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Since ECG contains key characteristic information of arrhythmias, extracting this
information is crucial for identifying arrhythmias. Based on this, in order to
effectively extract ECG data features and realize automatic detection of
arrhythmia, a multi-classification method of arrhythmia based on multi-scale
residual neural network and multi-channel data fusion is proposed. First, the
features of single-lead ECG signals are extracted and converted into two-
dimensional images, and the feature data sets are labeled and divided
according to different types of arrhythmias. The improved residual neural
network is trained on the training set to obtain the classification model of the
neural network. Finally, the classification model is applied to the automatic
detection of arrhythmias during exercise. The accuracy of the classification
model of this method is as high as 99.60%, and it has high accuracy and
generalization ability. The automatic identification of arrhythmia also
contributes to the research and development of future wearable devices.
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1 Introduction

Data released by the American College of Cardiology in 2019 shows that cardio-vascular
disease is already the most important cause of human death. It is estimated that by 2030, the
number of deaths from cardiovascular disease will reach 24 million (Sannino and De Pietro,
2018; Liu et al., 2021). Arrhythmias are a type of cardiovascular disease, and arrhythmias are
usually not life-threatening, but some arrhythmias are harmful and can lead to stroke or
sudden death (Luo et al., 2017). With the increase of social pressure, people often maintain
physical health through exercise, and arrhythmias during exercise can lead to physical
discomfort, and serious ones can also lead to sudden death. Electrocardiogram (ECG) is able
to reflect the condition of the heart by recording periodic changes in the heartbeat (Fan et al.,
2021). Therefore, arrhythmias can be diagnosed by electrocardiogram. It can be seen that it is
very necessary to detect arrhythmic diseases as soon as possible through abnormal
electrocardiograms, so as to achieve early intervention and early treatment.

The ECG signal is constantly changing with the beating of the heart, and it is a periodic
repetition of heartbeat activity over time. Cardiologists detect abnormal heart-beats based on
changes in the frequency, rhythm, and morphology of the heart-beat. The ECG signal
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corresponding to arrhythmias is short-lasting and imperceptible,
which makes it easy for doctors to make mistakes in the diagnosis
process, and the diagnosis process is time-consuming and laborious
(Yang and Shen, 2013; Atal and Singh, 2020).

In order to achieve automatic classification of ECGs, researchers
have proposed many methods (Cortes and Vapnik, 1995; Kleinbaum
et al., 2002; TENCON, 2013; Xu et al., 2018), including artificial neural
networks, support vector machines, logistic regression, and random
forests. In recent years, deep learning technology has been used more
andmore widely in ECG. Based on this, we have a new understanding
of the classification of ECG, and the deep learning-basedmethod does
not require additional feature extraction and selection steps (Breiman,
2001; Xu and Liu, 2020). Neural networks are able to ex-tract
representative features from the input data and classify them with
the help of softmax. Panda R et al. (Panda et al., 2020) proposed a new
method to detect shockable ventricular cardiac arrhythmias using
ECG signals. A fixed frequency range empirical wavelet transform

filter bank is proposed for multi-scale analysis of ECG signals.
Patterns evaluated using a fixed frequency range empirical wavelet
transform of ECG signals were used as input to a deep convolutional
neural network for the detection of shockable ventricular cardiac
arrhythmias. Zhao W et al. (Zhao et al., 2019) based on the ResNet
model, using a low-pass filter to eliminate noise in the ECG signal,
obtained high classification accuracy on 5 different types of ECGs. Shi
Z et al. (Shi et al., 2021) improved the residual network to achieve the
5-classification task of arrhythmias, and their classification accuracy
reached 99.59%. Park J et al. (Park et al., 2020) designed the residual
network structure of the integrated squeeze-and-excitation module
and obtained 97.05% accuracy. Li D et al. (Li et al., 2020) proposed a
multi-scale residual network and realized the 4-classification task of
ECG signals, and the accuracy of the method reached up to 94.29%
(Guo et al., 2021). combined multiscale and squeeze-and-excitation
modules for arrhythmia classification, which extracted ECG image
features and applied key features to signal recognition, and they
verified the effectiveness of the method in two datasets with an
accuracy rate of 98.3% and 97.5%, respectively (Mangathayaru
et al., 2021). evaluated the diagnostic model using a single-lead
dataset, where they first extracted the characteristics of the signal
using the wavelet transform, and then used the attention mechanism
to distinguish different arrhythmia categories from the extracted
signal according to the time series, with an accuracy rate of 98.5%.
In the above work, the ResNet model was used, the improved residual
network and the fusion multi-scale residual network were used to
realize the multi-classification task of arrhythmia. Their recognition
accuracy has reached more than 90%, but in the medical field, the
recognition of diseases is accurate the rate is closely related to the
patient’s condition. Therefore, it is very important to further improve
the recognition accuracy of ECG signals. Moreover, on the basis of
obtaining better signal recognition accuracy in existing research, it is
necessary to simplify the process of signal feature extraction, and the
fusion of multi-lead data should also be considered. The data of
different leads has different characteristics, and the data set
composed of data extracted from different leads is more complex
and confusing. The model trained in this way can be used in the face
of complex and diverse clinical conditions. More accurately identify
the disease.

FIGURE 1
V5 lead and MLII lead ECG.

TABLE 1 Number of samples of MIT-BIH database used in training and testing.

Classes Training set Testing set Total

N 9,252 1,027 10,279

LBBB 7,244 804 8,048

PVC 5,481 609 6,090

APB 2,291 254 2,545

RBBB 4,842 537 5,379

TABLE 2 Number of samples of sudden cardiac death holter dataset used in
training and testing.

Classes Training set Testing set Total

N 9,839 1,093 10,932

PVC 9,626 1,069 10,695

I 9,526 1,091 10,617
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Therefore, on the basis of the above research, drawing on the
excellent algorithms in the field of im-ages, we propose a method
based on multi-scale residual neural network and multi-channel
fusion for the diagnosis of motor arrhythmias. The main
contributions of this paper are as follows.

(1) The two-channel ECG data is fused and converted into a two-
dimensional ECG image.

(2) A multi-scale module is integrated in the bottom layer of the
residual network to fuse different scale features of ECG images.
When the image features reach the deep layer of the network,
the image information of the upper layer and the bottom layer
can be combined through the multi-scale module.

(3) The improved network makes full use of image information of
different scales, combines more image information to learn
more content, alleviates the gradient disappearance that may
occur in the deep network, and achieves higher-precision ECG
classification.

The rest of this paper is organized as follows. Experimental
materials andmethods are described in the second section, including
datasets, data pre-processing, im-proved residual neural networks
and experimental equipment. The experimental results are described
in Section 3 and discussed in Section 4. A summary of our work and
vision for the future are described in section 5.

2 Materials and methods

2.1 Dataset

We completed the experiment using the MIT-BIH arrhythmia
dataset (Goldberger et al., 2000; Moody and Mark, 2001). The

FIGURE 2
Data pre-processing.

FIGURE 3
The overall architecture of a multiscale residual neural network.
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heartbeat data recorded in this dataset includes two sets of leads. In
Figure 1, A represents the V5 lead and B represents the MLII lead.
This dataset randomly selected 23 cases from 4,000 24-h Holter
records as representative samples of clinical routine records.

The sudden cardiac death holter dataset is data on sudden
cardiac deaths recorded at boston hospitals in the 1980s. It
included 18 patients with underlying sinus rhythm, 1 patient
with continuous pacing, and 4 patients with atrial fibrillation.
Annotating this dataset is particularly difficult due to the
complexity of the heart rhythms included, so there is limited
annotated data for this data.

2.1.1 Dataset division
Deep learning algorithms tend to learn categories with a larger

number of samples, and the number of ECGs for each arrhythmia in

FIGURE 4
The three modules used in the network structure proposed here: (A) represents the conv_block module, (B) represents the identity_block module,
and (C) represents the multi-scale module.

FIGURE 5
Flowchart of diagnostic methods.

TABLE 3 Loss values and acc in the MIT-BIH dataset.

Methods Train_loss Val_loss Train_acc Val_acc

ResNet 0.003 0.05 99.86 98.99

Proposed 0.003 0.02 99.91 99.60
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the MIT-BIH database is very different, so this will reduce the
accuracy of the deep learning model. Therefore, we train the model
by selecting categories with an approximate number of samples from
the da-ta-base, which eliminates the impact of database imbalances.
We selected 5 different categories from our database, including
normal (N), left bundle branch block (LBBB), ventricular premature
beats (PVC), atrial premature beats (APB), and right bundle branch
block (RBBB).

The experimental dataset is divided according to the ratio of 9:1,
and the number of MIT-BIH database ECG image samples used
during training and testing is shown in Table 1. Table 1 shows the
size of the sample 2D ECG dataset used in this paper. Among them,
the number of ECGs for each arrhythmia category is also relatively
close, so when training, the phenomenon of unbalanced model
training can be avoided.

The number of samples in the sudden cardiac death holter
dataset (Greenwald et al., 1985; Greenwald, 1986; Goldberger et al.,
1988; Courtemanche et al., 1989; Goldberger et al., 1989) is shown in
Table 2. The dataset is divided into three categories, namely, normal
(N), ventricular premature beats (PVC) and Isolated QRS-like
artifact (I).

2.2 Data pre-processing

This paper uses the matplotlib library of the python language to
fuse the single-lead ECG data together, and uses the plt function to
save it as a two-dimensional ECG image suitable for the CNN
structure. Since each ECG signal is a continuous one-dimensional
time series, we use 400 data points as a sample, data 1–400 as the first
sample generated by cutting, and the starting point of the next
sample is 401–800, until the end of ECG data.

S × P + 1≤ d≤ S × P + P S ∈ 0, 1, 2, . . . ,
N
P

( ) (1)

The definition of each sample is shown in Equation 1, d is the
current data point, P is the interval length of the selected data point,
and S is the sample data after segmentation.

The segmented data points are shown in Figure 2, with a sample
of every 400 data points and looped through them.

2.3 Cross-entropy loss function

The function of the loss function is to calculate the gap between the
predicted value of the networkmodel and the true label, and it is used to
measure how well the network model is trained. As the network model
is trained, the loss function value changes continuously. When the loss
function reaches the minimum value, the prediction accuracy of the
network model also reaches the highest value. The cross-entropy loss
function is used for multiclassification tasks, which can calculate the
degree of difference in the probability distribution of the same random
variable. DatasetD= (x1, y1), (x2, y2), . . .,(xN, yN), x ∈ xi{ }Ni�1 ∈ X is the

FIGURE 6
Experimental results on the MIT-BIH dataset: (A) is the experimental result of ResNet, and (B) is the experimental result of the proposed method.

TABLE 4 The loss value and acc of the training and validation sets.

Methods Train_loss Val_loss Train_acc Val_acc

V5 0.01 0.15 99.51 96.84

MLII 0.002 0.05 99.91 98.54

Proposed 0.003 0.02 99.91 99.60
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input variable, N represents the total number of samples,
y ∈ yi{ }Ni�1 ∈ Y is the predicted value of the expected output, this
work is a multi-classification task, y ∈{1,2,. . .,K}, K is the number of
categories. The cross-entropy loss function is defined as Equation 2:

L � 1
n
∑N

n�1∑
K

k�1ynklog ŷnk( ) (2)

2.4 Improved residual network

HE K et al. (He et al., 2016) proposed the residual neural
network, which achieved success in the ImageNet competition.

But considering that image features at different scales are also
critical for the classification of ECGs, we made further
improvements to the residual network.

In this paper, an improved multi-scale residual ECG
classification algorithm is introduced, the network architecture is
based on the residual structure, and takes into account the extraction
of feature information at different scales, in order to make effective
use of this information, multi-scale modules are added to the end of
the residual network.

The proposed network framework is shown in Figure 3, from
which each module of the network architecture can be clearly seen.
First, the 2D ECG signal is input into the network, and then it is
zeroed, followed by 2D convolution and regularization operations.
Before the residual connection, perform the maximum pooling
operation, save the main features in the obtained feature map,
and then input the main features into the residual block. We
define two residual blocks, conv_block (denoted by ConvB
below) and identity_block (denoted by IdenB below). First, the
features obtained by the maximum pooling are input into the ConvB
module, and then the output of the ConvB module is passed to the

FIGURE 7
Single-channel and multi-channel experimental results: (A) is the experimental result of V5 channel, (B) is the experimental result of MLII, and (C) is
the experimental result of multi-channel data.

TABLE 5 Loss function value and accuracy for the sudden cardiac death holter
dataset.

Methods Train_loss Val_loss Train_acc Val_acc

ResNet 0.007 0.049 99.76 98.89

Proposed 0.006 0.056 99.82 98.84
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IdenB module, so that the obtained features retain the most
important information as much as possible, so that the IdenB
module is used more than the ConvB module. Because the IdenB
module directly connects the input features with the final
convolution output features, the ConvB module does not simply
connect the initial input features, but performs convolution and
batch regularization operations to further process the extracted
features. The IdenB module receives the output of the ConvB
module, and continuously retains the features of the initial
acquisition to the subsequent convolutional layer, which can
effectively preserve the features of the initial acquisition image
and is more conducive to image classification. We add 2 IdenB

modules after the ConvB module, 3 IdenB modules after the ConvB
module, and 5 IdenB modules after the ConvB module, and fuse the
multi-scale modules at the output position of this layer. As the
network deepens, the training accuracy of the model is improved,
but with continuous training, the gradient in the network will
gradually disappear. When the network reaches a certain depth, a
multi-scale module is added to sample the collected features at
different sampling rates, so that the network can consider feature
information of different scales, thereby improving the accuracy of
classification.

2.4.1 Conv_block module
The contents of the ConvB module are described in this section, as

shown in Figure 4A. The imported features are activated by two-
dimensional convolution, batch regularization, dropout, and Relu in
turn, and after four rounds of these four operations, the original input

FIGURE 8
ResNet of the sudden cardiac death holter dataset and the experimental results of themethod in this paper: (A) is the experimental results of ResNet,
and (B) is the experimental results of the method in this paper.

TABLE 6 The comparison results of the algorithms under the MITBIH dataset.

Methods Precision Sensitivity F1 score Kappa

Goolenet 97.25 96.94 97.06 0.96

ResNet 97.74 97.58 97.62 0.96

Proposed 98.25 98.38 98.33 0.97

TABLE 7 Comparison results of algorithms under Sudden cardiac death holter
dataset.

Methods Precision Sensitivity F1 score Kappa

Goolenet 99.18 99.78 99.47 0.99

ResNet 99.63 99.18 99.48 1.0

Proposed 99.34 99.16 99.24 1.0

TABLE 8 This is a table. Tables should be placed in themain text near to the first
time they are cited.

Author Year Accuracy (%)

Atal and Singh (2020) 2020 93.19

Xu and Liu (2020) 2019 98.60

Izci et al. (2019) 2019 97.42

Ullah et al. (2021) 2021 99.02

Wang et al. (2021) 2021 98.74

Proposed Method 2022 99.60
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features are subjected to two-dimensional convolution and batch
regularization operations, that is, shortcut. Connect the features of
the output after four rounds of operation with the features of the output
after the shortcut, and finally activate the output using a Relu.

2.4.2 Identity_block module
The contents of the IdenB module are described in this section,

as shown in Figure 4B. The imported features are in turn two-
dimensional convolution, batch regularization, dropout, and Relu
activation, and these four operations use the characteristics of the
output after three rounds to connect the original input features, and
finally use a Relu to activate the output.

2.4.3 Multi-scale module

2.5 Diagnostic methods

The method flow mainly includes: data preprocessing, dataset
division, training model and ECG image classification. Figure 5
shows the flow of the method presented herein.

1. First collect ECG data, which is one-dimensional time series data;
2. Preprocess the collected 1D ECG data. The single-channel data

was fused by the matplotlib method to form a two-dimensional
multi-channel ECG image;

3. In a 9:1 ratio, the ECG dataset is divided into training and
validation sets;

4. In order to fully extract the characteristics of multi-channel ECG
images, multi-scale network modules are designed;

5. Train the designed model to obtain the network model of ECG
image diagnosis;

6. The trained model is verified on the validation set and the
accuracy of ECG image recognition is calculated.

This paper uses the frameworks of Python and Tensorflow to
complete the experiment. The program was trained and tested with
the GPU NVIDIA GeForce RTX 3060. During training, in order to
reduce thememory usage, each group takes 32 pieces of data, and the
learning rate of the Adam optimizer is 0.0001.

3 Results

Acc � TP + TN
TP + TN + FP + FN

(3)

The definition of the evaluation index of the experimental results
is as follows:

Precision � TP
TP + FP

(4)

Sensitivity � TP
TP + FN

(5)

F1 score � 2 · Precision · Sensitivity
Precision + Sensitivity

(6)

FIGURE 9
ResNet and the t-SNE and confusion matrix diagram of the method presented herein.
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TP is to predict a positive class as a positive class, FN is to predict
a positive class as a negative class, FP is to predict a negative class as a
positive class, and TN is to predict a negative class to be a negative
class.

Firstly, in order to verify the importance of multiscale modules,
the experimental results of ResNet and the proposed method are
compared under the same dataset. The training results are shown in
Table 3 and Figure 6. Table 3 summarizes the experimental results
under the same dataset, and the accuracy of ResNet and the
proposed method in the verification set is 98.99% and 99.60%,
respectively. The accuracy of the proposed method on the validation
set is 0.61% higher than that of ResNet, and the loss function value
on both the training set and the validation set is lower than that of
ResNet. Therefore, it is very reasonable to add multi-scale modules
on the basis of ResNet, and multi-scale modules can effectively
improve classification accuracy.

In Figure 6, the first line represents the loss function value and
accuracy value of ResNet’s training set and validation set. The second
line represents the loss function value and accuracy value of the training
set and validation set of the proposed method. Through comparison, it
can be found that the method proposed in this paper has faster and
more stable convergence speed and higher accuracy.

Secondly, in order to verify the effectiveness of multi-channel data
fusion for classification tasks, on the basis of the samemodel, the single-
channel data (V5 and MLII) and the multi-channel fusion data were
trained respectively, and the experimental results were shown in Table 4
and Figure 7. As shown from Table 4, the validation set accuracy of
V5 channel, MLII channel and the proposed method is 96.84%, 98.54%
and 99.60%, respectively, and the verification set accuracy of the
proposed method is the highest, and the loss function value is also
the lowest. Experimental results show that the dual-channel data is
conducive to improving the accuracy of classification, and the proposed

FIGURE 10
Confusion matrix and cluster analysis results for single-channel and multi-channel data fusion.
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method can make full use of the dual-channel image information to
achieve higher recognition accuracy. In Figure 7A represents the loss
function value and ac-curacy value of training set and validation set
under V5 channel. (b) Represents the loss function value and accuracy
value of training set and validation set under MLII channel. (c)
Represents the loss function value and accuracy value of training set
and validation set undermulti-channel fusion data. As can be seen from
the figure, the value of the loss function after the fusion of two-channel
data converges faster and is more stable. Its accuracy rate is also stable.
Therefore, the proposed method can effectively extract the information
of multi-channel ECG images, improve the accuracy of ECG
classification, and the classification performance is optimal.

By training the sudden cardiac death holter dataset, the
experimental results of ResNet network architecture and fusion
multi-scale modules are shown in Table 5 and Figure 8.

Table 5 and Figure 8 shows that the accuracy of the method
proposed in this paper on the verification set is slightly lower than the
results obtained by the ResNet network, and in the training process, the
ResNet method is more stable and less fluctuating, while the method
proposed in this paper fluctuates more, and the results are more
uncertain, so the results obtained by the ResNet network are more
trustworthy. The method proposed in this paper is not as good as the
ResNet method. The reasonmay be that the sudden cardiac death holter
dataset is complex, there are fewer samples with labeled information in
this data, and the experimental samples of individual patients are limited.

In addition to comparing the ResNet algorithm, we trained the
Goolenet network using the same data set. The experimental results are
shown in Table 6 and Table 7. Table 6 shows the comparison results

under the MITBIH dataset, and the optimal results in the table have
been bolded. Except for the Kappa index, other indexes are superior to
the results obtained by other algorithms. Table 7 shows the comparison
results of the Sudden cardiac death holter dataset, and the optimal
results in the table have been bolded. It can be seen that the results
obtained by the ResNet algorithm are better. The reasonmay be that the
dynamic ECGdata set of sudden cardiac death is complex, and there are
fewer samples with labeled information in the data, and the
experimental samples of individual patients are limited. Bold fonts
in Table 6 and 7 indicate the optimal experimental results.

To further verify the effectiveness of the proposed method, the results
of some other ECG classification methods in recent years were compared
under the same data set, as shown in Table 8. From the experimental
results and Table 8, it can be concluded that this paper has obtained better
results compared with othermethods. Moreover, when addingmulti-scale
modules to the ResNet network, the effect is superior to that of the ResNet
network, thus verifying that the proposed method is effective.

4 Discussion

t-SEN (t-Distributed Stochastic Neighbor Embedding) (Li et al.,
2020) was proposed in 2008. The t-SEN feature is a better
demonstration of experimental results. When there are many
classifications, t-SEN can concisely demonstrate the classification
performance of the classification model. As a result, we are able to
more intuitively analyze the performance and quality of
classification models through t-SEN visualization. The confusion

FIGURE 11
ResNet of the sudden cardiac death holter dataset and the prediction results of this method: (A) is the network of ResNet, (B) is the method of this
paper.
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matrix is used to summarize the predicted categories and the real
categories in the form of a matrix.

We use these two methods to visualize ResNet and the methods
proposed in this paper, as shown in Figure 9 and Figure 10. Figure 9
compares the ECG image classification effect of ResNet and the proposed
method, although both methods can achieve the 5-classification task of
the ECG graph, but the proposed method in this paper has a lower error
rate than ResNet on the t-SNE diagram.And in the confusionmatrix, the
recognition accuracy of both label 1 and label 4 is improved by 1%.

Figure 10 compares the confusion matrix and t-SNE plot of
single-channel data and multi-channel data fusion. Among them A
represents the V5 channel, B represents the MLII channel, and C
represents multi-channel data fusion. The method proposed in this
paper has clear clustering boundaries and the experimental data can
be accurately divided into 5 categories. However, the classification
results of single-channel data are very confusing and cannot
effectively distinguish the categories of data.

The prediction effect of the networkmodel is shown in Figure 11 and
Figure 12 The prediction accuracy of the ResNet method on the three
categories of I, N andV are 100%, 100% and 99%, respectively. However,
the accuracy rate of themethod proposed in this paper is 100%, 91% and

100% respectively on these three categories. The prediction accuracy rate
of the method proposed in this paper is low for normal categories, and
9% of them are misclassified as V category. It is difficult for the proposed
method to distinguish the normal category from the V category. In
Figure 12, you can more intuitively see the prediction results of the
ResNet method and the method proposed in this paper under the three
categories. The N category and the V category are similar in some
features. The method proposed in this paper is insufficient for feature
learning of N andV categories. It is difficult to distinguish the N category
from the V category when the two categories are similar.

Through the visualization of the experimental results, in theMITBIH
dataset, compared with the simple residual network, the method
proposed in this paper is significantly better than the comparison
experiment. It can be seen that the multi-scale module has an effect
on the ECG data of the MITBIH data set. The feature learning is better,
the features of the data can be effectively extracted, and various ECG
features can be accurately identified. In the sudden cardiac death holter
dataset, the method proposed in this paper has a low classification
accuracy for category N, confuses category N and category V, and
classifies category N as category V. It can be seen that in the more
complex sudden cardiac death holter dataset, the model proposed in this

FIGURE 12
The prediction results of three categories in the sudden cardiac death holter dataset: (A) is the network of ResNet, (B) is the method of this paper.
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paper is not sufficient to accurately classify categories with similar
characteristics. The method proposed in this paper needs to enhance
the accuracy of data classification with subtle differences in ECG features.

5 Conclusion

In this paper, we propose an arrhythmia classification method
based on multi-scale residual neural network and multi-channel data
fusion. Considering that the information hidden in different lead ECG
data is crucial for identifying arrhythmia diseases, we fused multi-
channel ECG signals. In the process of ECG signal recognition, the
residual neural network incorporates multi-scale modules, and uses the
data after channel fusion to train the multi-scale residual neural
network. After continuous optimization, the model can
automatically extract image features from ECG images for
arrhythmia classification with an accuracy rate of 99.60%. In
addition, we also conduct experimental verification on single-
channel data, and the accuracy rates reach 96.84% and 98.54%,
respectively. Experimental results show that this method has better
classification performance and is more conducive to the classification of
arrhythmia. In future work, we will continue to develop portable
wearable devices to diagnose more real-time samples.
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