fatigue in the
PSG might be attributed to the PS128 intervention, known for its
antioxidative benefits.

Significant elevations in ROS levels following intense exercise
could result in contractile dysfunction and muscle atrophy,
contributing to muscle weakness and fatigue (Reid, 2008).
Another issue arising from the increased ROS levels was the
damage inflicted upon mitochondria. It had been demonstrated
that increased ROS levels could cause severe damage to the
membranes of mitochondria, consequently reducing
mitochondrial biogenesis and, in turn, diminishing ATP
production (García-Mesa et al., 2015). Enhancements in anti-
inflammatory, antioxidant, and metabolic functions mitigated the

detrimental effects of high-intensity sports on exercise capacity.
High-intensity exercise could lead to muscle damage, disrupt
calcium balance, trigger neutrophil infiltration, and promote the
generation of free radicals and cytohormone metabolites.
Consequently, this results in elevated levels of inflammatory
markers, creatine phosphokinase (CPK) and lactate
dehydrogenase (LDH), and oxidative stress-related markers,
superoxide dismutase (SOD) and catalase (CAT) (Withee et al.,
2017). PS128 probiotics could reduce muscle damage indices (such
as myoglobin and CPK) after HM, showing that nutritional
supplements positively affect muscle damage, elevate the
antioxidation indicator SOD, and enhance exercise capacity (Fu
et al., 2021). The positive impact of PS128 on oxidative stress,
inflammation, and performance in high-intensity exercise for
triathletes was demonstrated by Huang et al. (2019). Teichoic
acids (TAs) produced by Lactobacillus plantarum play a crucial
role in systematically regulating the immune response in mice (W.-
H. Liu et al., 2015). PS128 reduced the production of pro-
inflammatory cytokines and positively regulated inflammation,
oxidation, and metabolism during high-intensity exercise in a
mouse macrophage model. This was further supported by its
impact on myoglobin, LDH, CPK, and SOD levels. Both clinical
and non-clinical studies have confirmed the anti-inflammatory
properties of Lactobacillus plantarum and its ability to modulate
the host’s immune response.

CNS fatigue could be explained by a reduced firing rate of the
motor neuron pool at the spinal, which attenuates signals for muscle
activation (Boyas et al., 2013). Therefore, both CNS and peripheral
fatigue affected muscle force production. It was a potential factor
obtained by analyzing the power spectrum of the EMG signal in the
experiment protocol, which could objectively identify muscle
fatigue.

5 Conclusion

The PS128 supplementation might prevent the decrease in
MDF, iEMG, and peak torque after HM. Consequently,
recreational runners might contemplate the adoption of a
probiotic supplementation protocol as a prospective strategy to
mitigate muscle fatigue after HM. It was advised that recreational
runners consider a 4-week probiotic supplementation regimen to
mitigate post-HM muscle fatigue.
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