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The corpus luteum is a transient ovarian endocrine gland that produces the
progesterone necessary for the establishment and maintenance of pregnancy.
The formation and function of this gland involves angiogenesis, establishing the
tissue with a robust blood flow and vast microvasculature required to support
production of progesterone. Every steroidogenic cell within the corpus luteum is
in direct contact with a capillary, and disruption of angiogenesis impairs luteal
development and function. At the end of a reproductive cycle, the corpus luteum
ceases progesterone production and undergoes rapid structural regression into a
nonfunctional corpus albicans in a process initiated and exacerbated by the
luteolysin prostaglandin F2α (PGF2α). Structural regression is accompanied by
complete regression of the luteal microvasculature in which endothelial cells die
and are sloughed off into capillaries and lymphatic vessels. During luteal
regression, changes in nitric oxide transiently increase blood flow, followed by
a reduction in blood flow and progesterone secretion. Early luteal regression is
marked by an increased production of cytokines and chemokines and influx of
immune cells. Microvascular endothelial cells are sensitive to released factors
during luteolysis, including thrombospondin, endothelin, and cytokines like tumor
necrosis factor alpha (TNF) and transforming growth factor β 1 (TGFB1). Although
PGF2α is known to be a vasoconstrictor, endothelial cells do not express receptors
for PGF2α, therefore it is believed that the angioregression occurring during
luteolysis is mediated by factors downstream of PGF2α signaling. Yet, the exact
mechanisms responsible for angioregression in the corpus luteum remain
unknown. This review describes the current knowledge on angioregression of
the corpus luteum and the roles of vasoactive factors released during luteolysis on
luteal vasculature and endothelial cells of the microvasculature.
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1 Introduction

Vascular remodeling occurs in various disease states such as myocardial infarction,
traumatic spinal cord injury (Olive et al., 2003; Benton et al., 2008), neurovascular disease
(Planas, 2020), and various hypertensive disorders (Intengan and Schiffrin, 2001).
Degradation of blood vessels, or angioregression, also occurs in disease states such as
chronic graft nephropathy (Ishii et al., 2005) and muscle degeneration (Dedkov et al., 2002;
Malek et al., 2010; Olenich et al., 2014). Vast non-pathological angioregression occurs during
normal development (Yin and Pacifici, 2001; McKeller et al., 2002; Nayak et al., 2018);
however, it is not prevalent in most adult tissues. There are some instances where
physiological angioregression occurs, such as in uterine remodeling during pregnancy
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(Henry et al., 2006), mammary gland involution (Djonov et al.,
2001), and during luteolysis of the ovarian corpus luteum during the
female reproductive cycle (Augustin, 2000).

The corpus luteum is a temporary, dynamic endocrine gland
formed from the remnants of the ovulated follicle (Stocco et al.,
2007). It produces the progesterone that is necessary for successful
establishment and maintenance of pregnancy. Following ovulation,
the remaining granulosa and theca cells of the ovulated follicle
undergo rapid, but limited, division and then differentiation as the
ovary shifts from making estradiol to making progesterone in a
process known as luteinization (Smith et al., 1994; Fraser and
Duncan, 2009). Notably, endothelial cells from the theca layer of
the follicle undergo rapid division, comparable to that of tumor
angiogenesis, forming the vast microvasculature of the corpus
luteum, with around 50% of cells in the mature corpus luteum
comprised of endothelial cells (Rodgers et al., 1984; O’shea et al.,
1989). In addition to the steroidogenic and endothelial cells, the
corpus luteum contains small populations of fibroblasts,
mesenchymal-like cells that produce and regulate extracellular
matrix, and immune cells (O’shea et al., 1989; Van Linthout
et al., 2014). The luteal vasculature contains mostly capillaries,
and nearly every steroidogenic cell is in contact with a
microvascular endothelial cell (Zheng et al., 1993; Fraser and
Duncan, 2009). As a result, the corpus luteum has one of the
highest blood supplies, per unit of any organ system (Smith
et al., 1994), as well as high blood flow and low vascular
resistance compared to the surrounding ovarian stroma
(Wiltbank et al., 1990). The microvasculature is crucial for luteal
function, as blockage of angiogenesis during luteal formation results
in dysfunctional corpora lutea (Yamashita et al., 2008). The luteal
vasculature is important for both transport of progesterone from
steroidogenic cells to the rest of the body and for nourishment of the
corpus luteum (Woad and Robinson, 2016). Early studies in rabbits
demonstrated the importance of the corpus luteum for the
production of progesterone and pregnancy (Mesiano, 2022). In
women, luteal function is crucial for pregnancy, as removal of
the corpus luteum within the first 7 weeks of pregnancy results
in termination of said pregnancy (Csapo et al., 1974). Progesterone
secreted from the corpus luteum is crucial for creating optimal
conditions for embryo implantation, a crucial point in pregnancy
(Kolatorova et al., 2022).

In a reproductive cycle that does not result in pregnancy, the
corpus luteum must cease progesterone production so the next
reproductive cycle can begin. In many species including bovines
(Knickerbocker et al., 1988), ovines (Goding, 1974), guinea pigs
(Evans, 1987), and rats (Wang et al., 1993), luteal regression
(luteolysis) is initiated by pulses of prostaglandin F2α (PGF2α)
produced by the uterus. In primates, it is believed to be initiated
by the lack of gonadotropin support and a concomitant rise in intra-
ovarian PGF2α production (Stouffer et al., 2013). Luteolysis occurs
in two steps: (1) functional regression, in which progesterone
production declines, and (2) structural regression, in which the
corpus luteum dissipates into a fibrotic corpus albicans within the
ovarian stroma. Structural regression involves various pathways of
tissue remodeling, including immune cell infiltration, breakdown
and buildup of extracellular matrix, and regression of the
microvasculature. Although it is known that blood flow is
impaired and the vascular endothelial cells are sensitive to

various factors released during luteolysis, the exact mechanism of
angioregression in the corpus luteum remains unknown. This review
will highlight current knowledge on angioregression of the corpus
luteum: from macrovascular changes, dilation and constriction of
luteal vasculature and subsequent impedance of blood flow, to
microvascular changes, such as the effects of growth factors,
cytokines, and thrombospondins on microvascular endothelial cells.

2 Blood flow

Electron microscopy of regressing guinea pig and bovine
corpora lutea revealed that endothelial cells detach from the
basement membrane, slough off the capillaries, and clog the
vessels; yet the capillary walls remain intact (Azmi and O’Shea,
1984; Modlich et al., 1996). However, luteal capillaries eventually
disappear throughout regression. Twelve hours after PGF2α-
induced regression, there were noticeably fewer capillaries in
ovine corpora lutea (Nett et al., 1976), but more arterial vessels
were present (Bauer et al., 2003). These vessels contain thicker walls
of smooth muscle (Bauer et al., 2003), which is further evidenced by
increased smooth muscle actin positive cells surrounding arterioles
in regressing bovine corpora lutea (Hojo et al., 2009). The diameter
of these vessels was demonstrated to be smaller compared to fully
functional mid-cycle corpora lutea (Lei et al., 1991; Nio-Kobayashi
et al., 2016), indicating that vasoconstriction may be occurring in
luteal regression. Similarly, arterial wall thickening is associated with
various cardiovascular diseases including atherosclerosis,
thrombosis, and hypertension (Burke et al., 1995; Corinaldesi and
Corinaldesi, 2008). Changes in blood flow during luteal regression as
a result of vasoactive factors are illustrated in Figure 1.

Early studies in the rabbit indicate that luteal blood flow is highly
correlated to progesterone levels in pseudopregnant rabbit corpora
lutea (Janson et al., 1981). Due to their size and prominent vascular
blood supply, corpora lutea from larger species such as ruminants
and humans can be identified via ultrasonography. Doppler
ultrasound has been utilized to study corpora lutea during
natural and PGF2α-induced regression. Doppler readings in
human corpora lutea have identified that blood flow drops in the
days nearing menstruation, which correlates to the reduction in
progesterone production in the late luteal phase (Miyazaki et al.,
1998), and pregnant cattle exhibited a much higher luteal blood flow
than non-pregnant cattle (Kanazawa et al., 2022). Additionally, in
vivo studies of cows injected with PGF2α to induce luteolysis have
identified that there is an early increase in blood flow after 2 h of
treatment that ultimately decreases below baseline levels after 8 h of
treatment (Acosta et al., 2002; Miyamoto et al., 2005; Jonczyk et al.,
2021). A study in the ovine suggested that ovarian blood flow to the
luteal ovary decreased 4 h post-PGF2α treatment, followed by a
decline in progesterone 6 h post-PGF2α treatment (Nett et al., 1976).
Similar findings were reported in the equine and the donkey
(Ginther et al., 2007; Miró et al., 2015). Also, luteal blood flow
and plasma progesterone followed a more similar trend in the
cycling bovine corpus luteum than did luteal size, which is
commonly used to identify luteal stage (Herzog et al., 2010), thus
implicating blood flow as an accurate measure of luteal function.
However, the opposite has been determined for the midcycle in
lactating dairy cows (Lüttgenau et al., 2011). The reason for the
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discrepancy is likely due to the enhanced hepatic metabolism of
progesterone in lactating dairy cows (Wiltbank et al., 2006).

The transient increase in blood flow seen early in luteal
regression is believed to be a result of the increased synthesis of
the vasodilator, nitric oxide (NO) (Miyamoto et al., 2005; Shirasuna
et al., 2008). Evidence across various species has shown that shear
stress from increased blood flow changes the shape of vascular
endothelial cells from their signature cobblestone shape to one that
is more spindle-like and oriented towards the direction of flow
(reviewed in (Masuda et al., 2003; Campinho et al., 2020)). This has
been observed in endothelial cells derived from the carotid arteries of
rabbits (Masuda et al., 1999) and mouse cardiac and pulmonary
endothelial cells (Merna et al., 2018). High stretch of cultured
endothelial cells induces a similar phenotype in which the cells
acquire a spindle-like shape via phalloidin remodeling and produce
increased reactive oxygen species (Girão-Silva et al., 2021). This
change in endothelial cell phenotype is suggested to be mediated by
calcium signaling and tyrosine kinase phosphorylation in cultured
bovine aortic endothelial cells (Malek and Izumo, 1996). More
recent studies show that increased shear stress causes retinal
endothelial cells cultured in 3D (Luu et al., 2023) and human
aortic endothelial cells (Kidder et al., 2023) to adopt a more
mesenchymal phenotype. There are no reports to our knowledge
of this phenomenon occurring in luteal endothelial cells; however,
shear stress from a compensatory blood flow increase early in luteal
regression may contribute to the changes in capillary basement
membrane that are seen during regression, which could result in the
release of endothelial cells from the capillary. Another hypothesis is
that the shear stress could cause the endothelial cells to transition to
a mesenchymal phenotype, as increased matrix stiffness is associated
with fibrosis and endothelial cell destabilization (Yu et al., 2023). It is

also important to note that endothelial cells are sensitive to many
factors released during luteal regression as discussed later; therefore,
changes in blood flow are likely not the sole contributor to luteal
angioregression.

3 Effect of vasoactive factors on luteal
vasculature and endothelial cells

Outside of the corpus luteum, PGF2α is more commonly known
as a vasoconstrictor, in which it does so by activating calcium
signaling and inducing contraction of smooth muscle cells
(Watts, 2007). In addition to PGF2α, various other vasoactive
agents are increased in luteal regression, such as NO, angiotensin
II (AT2), and endothelin 1 (EDN1) (Davis et al., 2003; Skarzynski
et al., 2008; Shirasuna et al., 2012b). The known changes in
vasoactive factors contributing to blood flow in luteal regression
are summarized in Table 1.

3.1 Nitric oxide (NO)

Nitric oxide (NO) is commonly known as a vasodilator that is
produced by nitric oxide synthase (NOS) enzymes. There are three
identified NOS enzymes (NOS1-3), two of the three being uniquely
expressed in specific cell types, neuronal NOS (nNOS or NOS1) and
endothelial NOS (eNOS or NOS3). The third NOS enzyme is
inducible NOS (iNOS or NOS2) (Förstermann and Sessa, 2012).
Both eNOS and iNOS have been identified in luteal tissue, with
eNOS primarily being localized to the endothelial cells and iNOS
exhibiting weak localization to the steroidogenic cells (Fridén et al.,
2000; Tao et al., 2004). One study identified increased eNOS in
naturally regressing bovine corpora and in corpora lutea induced to
regress following treatment with PGF2α (Shirasuna et al., 2008).
Studies in the human report increased iNOS at mid and late luteal
phase (Vega et al., 2000). However, others reported decreased eNOS
immunolocalization and transcription during the bovine late luteal
phase and luteal regression (Rosiansky-Sultan et al., 2006). Such
differences can be attributed to differences in staging of the corpus
luteum as opposite effects of PGF2α treatment were seen in early
corpora lutea compared to midcycle corpora lutea, as well as
whether the tissue sample was in the middle or periphery of the
corpus luteum, as eNOS was elevated only in the periphery of
midcycle corpora lutea in the bovine (Shirasuna et al., 2008).
Direct intra-luteal delivery of an NO donor temporarily increased
blood flow but then caused both blood flow and progesterone to fall
to levels below baseline (Shirasuna et al., 2008). Similar results have
been reported in other species. For instance, NO donor treatment
decreased serum progesterone but increased ovarian PGF2α
production in pseudopregnant rats, and the same has been
reported in cultured human luteal cells (Motta et al., 1999;
Fridén et al., 2000). Such differences may be due to
pharmacologic administration of NO donors in vivo and species-
to-species variations.

In addition to its ability to stimulate PGF2α, it has been
suggested that NO may have a direct effect on luteal cells.
L-arginine, an NOS substrate, increased apoptosis of cultured
human luteal tissue, which was suppressed by treatment with an

FIGURE 1
Effects of Vasoactive Factors released in response to PGF2α on
blood flow of the corpus luteum. (A)Nitric Oxide (NO) is released early
in luteal regression and causes vasodilation and subsequent increased
blood flow, which may consequently alter endothelial cell
phenotype. (B) Later in luteal regression, vasoconstrictors such as
Angiotensin II (AT2) and endothelin 1 (EDN1) are released, causing
decreased blood flow and decreased plasma progesterone. These
factors may also impair progesterone production of luteal
steroidogenic cells. This figure was made with Biorender.com.
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NO inhibitor (Vega et al., 2000). Similarly, treatment of bovine luteal
cells with the NO donor, NONOate, increased levels of cleaved
caspase 3, a marker of apoptosis (Korzekwa et al., 2006; Kowalczyk-
Zieba et al., 2014). Conversely, treatment of luteinized goat
granulosa cells with NO donor increased progesterone
production, whereas treatment with an NOS inhibitor decreased

progesterone and increased apoptosis (Guo et al., 2019). Such
differences may be due to differences in culture conditions and
the presence of multiple cell types (endothelial cells and immune
cells) in the cultures. Collectively, these data indicate that NO may
contribute to luteolysis beyond the vasculature and may have a
direct effect on steroidogenesis. Although there is some evidence

TABLE 1 Summary of Vasoactive, Pro-angiogenic, and Anti-angiogenic factors that are regulated during luteal angioregression.

Factor Expression
during luteal
regression

Source Effect on
endothelial

cells

Proposed role in
angioregression

References

Vasoactive factors

NO Nitric Oxide ↑ (early) Endothelial cells
(eNOS)

Inhibits apoptosis Vasodilation, increased blood
flow, stimulation of PGF2α

(Dimmeler and Zeiher, 1999;
Motta et al., 1999; Fridén et al.,

2000; Tao et al., 2004;
Shirasuna et al., 2008;

Förstermann and Sessa, 2012)

Steroidogenic cells
(iNOS)

AT2 Angiotensin II ↑ Circulating, ovary Proliferation Vasoconstriction, increase
PGF2α

(Hayashi and Miyamoto, 1999;
Benigni et al., 2010)

EDN 1 Endothelin 1 ↑ Endothelial cells Proliferation,
prostaglandin release

Vasoconstriction (Girsh et al., 1996b; Hinckley
and Milvae, 2001; Tanfin et al.,

2011)

Pro-angiogenic factors

VEGF Vascular Endothelial
Growth Factor

↓ Perivascular cells,
steroidogenic cells

Proliferation Decrease during luteal
regression causes vessel

dysfunction

(Gospodarowicz et al., 1989;
Hazzard et al., 2000; Neuvians

et al., 2004a)

FGF2 Fibroblast Growth
Factor 2

↑ Steroidogenic cells
and endothelial cells

Proliferation Fibroblast division,
sensitization of endothelial
cells (via increased type

1 collagen)

(Gospodarowicz, 1974; Asakai
et al., 1993; Robinson et al.,

2007; Maroni and Davis, 2011;
Zalman et al., 2012; Alan and
Kulak, 2021; Monaco et al.,

2023)

ANGPT1 Angiopoietin 1 __ Perivascular cells,
steroidogenic cells

Proliferation Decrease in relation to
ANGPT2 inhibits

angiogenesis

(Maisonpierre et al., 1997;
Wulff et al., 2000; Sugino et al.,

2005; Fiedler et al., 2006;
Eklund and Saharinen, 2013)

Anti-angiogenic factors

ANGPT2 Angiopoietin 2 ↑ Endothelial cells,
potentially

steroidogenic cells

Inhibits ANGPT1-
induced effects
(Tie2 antagonist)

Inhibits new angiogenesis,
sensitization of endothelial

cells

(Maisonpierre et al., 1997;
Wulff et al., 2000; Tanaka et al.,

2004; Sugino et al., 2005;
Eklund and Saharinen, 2013)

THBS1 Thrombospondin 1 ↑ Endothelial cells,
steroidogenic cells

Apoptosis (via
TGFB1)

Endothelial cell death, vessel
fibrosis (synergy with TGFB1)

(Mondal et al., 2011; Zalman
et al., 2012; Berisha et al.,

2016b; Farberov and Meidan,
2016)

TNF Tumor Necrosis
Factor α

↑ Immune cells,
endothelial cells,

possibly
steroidogenic cells

Apoptosis Endothelial cell death, PGF2α
production

(Sakumoto et al., 2000; Pru
et al., 2003; Cherry et al., 2008;
Henkes et al., 2008; Sakumoto
et al., 2011; Talbott et al., 2017)

IL1B Interleukin 1β ↑ Immune cells
(CD11b+), potentially

fibroblasts and
steroidogenic cells

Chemokine release Immune cell recruitment,
PGF2α production,

potentially vessel fibrosis via
EndMT

(Kobayashi and Terao, 1997;
Estevez et al., 2003;

Lopez-Castejon and Brough,
2011; Bourdiec et al., 2013;
Bishop et al., 2017; Talbott

et al., 2017; Baddela et al., 2018)

TGFB1 Transforming
Growth Factor β1

↑ Ubiquitous Apoptosis,
dysregulation of

capillary structures

Endothelial cell death, vessel
fibrosis

(Branton and Kopp, 1999;
Maroni and Davis, 2011;
Maroni and Davis, 2012;

Talbott et al., 2017)
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that NO may be an inhibitor of apoptosis in endothelial cells
(Dimmeler and Zeiher, 1999, this phenomenon has yet to be
studied in luteal endothelial cells.

3.2 Angiotensin II (AT2)

Angiotensin II (AT2) is a potent vasoconstrictor that is derived
from angiotensinogen produced by the liver. Angiotensinogen is
converted to angiotensin I by the enzyme renin, and angiotensin I is
converted to angiotensin II by angiotensin converting enzyme
(ACE) (Ng and Vane, 1967). AT2 has pleiotropic effects that
include production of aldosterone, which increases blood
pressure, or it can act as an independent vasoactive factor or act
on other systems such as the kidney to raise blood pressure
(Fyhrquist et al., 1995; Santos, 2014). Such effects, along with
pro-inflammatory and pro-fibrotic effects are mediated by the
angiotensin receptor 1 (AGTR1) (Benigni et al., 2010).
Angiotensin II is also capable of binding to the AGTR2, which
induces vasodilation and anti-inflammatory and anti-fibrotic effects
(Benigni et al., 2010). Interestingly, AGTR1 levels remain consistent
throughout the luteal phase, but AGTR2 levels are decreased at
midcycle (days 8–12) but are increased during the late luteal phase
(days 13–17) and regression (> day 18) in bovine corpora lutea, but
were also found to be elevated to the same level in the corpus luteum
of pregnancy (Hayashi et al., 2000; Kobayashi et al., 2001; Schams
et al., 2003). Although this seems contradictory to the increased
inflammation and fibrosis seen during luteal regression, it is possible
that (1) these studies only accounted for AGTR2 mRNA and not for
desensitization or endocytosis of the AGTR2, or (2) AGTR2 actions
ensure that the regression is tightly controlled.

The ovary is capable of producing renin and AT2 (Yoshimura,
1997; Palumbo et al., 2016). Additionally, ACE has been identified in
endothelial cells of the bovine corpus luteum during early luteal
phase (Hayashi et al., 2000). The luteal renin-angiotensin-
aldosterone system (RAAS) may serve an important role in
pregnancy in women, as increased corpus luteum number was
associated with differential levels of RAAS components, but there
were no differences in birth outcomes (Wiegel et al., 2021).

PGF2α has been shown to increase AT2 levels in microdialyzed
bovine corpora lutea in vitro (Hayashi and Miyamoto, 1999), and
AT2 has been demonstrated to increase PGF2α levels but also
progesterone levels alone and in conjunction with PGF2α treatment
in vitro (Kobayashi et al., 2001). In that study, AT2 increased secretion
of oxytocin, another luteolytic factor. In rat luteal cells, AT2 had no
effect on basal progesterone, but inhibition of AGTR2 slightly decreased
progesterone secretion (Pepperell et al., 2006). However, in another
study, AT2 decreased progesterone after 14 h alone and after 4 h in
conjunction with PGF2α in microdialyzed bovine corpora lutea
(Hayashi and Miyamoto, 1999). It is possible that such effects are
mediated by angiotensin reactive proteins in the luteal endothelial cells,
as ACE is present in bovine luteal endothelial cells, and treatment with
an ACE inhibitor, captopril, decreased AT2 secretion from luteal
endothelial cells (Hayashi et al., 2000). Therefore, it is possible that
endothelial-derived AT2 may aid in decreasing progesterone either
alone or through the release of luteolytic factors.

3.3 Endothelin-1 (EDN1)

Endothelin 1 (EDN1) is a 21 amino acid protein derived from
endothelial cells that is known to be a potent vasoconstrictor
(Yanagisawa et al., 1988). It is produced in endothelial cells as a
larger pro-endothelin which is then cleaved to active endothelin by
endothelin converting enzyme (ECE) (Sawamura et al., 1989; Tanfin
et al., 2011). Studies in the cow and the ewe have identified that luteal
endothelin 1 levels increase during natural and PGF2α-induced
luteal regression (Girsh et al., 1996b; Ohtani et al., 1998; Hinckley
and Milvae, 2001), and PGF2α induces secretion of EDN1 from
microdialysed bovine corpora lutea (Miyamoto et al., 1997).
Furthermore, tumor necrosis factor α (TNF), an inflammatory
cytokine that is elevated in luteal regression, increased
EDN1 production by bovine aorta endothelial cells (Marsden and
Brenner, 1992) therefore EDN1 secretion may be regulated by
PGF2α, inflammatory cytokines, and other secondary responses
to PGF2α.

Although EDN1 is well known for its role as a vasoconstrictor, it
may have some direct effects on steroidogenic cells in the corpus
luteum. In vitro, EDN1 decreased progesterone secretion of ovine
luteal minces and decreased basal and LH-induced progesterone
production by large, but not small bovine luteal cells (Girsh et al.,
1996a; Doerr et al., 2008). In vivo, EDN1 decreased progesterone in a
synergistic manner with PGF2α in the bovine (Shirasuna et al.,
2006). Given this information, the luteolytic role of EDN1 may
involve both vasoconstriction and direct action on luteal
steroidogenic cells.

4 Pro- and anti-angiogenic factors in
luteolysis

In addition to the presence of factors affecting vessel dilation or
contraction during luteal regression, luteolysis is associated with
decreased expression of pro-angiogenic factors such as vascular
endothelial growth factor (VEGF) and increased expression of
anti-angiogenic factors, such as thrombospondin 1 (THBS1),
EDN1, transforming growth factor β 1 (TGFB1) and pro-
inflammatory cytokines (Skarzynski et al., 2008; Shirasuna et al.,
2012b; Berisha et al., 2016a; Talbott et al., 2017). The proposed
effects of these factors on luteal vasculature are illustrated in
Figure 2. These events are triggered by a luteolytic dose of
PGF2α in vivo; however, multiple studies have demonstrated that
endothelial cells do not express the receptor for PGF2α (Liptak et al.,
2005; Maroni and Davis, 2011). Therefore, the effects of the
luteolytic cascade on microvascular endothelial cells must be
from release of factors following the initial PGF2α pulses.
Furthermore, luteal endothelial cells are known to be sensitive to
such factors, and thus are believed to be the first to die during luteal
regression (Azmi and O’Shea, 1984). Additionally, the luteal rescue
signal, interferon tau, increases endothelial cell survival and
decreases transcription of luteolytic factors like THBS1, EDN1,
and TGFB1 in bovine luteal slices (Basavaraja et al., 2017).
Therefore, the presence or absence of secreted factors relating to
angiogenesis may contribute to luteal angioregression.
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4.1 Pro-angiogenic factors

4.1.1 Vascular endothelial growth factor (VEGF)
Vascular endothelial growth factor (VEGF) is growth factor that

acts as a potent mitogen on endothelial cells (Gospodarowicz et al.,
1989). There are five VEGF isoforms which can bind to three
receptors, VEGFR1 (Flt1), VEGFR2 (KDR or Flk1) and VEGFR3
(Flk4) (Geva and Jaffe, 2000). Because rapid angiogenesis is
necessary to build the luteal microvasculature, VEGF is highly
prominent in the developing corpus luteum (Redmer et al., 1996;
Woad and Robinson, 2016). Interruption of VEGF during
ovulation results in decreased luteal formation (Duncan et al.,
2008). In the late luteal phase, and in PGF2α-induced regression
across multiple species, luteal VEGF mRNA decreases (Otani
et al., 1999; Hazzard et al., 2000; Neuvians et al., 2004a;
Vonnahme et al., 2006). The rapid reduction in VEGF
expression indicates that no active angiogenesis is occurring
during luteal regression, a finding confirmed by studies across
various species, including the rat (Tamura and Greenwald,
1987), sheep (Reynolds and Redmer, 1999) and pig (Ricke
et al., 1999), indicating that little endothelial cell
proliferation occurs during luteal regression. The reduction
in VEGF may reduce support for the luteal vasculature,
leading to vascular regression. Such a phenomenon has been
witnessed in tumors where withdrawal of VEGF will cause
regression of the vessels that had built up in that tumor
(Benjamin and Keshet, 1997; Baffert et al., 2006), and this
phenomenon is a current target for anti-cancer therapeutics
(Meadows and Hurwitz, 2012; Frezzetti et al., 2017). However,
this has yet to be confirmed in the regressing corpus luteum.

4.1.2 Fibroblast growth factor 2 (FGF2)
Fibroblast growth factor 2, or basic fibroblast growth factor

(FGF2) is a heparin binding protein, discovered for its ability to
induce proliferation of NIH 3T3 fibroblast cell lines
(Gospodarowicz, 1974). FGF2 is a prominent angiogenic factor,
potentially even more so than VEGF, and it is necessary for luteal
formation, as blockade of FGF2 at the time of ovulation results in
corpora lutea that have malformed blood vessels and lower
progesterone (Robinson et al., 2007; Yamashita et al., 2008).
Immunohistochemical studies reveal FGF2 localization in
endothelial cells and steroidogenic cells of the corpus luteum
(Asakai et al., 1993; Alan and Kulak, 2021).

Unlike VEGF, FGF2 expression is increased during luteal
regression (Neuvians et al., 2004a; Neuvians et al., 2004b; Zalman
et al., 2012; Monaco et al., 2023). These findings indicate that an
elevation in luteal FGF2 is not sufficient to prevent the loss of
endothelial cells and capillaries that occurs during early luteal
regression, nor does FGF2 cotreatment affect progesterone levels
of cows treated with PGF2α in vivo (Piotrowska-Tomala et al., 2021).
An explanation for this phenomenon could be that the increased
FGF2 transcription is a compensatory effect and slows down the
luteolytic process (Neuvians et al., 2004b). Another explanation is
that FGF2 acts on stromal or fibrotic components of the corpus
luteum. In support of this idea, using smooth muscle actin as a
marker, Reynolds and Redmer observed that fibroblast number was
elevated in the corpus luteum during the late luteal phase of sheep,
and collagen production was also elevated following PGF2α
treatment (Reynolds and Redmer, 1999; Vonnahme et al., 2006).
A recent study showed that FGF2 induced both proliferation and
collagen production of bovine luteal fibroblasts (Monaco et al.,

FIGURE 2
Macro vs. microvascular changes in response to factors secreted during luteal regression. (A) Because the luteal microvasculature also contains
smooth muscle and pericytes, vasoactive factors cause contraction of vascular smooth muscle cells and consequent vasoconstriction, in addition to
TGFB1 and FGF2 activating fibroblasts to produce more collagen, thereby thickening and stiffening the vessels. Capillaries do not have these bordering
cells (B). Therefore, these vessels wouldmostly be impacted by factors that directly impact endothelial cells. In both cases, death of endothelial cells
causes sloughing into the capillaries which can clog vessels and impair blood flow. Abbreviations: Endothelin 1 = EDN1, Angiotensin II = AT2, Fibroblast
growth factor 2 = FGF2, Transforming growth factor β-1 = TGFB1, Thrombospondin 1 = THBS1, Tumor necrosis factor α=TNF. The figurewasmade using
Biorender.com.
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2023). Furthermore, in vitro studies reveal that the presence of type
1 collagen causes endothelial cells to become more sensitive to
TGFB1 (Maroni and Davis, 2011). Therefore, FGF2 in the regressing
corpus luteum may be acting as a luteal pro-fibrotic factor that
contributes to sensitizing endothelial cells to luteolytic ligands.

4.1.3 Angiopoietins 1 & 2 (ANGPT1/2)
Angiopoietins (ANGPTs) are growth factors that regulate

angiogenesis through binding to tyrosine kinase receptors Tie1 and
Tie2. ANGPT1 is known to be secreted by pericytes and smoothmuscle
cells adjacent to endothelial cells, and ANGPT2 is believed to be
exclusive to endothelial cells (Eklund and Saharinen, 2013).
However, in situ hybridization and immunohistochemistry of the
human corpus luteum revealed ANGPT 1 and 2 distribution in
both steroidogenic and endothelial cells (Wulff et al., 2000; Sugino
et al., 2005), and a similar result was revealed in the buffalo corpus
luteum (Mishra et al., 2016). ANGPT1 binds to Tie2 on endothelial cells
to promote angiogenesis by inducing proliferation and migration. In
contrast, ANGPT2 acts as a Tie2 receptor antagonist to ANGPT1 and
plays a role in vessel stabilization rather than new vessel formation
(Maisonpierre et al., 1997). The ANGPT2/ANGPT1 ratio was reported
to be elevated in regressing corpora lutea, suggesting that angiogenesis
does not occur during luteal regression (Goede et al., 1998). Expression
ofANGPT1 transcripts in corpora lutea may be species-dependent, as it
was highest at mid-luteal phase in bubaline (Mishra et al., 2016) and
bovine (Tanaka et al., 2004) corpora lutea, and in corpora lutea of
pregnancy in human (Sugino et al., 2005), but highest at late cycle in
rhesus monkey corpora lutea (Hazzard et al., 2000). ANGPT2
expression was lowest at midluteal phase in human corpora lutea
and decreased in corpora lutea of pregnancy, when the corpus
luteum was fully functional (Sugino et al., 2005), whereas it was
highest in the late luteal phase in the rhesus monkey (Hazzard
et al., 2000) and bubaline corpus luteum (Mishra et al., 2016). In
the bovine corpus luteum, no changes in luteal ANGPT2 mRNA were
detected throughout the luteal phase but ANGPT2 mRNA was
transiently elevated 2 h post-PGF2α injection, and then decreased
after 4 h of PGF2α treatment (Tanaka et al., 2004). Although there
are no reports of the effects of ANGPT2 on luteal endothelial cells,
ANGPT2 has been shown to sensitize endothelial cells to the pro-
apoptotic effects of TNF (Fiedler et al., 2006). Tanaka et al. found that
ANGPT2 decreased progesterone secretion of bovine corpora lutea at
4–8 h of treatment at higher concentrations (100 ng/mL) in an in vitro
microdialysis system (Tanaka et al., 2004). This is inconsistent with
what was reported in the buffalo, in which ANGPT1 and 2 increased
progesterone production in cultured bubaline luteal cells after 24 h of
treatment at 100 ng/mL (Mishra et al., 2016). Because ANGPTs are
known to act primarily on endothelial cells (Eklund and Saharinen,
2013), more studies using primary luteal endothelial cells are needed to
elucidate their role in angioregression.

4.2 Anti angiogenic factors

4.2.1 Thrombospondin 1 (THBS1)
Thrombospondins are a family of calcium-binding glycoproteins

that influence a variety of functions, including angiogenesis, vessel
biology, and wound healing. They are known to regulate several
factors such as AT2, TGFB1, and even matrix metalloproteinases

(Adams and Lawler, 2011), but the well-established function of
thrombospondins 1 and 2 is dysregulation of angiogenesis
(Armstrong and Bornstein, 2003). The role of thrombospondins in
the corpus luteum has been reviewed in detail (Farberov et al., 2019).
Localization of THBS1 was identified in endothelial cells and
steroidogenic cells in the corpus luteum (Berisha et al., 2016b), and
THBS1 expression is increased in the regressing corpus luteum and is
reduced in the corpus luteum of pregnancy (Mondal et al., 2011; Zalman
et al., 2012; Romero et al., 2013; Farberov andMeidan, 2016). Treatment
of luteal tissue slices with interferon tau, the maternal signal for luteal
rescue in bovines, decreased THBS1 mRNA and protein (Basavaraja
et al., 2017). It is believed that THBS1 exerts anti-angiogenic effects on
the regressing corpus luteum, as it has been demonstrated to decrease
numbers of bovine and rabbit luteal endothelial cells in culture
(Bagavandoss and Wilks, 1990; Farberov and Meidan, 2016).
Thrombospondin 1 may act in part through TGFB1 signaling, as
THBS1-treated luteal cells exhibited increased downstream
TGFB1 signaling, which was decreased with THBS1 knockdown;
however, inhibition of TGFB1 signaling did not ameliorate THBS1-
induced endothelial cell death (Farberov and Meidan, 2016). Therefore,
other signaling factors must come into play. For instance, a TGFB
superfamily member, Nodal, which is increased in hypoxic conditions,
elevated THBS1 and CD36 and downregulated CD31 (an endothelial
cell marker) in equine luteal explants (Walewska et al., 2019).
Furthermore, despite its elevation in luteolysis, THBS1 has been
shown to be upregulated after ovulation and induced migration of
monkey ovarian endothelial cells (Bender et al., 2019). Therefore, the
action of THBS1 must depend on multiple signaling pathways and the
presence of other factors in the corpus luteum, as the pro or anti-
angiogenic effect of THBS1 is dependent on the target receptor.
Thrombospondin 1 acts as an anti-angiogenic factor when bound to
CD36 (Dawson et al., 1997), and as a pro-angiogenic factor when bound
to the low density lipoprotein receptor-related protein-1 (LRP1) receptor
(Orr et al., 2003). CD36 was elevated in PGF2α-induced luteolysis of the
bovine corpus luteum (Berisha et al., 2016b). However, it has been shown
in the ovary that THBS1 can inhibit VEGF through LRP1 binding
(Greenaway et al., 2007). THBS1 has also been demonstrated to
sequester FGF2 by binding to its heparin-binding site (Farberov
et al., 2019). The ability of THBS1 to bind to many targets including
angiogenic factors and cytokines such as TGFB1, makes it an ideal
candidate for further investigation of factors that can influence cytokine
levels and angioregression in the corpus luteum.

5 Effects of cytokines on endothelial
cells

5.1 Tumor necrosis factor α (TNF)

In most cells, TNF binding to its receptor (TNFR1) results in
inflammatory responses and/or programmed cell death. TNF
protein is elevated in the pseudopregnant mouse corpus luteum
following treatment with a luteolytic dose of PGF2α (Henkes et al.,
2008). In the bovine, mRNA for TNF is upregulated early in PGF2α
induced luteolysis (Talbott et al., 2017) and in the natural cycle
(Friedman et al., 2000; Sakumoto et al., 2000). TNF has been shown
to be localized to immune cells and faintly in steroidogenic cells in
the bovine corpus luteum (Sakumoto et al., 2011); however, others
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have found TNF to be localized in the vascular immune cells of the
porcine corpus luteum (Hehnke-Vagnoni et al., 1995). TNF affects
steroidogenesis directly by decreasing LH-stimulated progesterone
production in luteinized murine granulosa cells (Adashi et al., 1990)
and in porcine (Pitzel et al., 1993) and bovine (Benyo and Pate, 1992;
Sakumoto et al., 2000) luteal cells. Furthermore, TNF can induce
production of PGF2α, thus creating a positive feedback loop within
the regressing corpus luteum (Sakumoto et al., 2000).

Luteal endothelial cells are sensitive to inflammatory cytokines, as
TNF induces apoptosis of luteal endothelial cells (Friedman et al., 2000;
Pru et al., 2003; Cherry et al., 2008; Henkes et al., 2008). Endothelial cells
are a rich source of acid sphingomyelinase (ASMase), a common
mediator of cytokine signaling. A report by Henkes et al. shows that
TNF, but not PGF2α, activated ASMase and cell death in murine
ovarian endothelial cells, a response that was not present in endothelial
cells lacking ASMase (Henkes et al., 2008). In vivo studies revealed that
mice treatedwith Etanercept, a TNF receptor inhibitor, were resistant to
PGF2α-induced luteal regression. Additionally, mice lacking ASMase
were protected from PGF2α-induced luteal regression. There was no
gross evidence of PGF2α-induced disruption of the corpus luteum in
the ASMase deficient mice, findings supported by the maintenance of
progesterone levels (Henkes et al., 2008). These results suggest that
TNF-mediated activation of ASMase serves a pivotal role in altering the
luteal vasculature during PGF2α-induced luteal regression. The absence
of direct cytotoxic effects of PGF2α on isolated luteal endothelial cells
argues that luteal regression in response to PGF2α requires cytokines
like TNF to disrupt vascular integrity. In vitro studies with bovine luteal
endothelial cells show that TNF also induces apoptosis by inducing
ASMase, production of ceramide, and activation of Jun-N-terminal
Kinase (JNK) MAPK signaling (Pru et al., 2003). TNF-induced
endothelial cell death may increase vascular permeability, allowing
for increased infiltration of immune cells, which release more TNF,
thereby exacerbating angioregression. However, further studies need to
be performed to determine whether TNF affects luteal vascular
permeability in vivo.

5.2 Interleukin 1 β (IL1B)

Interleukin 1 β (IL1B) is a pro-inflammatory cytokine that, like
TNF, is upregulated early in luteal regression (Talbott et al., 2017).
Also like TNF, IL1B is produced in immune cells, based on previous
studies (Lopez-Castejon and Brough, 2011), although some studies
indicate that fibroblasts may be able to secrete inflammatory
cytokines like IL1B (Kobayashi and Terao, 1997; Bartok and
Firestein, 2010), and a transcriptomic study identified the
presence of IL1B mRNA in small steroidogenic cells of the
bovine corpus luteum (Baddela et al., 2018). Although the exact
localization of IL1B has not been determined in the corpus luteum,
flow cytometry of the primate corpus luteum indicated that IL1B is
produced by CD11b+ cells in the late luteal phase (Bishop et al.,
2017). Unlike TNF, the role of IL1B has not been investigated in
luteal endothelial cells; however, in the corpus luteum, IL1B has been
demonstrated to impair steroidogenesis and increase
cyclooxygenase and subsequent PGF2α production in cultured rat
ovarian tissue (Estevez et al., 2003), indicating cytokines like IL1B
can potentially contribute to a positive-feedback loop to enhance
PGF2α production and action.

In studies of human umbilical vein endothelial cells (HUVECs),
IL1B induces matrix metalloprotease 9 and decreases levels of tissue
inhibitor ofmatrixmetalloprotease 1, suggesting that IL1B induces a net
breakdown of matrix (Qin et al., 2012). In the same study, it was
demonstrated that IL1B also increased endothelial cell permeability and
altered expression of membrane cadherins and claudins, which could
implicate increased immune cell recruitment (Qin et al., 2012). In
agreement with this possibility, both TNF and IL1B increased
neutrophil recruitment to HUVECs. Furthermore, the effect of IL1B
was increased slightly in conditions of shear stress (Sheikh et al., 2005).
A potential mechanism could be through the secretion of chemokines,
which attract immune cells like neutrophils. For instance, IL1B
increased secretion of IL8, a chemokine known to recruit
neutrophils, in immortalized human microvascular endothelial cells
(Bourdiec et al., 2013). Additionally, the receptor for IL1B, IL1R, has
been implicated in shear-stressed induced EndMT, where endothelial
cells transdifferentiate into myofibroblast-like cells (Kidder et al., 2023).
Therefore, IL1B action in angioregression may be beyond generalized
inflammation, and may even induce further inflammation through
recruitment of immune cells and increased production of PGF2α.

5.3 Transforming growth factor β1 (TGFB1)

Similar to TNF and IL1B, TGFB1 is increased very early during
luteal regression (Hou et al., 2008; Talbott et al., 2017). TGFB1 is a
ubiquitously expressed cytokine that binds to tyrosine kinase TGFB
receptors (TGFBRs) and activates a family of transcription factors
called mothers against decapentaplegic, commonly known as
SMADs, by phosphorylation (Branton and Kopp, 1999; Tzavlaki
and Moustakas, 2020). One of the classic functions of TGFB1 is
activating fibroblasts into myofibroblasts, in which they gain more
actin fibers and produce more collagen (Vallée and Lecarpentier,
2019). Maroni and Davis demonstrated that TGFB1 induces
collagen and laminin production by bovine luteal fibroblasts
in vitro (Maroni and Davis, 2012). In luteal endothelial cells,
TGFB1 decreased DNA incorporation, cell migration, and
endothelial sprouting (Maroni and Davis, 2011). In that same
study, TGFB1 increased caspase-3/7 activity of bovine luteal
endothelial cells, disrupted the distribution of VE-cadherin, and
increased endothelial cell permeability (Maroni and Davis, 2011).
These findings demonstrate that TGFB1 has a direct effect on luteal
angioregression by elimination of endothelial cells, increased
vascular permeability, and fibrosis of the vasculature.

6 Summary and future directions

Although the exact mechanism of vascular regression of the
corpus luteum remains unclear, it is known that blood flow
transiently increases then is impaired. The early increase in blood
flow may be from the release of vasodilators like NO during luteal
regression. Based on observations in other tissues, shear stress may
alter endothelial cell morphology and consequent function (Malek
and Izumo, 1996; Watts, 2007). As mentioned in the review,
endothelial cells themselves are also sensitive to growth factors
and cytokines released during luteal regression. Increased
production of cytokines in the luteal tissue microenvironment
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during regression may contribute to such changes in morphology as
well as death of endothelial cells. The cytokine-mediated events, in
conjunction with the loss of growth factors that typically signal
endothelial cell survival and proliferation, contribute to
angioregression in the corpus luteum. Endothelial cell apoptosis
may result in sloughing of cells into capillaries and increased
permeability of the vessels.

In this review, we summarized the current knowledge on
changes in blood flow, presence of vasoactive factors and
inflammatory cytokines, which all may contribute to
angioregression of the corpus luteum. However, endothelial
cells themselves may also be acting as luteolytic agents. Luteal
endothelial cells can produce cytokines such as TNF as well as
chemokines like monocyte chemoattractant 1 protein, which
attracts immune cells to the site of luteolysis (Liptak et al.,
2005; Cherry et al., 2008). Furthermore, in vivo studies
revealed that PGF2α rapidly induced P-selectin, a leukocyte
adhesion molecule, in bovine endothelial cells and recruited
polymorphonuclear neutrophils into the corpus luteum
(Shirasuna et al., 2012a). Studies in the primate indicate
infiltration of macrophages, neutrophils, and natural killer
cells in the regressing corpus luteum (Bishop et al., 2017).
Endothelial-immune cell interactions may exacerbate
luteolysis, as in vitro studies revealed that contact co-culture
of endothelial cells with peripheral blood mononuclear cells was
required to synergistically increase monocyte chemoattractant
protein 1 (Liptak et al., 2005). Endothelial cells also express class
II major histocompatibility (MHC) proteins, which allow binding
and subsequent activation of T lymphocytes (Cannon et al.,
2007a). Luteal endothelial cells also express proteins that
stabilize MHC II binding to T-cells as well as the
costimulatory molecule CD80, which induces T-cell survival
and proliferation (Cannon et al., 2006; Cannon et al., 2007b).
However, most of the current research focuses on the influence of
endothelial cells on immune cells rather than vice versa. Studies
are needed to determine how immune cell binding to luteal
endothelial cells affects vascular permeability, recruitment of
other immune cells and viability.

This review has centered on the actions of a number of growth
factors and cytokines, but newly developing research implicates
additional factors like adipokines and neuropeptides in luteal
regression. The potential role of many of these factors is the
subject of a recent review (Mlyczyńska et al., 2022). Many of
these factors impact metabolic pathways in cells that ultimately
control cellular fate. How adipokines and neuropeptides contribute
to luteal angioregression is a question requiring further
investigation.

It is well established that structural regression of the corpus
luteum involves programmed cell death of endothelial cells and
steroidogenic cells. However, recent research indicates that
apoptosis, autophagic cell death, and necroptosis may all
contribute to regression of the bovine corpus luteum (Hojo
et al., 2022). It is not known whether and how each of these
processes contribute to the demise of endothelial cells.
Additionally, non-apoptotic pathways of angioregression may
also occur in the regressing corpus luteum, such as a change in
endothelial cell phenotype. Senescence of vascular endothelial
cells has been associated with vascular dysfunction in variety of

disease states by impairing new angiogenesis and endothelial-
mediated changes in vascular tone (Shosha et al., 2018; Kiss
et al., 2020; Cohen et al., 2021; Bloom et al., 2023a; Bloom et al.,
2023b; Han and Kim, 2023). Senescent cells exhibit a pro-
inflammatory phenotype (Birch and Gil, 2020); thus, if
endothelial cell senescence is present in the regressing corpus
luteum, then these senescent endothelial cells may be producing
the inflammatory mediators that contribute to angioregression
and the viability of steroidogenic cells. Research is needed to
determine the phenotypes of luteal endothelial cells before and
during luteal regression.

Another possibility is that some endothelial cells are
changing phenotype by transdifferentiation or EndMT. This
phenomenon has been implicated in vascular dysfunction of
various disease states such as cancer, vascular fibrosis,
sclerosis, pulmonary hypertension, and atherosclerosis
(Zeisberg et al., 2007; Manetti et al., 2017; Alvandi and
Bischoff, 2021; Cai et al., 2021; Gorelova et al., 2021). EndMT
is known to be initiated by TGFB1, and is exacerbated by TNF in
cancer-associated fibroblasts (Yoshimatsu et al., 2020); therefore,
it is possible that the increases in content of TNF and
TGFB1 during luteal regression can contribute to EndMT.
Because luteal endothelial cells exhibit a variety of phenotypes
(Spanel-Borowski and van der Bosch, 1990; Spanel-Borowski,
1991; Fenyves et al., 1994; Davis et al., 2003), it is possible that
different endothelial cells undergo different forms of regression,
for instance cell death compared to senescence or EndMT.
Lineage tracing models using a transgenic animal model can
be used to study EndMT in vivo (Sánchez-Duffhues et al., 2018),
but has yet to be done in the corpus luteum to track whether
EndMT occurs or when it occurs in the regression process. It is
possible that EndMT may appear later in regression, when
fibrosis occurs, following inflammation.

Furthermore, many of these previous studies are done in
cultured endothelial cells from whole digested luteal tissue. Thus,
arteriolar, venular, and microvascular endothelial cells are all
considered to be the same. However, studies in other tissues
indicate that the type of vessel from which the endothelial cell
belonged can have an effect of its responsiveness to certain
environmental stressors. For instance, Polk et al. demonstrated
that human dermal microvascular cells slightly oriented
themselves in response to shear stress, and Reinitz et al.
demonstrated that human brain microvascular endothelial
cells did not change shape as HUVECs did in response to
shear stress (Reinitz et al., 2015; Polk et al., 2022). It was also
demonstrated that rat endothelial cells from different vessels
respond differently to vasoactive factors, such as acetylcholine-
induced relaxation (Abukabda et al., 2017). In that study, it was
identified that titanium dioxide nanoparticles impaired
acetylcholine-induced relaxation in endothelial cells from the
aorta, third-, and fourth-order mesenteric arteries, whereas it had
no effect in endothelial cells from the femoral artery (Abukabda
et al., 2017). Additionally, human dermal microvascular
endothelial cells exhibited less damage in response to Candida
albicans compared to HUVECs but more damage in response to
Staphylococcus aureus (Seidl et al., 2012). The human
microvascular endothelial cells also released less IL-8
compared to HUVECs in response to either pathogen (Seidl

Frontiers in Physiology frontiersin.org09

Monaco and Davis 10.3389/fphys.2023.1254943

https://www.frontiersin.org/journals/physiology
https://www.frontiersin.org
https://doi.org/10.3389/fphys.2023.1254943


et al., 2012). Because of such differences between macro- and
microvascular endothelial cell responses to pathogens and shear
stress, it is important to decipher the macro- and microvascular
responses separately when studying luteal angioregression.
Various changes in the vasculature and causes of endothelial
cell death have been identified in the corpus luteum (summarized
in Table 1). However, a unifying mechanism of vascular
regression has yet to be established. The current knowledge
revolves around changes in blood flow and secreted factors
that may affect endothelial cell viability; yet, neither the exact
transcriptome or proteome of regressing vascular endothelial
cells nor their varying phenotypes has yet to be studied.
Single-cell proteomic or transcriptomic studies conducted
during luteal regression could provide new insight on how
changes in the luteal microenvironment in response to PGF2α
lead to angioregression.

Furthermore, the fibrosis of various luteal vessels has yet to be
explored. Studies show that while the microvasculature is
disappearing the walls of larger vessels become thicker during
luteal regression (Bauer et al., 2003). The presence of
myofibroblast-like cells in the regressing corpus luteum (Nio-
Kobayashi et al., 2016) may contribute to a fibrotic response. As
reviewed above, many endothelial-reactive factors may
contribute to fibrosis. Fibroblast activation by TGFB1 and
FGF2 (Monaco et al., 2023) and deposition of matrix may be
a major contributor to this process. EDN1 has been implicated in
pulmonary fibrosis and TNF-induced EndMT in cardiac fibrosis
(Swigris and Brown, 2010; Hu et al., 2023). Thrombospondins
may also contribute to vascular fibrosis through TGFB1
(Sweetwyne and Murphy-Ullrich, 2012). Given that the end
stage of luteal regression is a fibrotic corpus albicans, more
studies are needed to elucidate the mechanism of luteal
vascular regression beyond blood flow and apoptotic cell death
of endothelial cells.
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