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Introduction: The acquisition of blood lactate concentration (BLC) during
exercise is beneficial for endurance training, yet a convenient method to
measure it remains unavailable. BLC and electrocardiogram (ECG) both exhibit
variations with changes in exercise intensity and duration. In this study, we
hypothesized that BLC during exercise can be predicted using ECG data.

Methods: Thirty-one healthy participants underwent four cardiopulmonary
exercise tests, including one incremental test and three constant work rate
(CWR) tests at low, moderate, and high intensity. Venous blood samples were
obtained immediately after each CWR test tomeasure BLC. Amathematicalmodel
was constructed using 31 trios of CWR tests, which utilized a residual network
combined with long short-term memory to analyze every beat of lead II ECG
waveform as 2D images. An artificial neural network was used to analyze variables
such as the RR interval, age, sex, and body mass index.

Results: The standard deviation of the fitting error was 0.12 mmol/L for low and
moderate intensities, and 0.19 mmol/L for high intensity. Weighting analysis
demonstrated that ECG data, including every beat of ECG waveform and RR
interval, contribute predominantly.

Conclusion: By employing 2D convolution and artificial neural network-based
methods, BLC during exercise can be accurately estimated non-invasively using
ECG data, which has potential applications in exercise training.

KEYWORDS

exercise, convolutional neural network, long short-term memory, recurrent neural
network, residual network

OPEN ACCESS

EDITED BY

Massimo Pagani,
University of Milan, Italy

REVIEWED BY

Steve McKeever,
Uppsala University, Sweden
Talal Bonny,
University of Sharjah, United Arab
Emirates

*CORRESPONDENCE

Hong-Ren Su,
suhongren@gmail.com

RECEIVED 06 July 2023
ACCEPTED 16 October 2023
PUBLISHED 25 October 2023

CITATION

Huang S-C, Lee C-H, Hsu C-C,
Chang S-Y, Chen Y-A, Chiu C-H,
Hsiao C-C and Su H-R (2023), Prediction
for blood lactate during exercise using an
artificial intelligence—Enabled
electrocardiogram: a feasibility study.
Front. Physiol. 14:1253598.
doi: 10.3389/fphys.2023.1253598

COPYRIGHT

© 2023 Huang, Lee, Hsu, Chang, Chen,
Chiu, Hsiao and Su. This is an open-
access article distributed under the terms
of the Creative Commons Attribution
License (CC BY). The use, distribution or
reproduction in other forums is
permitted, provided the original author(s)
and the copyright owner(s) are credited
and that the original publication in this
journal is cited, in accordance with
accepted academic practice. No use,
distribution or reproduction is permitted
which does not comply with these terms.

Frontiers in Physiology frontiersin.org01

TYPE Original Research
PUBLISHED 25 October 2023
DOI 10.3389/fphys.2023.1253598

https://www.frontiersin.org/articles/10.3389/fphys.2023.1253598/full
https://www.frontiersin.org/articles/10.3389/fphys.2023.1253598/full
https://www.frontiersin.org/articles/10.3389/fphys.2023.1253598/full
https://www.frontiersin.org/articles/10.3389/fphys.2023.1253598/full
https://www.frontiersin.org/articles/10.3389/fphys.2023.1253598/full
https://crossmark.crossref.org/dialog/?doi=10.3389/fphys.2023.1253598&domain=pdf&date_stamp=2023-10-25
mailto:suhongren@gmail.com
mailto:suhongren@gmail.com
https://doi.org/10.3389/fphys.2023.1253598
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/physiology
https://www.frontiersin.org
https://www.frontiersin.org/journals/physiology
https://www.frontiersin.org/journals/physiology#editorial-board
https://www.frontiersin.org/journals/physiology#editorial-board
https://doi.org/10.3389/fphys.2023.1253598


1 Introduction

Lactate is produced as a byproduct of glycolysis during exercise.
The production of lactate in working muscles is accelerated,
especially during high-intensity exercise. Serial measurements of
blood lactate concentration (BLC) during an incremental exercise
test (INC) can determine two important thresholds: the lactate
threshold and the onset of blood lactate accumulation. These
thresholds are closely associated with metabolic and respiratory
parameters (Esteve-Lanao et al., 2005; Seiler and Kjerland, 2006).
These two thresholds are significant considerations in prescribing
aerobic exercise, as training intensity between them effectively
enhances fitness (Londeree, 1997). Additionally, BLC aids in
understanding the metabolic adaptation to exercise. It decreases
at the same absolute intensity after endurance exercise training
(Donovan and Brooks, 1983). Despite its usefulness, the
measurement of BLC currently necessitates blood sampling, and
a convenient non-invasive alternative method is not yet available.

Electrocardiogram (ECG) changes as exercise intensity and
duration vary. The normal ECG response to exercise includes the
following: decease in RR interval, ST segment and J point
depression, shortening of QT interval, minimal shortening of
QRS duration (Kligfield and Lauer, 2006), slight decrease in
R-wave amplitude (Myers et al., 1985), and increase in T-wave
amplitude (American College of Sports Medicine, 2018). Since blood
lactate concentration (BLC) also changes during exercise, it might be
possible to estimate BLC by analyzing the ECG.

An electrocardiogram (ECG) is a graphical representation of the
heart’s electrical activity, displaying voltage changes over time
(Theresa, 2009). It is obtained by placing electrodes on the skin.
Traditional ECG analysis primarily involves signal-noise filtering,
segmentation, and manual feature extraction (Somani et al., 2021).
In recent years, machine learning techniques, including support
vector machines and linear discrete analysis, have been widely
utilized in ECG analysis. However, these methods had certain
limitations until the advent of deep learning (Miotto et al., 2018).
Deep learning has significantly advanced the field of artificial
intelligence (AI) and has found extensive applications in ECG
analysis (LeCun et al., 2015; Mincholé et al., 2019; Rim et al.,
2020; Nasir et al., 2021; Barneih et al., 2022; Qatmh et al., 2022).
Given that an ECG is a time-based signal, one-dimensional
convolutional neural network (1D CNN) (Krizhevsky et al., 2017)
or recurrent neural network (RNN) (Sherstinsky, 2018) methods are
commonly employed for analysis. In recent times, the combination
of 2D CNN-based methods with RNN-based approaches has
emerged, demonstrating superior results, particularly in
automatic arrhythmia diagnosis (Zheng et al., 2020). The current
study introduces modifications to existing deep learning methods
and applies them for the first time to predict blood lactate
concentration (BLC) through exercise ECG analysis.

Our hypothesis is that BLC can be predicted using ECG data,
including waveform and RR intervals. In this study, we aimed to
estimate BLC by analyzing exercise ECG data using a novel hybrid
mathematical model based on deep learning. This model combines
convolutional neural network (CNN) and artificial neural network
(ANN), resulting in two components. The first component is a CNN
spatial model used to address image-related challenges in analyzing
2D beat-to-beat ECGs. The second component involves an ANN

model utilized for analyzing RR intervals and anthropometric data
(Figure 1).

2 Methods

Thirty-one healthy male and female participants between 20 and
50 years of age were recruited using convenience sampling. Those
with cardiovascular disease were excluded. The experimental
protocol was approved by the Institutional Review Board of
Chang Gung Memorial Hospital (102–2960B). All subjects
provided written informed consent after receiving oral and
printed explanations of the experimental procedures. This study
was conducted in accordance with the ethical standards of the
Declaration of Helsinki. The participants were recruited between
1 September 2013, and 31 May 2015. The authors had access to
information that could identify individual participants during or
after data collection.

2.1 Cardiopulmonary exercise test and blood
lactate measurement

Each participant visited the exercise laboratory for four times
within 1 week to receive cardiopulmonary exercise tests on a cycle
ergometer (Ergoselect 150P, Ergoline, Germany): one incremental
exercise test (INC) and three constant work rate (CWR) tests. The
CWR tests were of low, moderate, and high intensities. Each
subject was instructed to refrain from exercising for 12 h before
each test. The INC comprised 1 min of unloaded pedaling followed
by an incremental increase in the work rate of 15 W per minute
until exhaustion; thereby, the maximal work rate was determined.
The maximal V’O2 was defined using the following criteria: i) VO2

increased by < 2 mL/kg/min over at least 2 min, ii) HR exceeded
85% of its predicted maximum, iii) the respiratory exchange ratio
exceeded 1.15, or iv) some other symptom/sign limitations (Balady
et al., 2010). Subsequently, each subject performed three CWR
exercise tests: 15-min low CWR at 35% maximal work rate (L), 10-
min moderate CWR at 60% maximal work rate (M), and 4-min
high CWR at 90% maximal work rate (H). The low (35%),
moderate (60%), and high (90%) CWR intensities were chosen
based on three zones: below ventilatory threshold 1 (VT1),
between VT1 and VT2, and above VT2 (Esteve-Lanao et al.,
2005; Seiler and Kjerland, 2006). In the majority of healthy
people, VT1 occurs at 40%–60% of maximal V’O2 (Mezzani
et al., 2009). VT2 has been reported to be 61.3%–85.4% of
maximal V’O2 in healthy participants (Dekerle et al., 2003).
Minute ventilation (V’E), oxygen uptake (V’O2), and carbon
dioxide production (V’CO2) were measured breath by breath
using a computer-based system (MasterScreen CPX, Cardinal
Health, Germany). Heart rate (HR) was determined from the
RR interval of a 12-lead ECG (CardioSoft, GE, Milwaukee, WI,
United States). Arterial blood pressure was measured every 2 min
using an automatic blood pressure system (Tango, SunTech
Medical, United Kingdom), and arterial O2 saturation was
monitored continuously using finger pulse oximetry (model
9500, Nonin Onyx, Plymouth, MN, United States). End-exercise
values were determined as the average of the final 15 s of exercise

Frontiers in Physiology frontiersin.org02

Huang et al. 10.3389/fphys.2023.1253598

https://www.frontiersin.org/journals/physiology
https://www.frontiersin.org
https://doi.org/10.3389/fphys.2023.1253598


for both INC and CWR. In the CWR tests, venous blood was
sampled mostly from an antecubital vein or, in a few cases, from
the dorsal interosseous metacarpal vein for the BLC assay 30–60 s
after the end of CWR exercise tests. Samples were collected in NaF/
K3EDTA tubes and placed on ice. Whole blood was centrifuged
within 90 min to obtain plasma, which was then stored at 4°C. The
BLC was measured using the enzymatic method within 14 days
after sampling (DXC880i).

2.2 Mathematical model for lactate
estimation

A novel model was proposed to estimate BLC using ECG
signals at the end of CWR testing. The model is based on the
architecture of a CNN combined with an ANN to determine the
best predictors for BLC (Somani et al., 2021). The proposed
method can be divided into three parts: data preprocessing,
modeling, and inference (Figure 1).

2.3 Data preprocessing

The ECG signal is one-dimensional time series data composed of
continuous cardiac beats causing repetitive wave groups. The ECG
signals were segmented into multiple one-beat signals according to
their R peak and RR interval (Figure 1). Every single beat of a 1D
lead II ECG signal, sampled at a rate of 200 Hz, was then converted
into 2D ECG images as the analyzed data, which ensured the
integrity of the original ECG data to the greatest extent (Zheng
et al., 2020).

2.4 Modeling

We hypothesized that BLC is a function of ECG data, composed
of a waveform pattern structure. The model can be considered as
follows.

Y � f X( )

FIGURE 1
An illustration of the overall analytical flow path of ECG data. (A) A 34-layer ResNet is used to obtain the ECG waveform 2D feature, and (B) ANN is
used to combine the one-beat ECG waveform with anthropometric information (age, BMI, and sex) and RR interval. (C) S1 and S2, of the last layer are
binary classifications for BLC. Both S1 and S2 use binary to represent integers and floating-point numbers respectively. ANN = artificial neural network;
INC = incremental exercise testing; ResNet = residual network.
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Y represents the BLC, X represents ECG, and f is the BLCmodel.
Although approaching the problem as a linear model to estimate f
may seem like the simplest option, the relationship between a vast
amount of ECG data and BLC cannot be adequately estimated using
a linear model alone. To develop a robust and efficient BLC model,
multiple one-beat signals of the ECG data X were converted into 2D
images using the residual network (ResNet) architecture to capture
the waveform pattern. The ResNet extracted the waveform pattern
feature, which was then input into an artificial neural network
(ANN) with fully connected layers (Hardesty, 2017) architecture
to train the waveform feature to correspond to BLC Y.

ResNet (short for “Residual Network”) is a deep neural network
architecture introduced by Kaiming He, Xiangyu Zhang, Shaoqing
Ren, and Jian Sun of Microsoft Research in 2015 (He et al., 2016a). It
is a type of convolutional neural network (CNN) designed to
overcome the problem of vanishing gradients that can occur in
very deep neural networks. ResNet’s key innovation is the use of
residual connections, which enable the network to learn residual
functions rather than approximate direct mappings. This is achieved
by introducing shortcut connections that bypass one or more layers
of the network, allowing the gradient to flow more directly and
reducing the likelihood of vanishing gradients. ResNet has achieved
state-of-the-art results in various computer vision tasks, such as
image classification, object detection (Goodfellow et al., 2016), and
segmentation. Numerous studies have demonstrated its ability to
train deep networks with high accuracy, making it a popular choice
for many practical applications in industry and academia. Given the
importance of physiological features represented by the variation in
ECG data, we leverage ResNet to learn the relationship between BLC
and ECG and extract critical features.

In our proposed method, 34-layer ResNet has been used to
estimate the BLC model f instead of the linear model. The 34-layer
ResNet has several advantages over shallower architectures
(Goodfellow et al., 2016):

1. Improved accuracy: The 34-layer ResNet can achieve higher
accuracy than shallower networks on many computer vision
tasks. This is because the network is able to learn more
complex features and better capture the underlying patterns in
the data.

2. Reduced vanishing gradients: The use of residual connections in
the 34-layer ResNet helps to alleviate the problem of vanishing
gradients, which can occur in very deep neural networks. This
allows the gradient to flow more directly and reduces the
likelihood of the gradients becoming too small to update the
weights effectively.

3. Faster training: The 34-layer ResNet can be trained faster than
other very deep architectures due to the use of residual
connections. This is because the residual connections enable
the network to learn the residual function, which can be easier
to optimize than direct mapping.

Overall, the 34-layer ResNet is a powerful architecture that has
demonstrated state-of-the-art performance on many computer
vision tasks. Its ability to learn complex features, reduce
vanishing gradients, and train faster makes it a popular choice
for many practical applications (Goodfellow et al., 2016).

Considering that the relationship between BLC and ECG signals
may vary from person to person during exercise, anthropometric
factors were added including age, body mass index (BMI), and sex
for AI to learn to build the best BLC estimation model. The proposed
ResNet-based model is illustrated in Figure 1. ResNet obtains the
waveform features, and ANN combines the one-beat ECGwaveform
pattern feature from ResNet with anthropometric factors. Because
each beat of the ECG waveform analysis loses the message of the RR
interval, the RR interval is added to the ANN step.

The 34 layers-ResNet was used to acquire a 300-dimension
feature vector from the last fully connected layer to model the spatial
information of the ECG waveform data. After ResNet, the other four
parameters, including age, BMI, sex, and RR interval, were added to
the head of the feature vector. An ANN with a fully connected layer
was added to incorporate the other four parameters with the feature
vector from the ECG data after ResNet. Finally, two parts, S1 and S2,
of the last layer are binary classifications for BLC. Both S1 and S2 use
binary to represent integers and floating-point numbers respectively.

The binary number system uses only two digits, typically
represented by 0 and 1. For example, the binary number
1011 represents the decimal number 11. To convert this binary
number to decimal, we added up the values of the bits with a value of
1: 1 × 2^0 + 1 × 2^1 + 0 × 2^2 + 1 × 2^3 = 1 + 2 + 0 + 8 = 11.

In CNNs used for recognition and classification, the last layer
typically represents the category to which input belongs using a
binary value of 0 or 1. We leveraged this characteristic by converting
the BLC into a binary value that could be represented in the
same way.

For example, suppose the BLC is 5.2. We represented the integer
part 5 as 00000101 in S1 and the decimal part 0.2 as 00000010 in S2.
This allowed us to treat each BLC as a classification problem and
train our algorithmic model using the features of CNNs.

By adopting this approach, we were able to use the benefits of
CNNs to train our model as a classification problem, even though
the task at hand involved estimating BLCs rather than categorizing
images.

In addition, according to our previous research (Huang et al.,
2019), high intensity (H) and low and moderate intensities (LM)
have a distinct relationship between BLC (dependent variable)
and independent variables. Thus, the present study continued to
establish a mathematical model separately for the H and
LM data.

2.5 Training and inference

The proposed model, including ResNet-34 and ANN, was
implemented using the PyTorch framework and Python.
Fourfold cross-validation (Kohavi, 1995) was applied to avoid
overfitting and verify accuracy. The original ECG data was
randomly partitioned into four equal-sized sub-datasets. Of the
four sub-datasets, a single sub-dataset was preserved as the
validation data to test the model, and the rest of the three sub-
datasets were used as training data. The cross-validation process was
repeated four times, with each of the four sub-datasets used once as
the validation data. The four results were then averaged to produce a
single estimation.
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2.6 Weighting

Weighting of the second layer in the (b) ANN model (Figure 1),
which consists of 304 weights can be considered as the physiological
parameters including RR interval, age, sex, BMI and ECG pattern
trained from ResNet model when the proposed model is well
trained. The first to fourth absolute positive or negative weights
in Figure 2 represent age, sex, BMI, and RR interval. The other
300 weights are the weights of the ECG waveform, as shown in
Figure 3. They were normalized from −1 to 1 to illustrate the relative
weighting in a single ECG waveform. The total weighting of ECG is
calculated by the average of 300 weights and is shown in the first
column of Figure 2 as a comparison with age, sex, BMI, and RR
interval. The formula for normalization is as follows:

Nonnegative ordinary weights:

w1, w2, w3, . . . ., wt{ } (1)
New weights:

w′
i � yi −mean yi( )where yi �

wi

∑t
i�1wi

(2)

where w stands for the weighting of the second layer in the ANN
model and w′

i stands for normalized weighting.

2.7 Statistics

Linear correlation and Bland–Altman plots were employed to
demonstrate the validity of the estimated BLC. Descriptive statistics
was used for the statistical analysis. Data are presented as the mean ±
standard deviation.

3 Results

Fourteen men and seventeen women were recruited for the
study. The participants’ age was 33 ± 9 years. The participants’ body
height was 165 ± 9 cm. The body weight was 62.7 ± 11.6 kg. The BMI
was 22.8 ± 2.7 kg/m2. The mean work rates at low, moderate, and
high CWR were 66 ± 29 W, 107 ± 46 W, and 146 ± 66 W,
respectively. The average BLC for the three intensities were 3.7 ±
2.3, 6.9 ± 4.2, and 10.4 ± 4.1 mM/L, respectively (Table 1).

3.1 Ideal number of consecutive QRS
complexes to determine BLC

To determine the number of consecutive QRS complexes to
optimally predict BLC, the relationship between accuracy and the
number of ECGs was analyzed under conditions of high, low, and

FIGURE 2
Absolute positive or negative weighting of each variable in determining the BLC.

FIGURE 3
Normalized weighting (Y-axis) in each ECG waveform from the
proposed model. (A) low and moderate intensity; (B) high intensity.
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moderate intensities (Figure 4). The results showed that the accuracy
peaks were approximately 170 and 200 in H and LM intensities,
respectively. Accordingly, 180 beats were employed in the following
algorithm.

3.2 Accuracy of estimation

In both LM and H conditions, the models fit the data very well.
The standard deviation of fitting error is 0.12 mmol/L in the former

and 0.19 mmol/L in the latter (Figures 5A, B). The linear correlation
coefficients are very close to one (Figures 5C, D). In addition, the
fourfold cross-validation also showed that the data had high
consistency, and the model was reliable and did not overfit (Table 2).

3.3 Weighting analysis

Figure 2 shows the absolute weighting of each variable in
determining the BLC. In both conditions, ECG was solely the

TABLE 1 Physiological variables during incremental and constant work rate exercise testing.

INC

maximal V’O2 (mL/min/kg) 30.1 ± 11.9

V’O2 at LT (mL/min/kg) 21.9 ± 6.7

maximal WR (watt) 187 ± 78

WR at LT (watt) 119 ± 53

CWR

WR at L (watt) 66 ± 29

WR at M (watt) 107 ± 46

WR at H (watt) 146 ± 66

BLC at L (mM/L) 3.7 ± 2.3

BLC at M (mM/L) 6.9 ± 4.2

BLC at H (mM/L) 10.4 ± 4.1

Mean ± standard deviation.

CWR, constant work rate; INC, incremental exercise test; LT, lactate threshold; WR, work rate.

L, low-intensity constant exercise test at 35% maximal work rate 15′; M, moderate-intensity constant exercise test at 60%maximal work rate 10′; H, high-intensity constant exercise test at 90%

maximal work rate 4′.

FIGURE 4
Relationship between accuracy (Y-axis) and number of beats (X-axis) employed to estimate blood lactate concentration (BLC; X-axis). Accuracy is
the ratio of correct BLC estimation (person-time) to the total person-times under the same numbers of training times. Correct estimation is defined as the
discrepancy <3% between estimated and true values.
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major weighting factor. In the weighting analysis of the ECG
waveform, BLC estimation is primarily contributed by signals
around the R, S, and T waves (Figure 3).

4 Discussion

This is the very first study that utilizes exercise ECG to calculate
the numerical values of BLC during exercise. In the past decades,
resting ECG as big data has been used for very specific tasks in
arrhythmias, valvulopathy, cardiomyopathy, ischemia,
prognosticating health status, and event prediction (Somani et al.,
2021). For example, a recent study showed that resting ECG may
serve as a powerful tool for screening left ventricular dysfunction
(Attia et al., 2019). The current study broadens the application of

ECG. BLC could be obtained in a non-invasive and real-time
manner by calculating data from a single-lead ECG through a
deep learning-based approach.

CWR testing, a popular way to study exercise tolerance, has
appeared for decades. CWR testing investigates a work rate domain
likely to be encountered in everyday life (Wasserman et al., 2011). In
the present investigation, responses to 31 trios of CWR exercise tests
in 31 participants were utilized to establish a mathematical model to
estimate the BLC from ECG data. The database consisted of low-,
moderate-, and high-intensity exercise tests. The mathematical
model is based on a combination of ResNet and ANN
technology. Excellent fitting was achieved. The current study has
several valuable findings for followers in the establishment of
mathematical models for BLC estimation using deep learning.
First, 170–200 consecutive beats are the optimal amount of data
employed to estimate the BLC. Second, the 95% confidence interval
of fitting errors are 0.24 and 0.38 in ML and H conditions, which are
well acceptable for the purposes of specifying exercise training
targets. Third, in weight distribution analysis showed that the
ECG signal (including each ECG waveform and RR interval) was
the major contributor for modeling. Other factors, including sex,
age, and BMI, are extremely small. ECG data is sufficient to predict
BLC. Fourth, the weighting analysis of ECG waveform shows that
signals around R, S, and T waves play the main role.

FIGURE 5
Model estimates of BLC compared with the measured value. (A,B) Combination of low- and moderate-intensity CWR tests. (C,D) High-intensity
exercise. Scatterplots are demonstrated in (B,D). Agreement using the Bland–Altman plot is shown in (A,C). A and C show the fitting error between the
estimated and measured values. The dark solid horizontal lines in each Bland–Altman plot represent average bias, whereas the dotted lines stand for
average bias ±1.96 standard deviation (95% upper and lower limit). The standard deviation in A and C are 0.12 and 0.19 mmol/L, respectively. BLC:
blood lactate concentration.

TABLE 2 Fourfold cross-validation.

Intensity
Fold

Mean Variance
1 2 3 4

LM 99.58 99.65 99.34 99.68 99.56 0.02

H 98.98 98.78 99.23 99.32 99.01 0.06
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4.1 BLC, a valuable index to manage aerobic
exercise intensity

During aerobic endurance training, it is valuable to obtain the
numerical value of BLC. Aerobic exercise intensity has been
partitioned into three zones by VT1 and VT2, identified by gas
exchange measurement during INC (Esteve-Lanao et al., 2005). The
three intensity zones have distinctions in the duration to fatigue,
sympathetic stress load, and motor unit involvement (Seiler and
Kjerland, 2006). The production and elimination rates of blood
lactate reached equilibrium in the moderate zone (between VT1 and
VT2). VT2 is the highest possible intensity for obtaining a stable
BLC, called the maximal lactate steady state (Dekerle et al., 2003;
Seiler and Kjerland, 2006; Garcia-Tabar and Gorostiaga, 2018). The
intensity of aerobic training in the moderate zone between VT1 and
VT2 effectively improves fitness (Londeree, 1997). In the high zone
above VT2, the BLC accumulates rapidly, and fatigue approaches.
VT1 (also represented as anaerobic threshold or lactate threshold)
and VT2 (also represented as respiratory compensatory point or
onset of blood lactate accumulation) correspond to BLC
approximately at 1–2 and 4 mM/L, respectively (Seiler and
Kjerland, 2006).

A mathematical model was established in view of its application
in the exercise industry. The algorithm of the current study could be
applied to the threshold training model (Seiler and Kjerland, 2006)
of cycling endurance training, in which the ideal intensity is to
maintain the BLC in the range of VT1 and VT2, particularly for
untrained people (Huang et al., 2019). The corresponding BLC
values were 1–2 and 4 mM/L, respectively (Seiler and Kjerland,
2006). The SD of the fitting error in the LM is 0.12 mM/L, which is
acceptable considering the width of the middle zone. One might
argue that the current algorithm is limited by its division into LM
and H intensity, potentially limiting its applicability. However, for
aerobic endurance training, constant LM intensity training is
typically preferred and performed. Therefore, a LM mathematical
model should be sufficient. This is the main reason why we chose to
separate the algorithm into two conditions. This strategy
significantly improves accuracy without sacrificing practicality. In
contrast, the H model is better suited for high intensity CWR
exercise testing. The estimated value of BLC may be used as a
criterion to help determine whether the testee approaches maximal
exertion in case the gas analysis to measure V’O2 plateau is
unavailable. A variety of BLC cutoff values have been proposed,
and most of the criteria are approximately 8 mM/L (Van Remoortel
et al., 2012).

The mathematical analysis of local muscle oxygen saturation
signals, as measured by near-infrared spectroscopy, has been
demonstrated to offer precise estimation of lactate-based exercise
thresholds (Farzam et al., 2018; Batterson et al., 2023). A
corresponding portable and wearable device is already
commercially available. The methodology developed in the
present study goes a step further by involving the computation of
numerical values for BLC. This method can be applied to CWR
exercise conditions. In addition to the cycle ergometer, the most
prevalent scenario is treadmill exercise with a fixed incline and
speed. Furthermore, some steppers are provided with CWR modes.
Our model to estimate BLC would be relevant to a free ambulation
CWR task in which ECG is measured. Prior to commercialization,

the current algorithm, which relies on lead II signals, should undergo
calibration using EKG signals obtained from a wearable device with
a comparable sampling frequency. This typically involves the use of
a pair of leads attached to the anterior chest.

4.2 Mixed models with ResNet and ANN

There are two primary types of neural networks in deep learning:
CNN and ANN. These are the cornerstones of the deep learning
revolution in popular applications. Here, we investigated the
feasibility of combining these two models to integrate the
advantages of the two underlying techniques.

Convolutional Neural Networks (CNNs) are primarily applied
to computer vision and medical image analysis. When applied to a
series of images or videos, CNNs enable AI systems to automatically
extract features from these inputs to perform specific tasks, such as
image classification or image segmentation (He et al., 2015;
Badrinarayanan et al., 2017). There are numerous CNN
frameworks available, and the ResNet architecture (He et al.,
2016b; Somani et al., 2021) is employed in building the current
feature model. In contrast, an Artificial Neural Network (ANN),
which simulates the neural networks found in animal brains, serves
as the most fundamental type of deep neural network. It consists of a
series of fully connected layers suitable for statistical data analysis. In
this study, four fully connected layers are utilized to integrate RR
interval, age, sex, and BMI with the ECG patterns trained from the
ResNet model. In the end, the ANN model is used to calculate the
BLC for each individual based on their ECG data.

The present investigation adopted a novel method to analyze
ECG data. It was built using the architecture of deep learning,
which is currently the most important and mainstream method in
AI. We assumed that the difference in the ECG waveform over
time is an important feature that is highly correlated with the BLC.
Therefore, the characteristics of the waveform over time were
retained to the greatest extent, in which the traditional 1D ECG
signal analysis method was abandoned, and instead, a 2D image
method was employed. In the 2D ECG image, the X-axis represents
time, and the Y-axis represents the amount of change in the ECG at
each time point. The ResNet (He et al., 2016b; Somani et al., 2021)
architecture was used to build the present feature model, and 2D
ECG images were used as input training data. Related research has
shown that ResNet is effective in capturing image features.
Therefore, they have been widely used in computer vision and
medical imaging (Rim et al., 2020). The network was relatively
shallow before ResNet methodology was developed. When deeper
networks were used, the performance was not good because it
sometimes yielded poor results. The residual learning proposed by
ResNet, which is adopted in the present study, makes it easier to
train deep networks and opens the era of various ultradeep
networks (Zaeemzadeh et al., 2021). In summary, the current
model is a combination of ResNet and ANN, resulting in two
types of components: a ResNet spatial component to solve 2D
image problems, and an ANNmodel for personal information with
the final feature of ECG waveform. This study shows that the
proposed hybrid model is feasible for calculating BLC by
integrating the advantages of two different types of neural
networks.
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4.3 The meaning of the proposed model

There is a need to understand the mechanics of the proposed
model. Deep neural network models have the advantage of not
requiring pre-information before modeling a system; therefore, their
decision-making mechanism can be unclear to human cognition. It
is often opaque and thus labelled a “black box.” Even so, many
researchers have attempted to interpret deep neural network models
to help people understand recognition mechanisms more intuitively.
We not only built the BLC model but also attempted to preserve
intuitive recognizable factors within the model. In the present
model, system weighting can be seen as an intuitive
understanding using the ANN model when the model is optimized.

Compared with our previous mathematical model (Huang et al.,
2019), in which the HR and breathing rate (BR) are the main
independent variables, the accuracy of the current model is greatly
improved. The standard deviations of fitting error in the LM and H
conditions are 0.12 and 0.19 mmol/L, respectively, in the present
mathematical model, which was 0.52 and 1.82 mmol/L, respectively,
in the previous model. The improvement in accuracy is possible
because ECG encompasses not only HR and BR information (it is a
known fact that the RR interval increases during expiration and
decreases during inspiration) but also its change in the waveform in
response to exercise, as described previously in the Introduction
section.

4.4 Limitation

This study had several limitations. First, the sample size is relatively
small. However, excellent fitting was attainable. Moreover, the fourfold
cross-validation shows that the consistency of our data is good, and the
mathematical model does not overfit. While one may question that
additional data may be required to further refine the algorithm, the
present study nonetheless demonstrates the feasibility of using the
current model to estimate BLC during exercise. Secondly, it should be
noted that the present study did not compare the experimental results
with other AI methods. Our focus was not to determine which AI
method is more suitable for these results, but rather to introduce a novel
AI methodology for accurately predicting BLC using ECG data. Third,
the algorithm obtained in this study may only be relevant to CWR
cycling exercises. Studies should be conducted to test its validity during
other exercise modalities (e.g., treadmill exercise). Fourth, no
prospective validation procedures were performed. Nonetheless, if
we perform a prospective validation, these data can be pulled into
the learning model to generate a new algorithm. Fourfold cross-
validation was already applied to our model to determine overfitting
statistical learning.

5 Conclusion

This study is the first to demonstrate that BLC during exercise
could be non-invasively acquired by calculating data from ECG.
Through the use of 2D CNN-based combined with ANN-based
methods, excellent accuracy was achieved. The implications of these
experimental findings have potential applications in exercise
training and testing.
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