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Insulin affects metabolic processes in different organs, including the skin. The
sebaceous gland (SG) is an important appendage in the skin, which responds to
insulin-mediated signals, either directly or through the insulin growth factor 1
(IGF-1) axis. Insulin cues are differently translated into the activation of metabolic
processes depending on several factors, including glucose levels, receptor
sensitivity, and sebocyte differentiation. The effects of diet on both the
physiological function and pathological conditions of the SG have been linked
to pathways activated by insulin and IGF-1. Experimental evidence and theoretical
speculations support the association of insulin resistancewith acne vulgaris, which
is a major disorder of the SG. In this review, we examined the effects of insulin on
the SG function and their implications in the pathogenesis of acne.
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1 Introduction

The cross-talk among different skin cell types is crucial in maintaining cutaneous
homeostasis. These functional interactions are mediated by several, locally secreted factors
including growth factors, small molecules, lipid mediators, and neuroendocrine agents
(Picardo et al., 2015). In this context, the sebaceous gland (SG) activity has long been
underestimated and SG has been considered “a living fossil of the skin” (Ligman, 1963).
However, in recent times, the regulation of SG function has become one of the foci of
scientific discussion in the field of dermatology for its relevant role in skin health and
integrity (Melnik, 2015; Zouboulis et al., 2016; Zouboulis et al., 2020). The activities of the SG
are controlled by various local and systemic stimuli mediated through a constellation of
receptors expressed on the sebocytes (Krause et al., 2007; Pelle et al., 2008; Zouboulis, 2009).
These factors not only affect the sebocyte function but also the pathomechanisms of various
disorders arising from the gland. Acne vulgaris, a common disease affecting the pilo-
sebaceous unit, is initiated and sustained by some of these stimuli (Dreno, 2017). Insulin,
alongside the sibling hormone insulin-like growth factor-1 (IGF-1), is among the hormonal
factors that affect the function of the SG (Deplewski and Rosenfield, 1999; Mirdamadi et al.,
2015). They influence the metabolism of nutrients by the SG and are important players in the
mechanisms of some of the diseases arising from the gland. In this review, we will touch upon
the anatomy and physiology of the SG, the modes of action of insulin, and its effect on the SG
function. Finally, the implication of insulin-mediated responses of the SG will be considered
in the context of investigations and therapeutics of acne.
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2 Anatomy/physiology of the
sebaceous gland

The SG is a multi-acinar, multi-lobular holocrine gland bound
to a hair shaft in the dermal layer of the skin except for the palms,
soles, and dorsum of the feet (Zouboulis and Tsatsou, 2014). Each
acinus empties into a duct, which converges with others to a
common duct that tethers the hair follicle to form the pilo-
sebaceous unit, which includes the hair, the hair follicle, and the
erector pili muscle (Schneider et al., 2009; Zouboulis et al., 2016).
The surrounding connective tissue sheath contains fibroblasts, small
nerve fibers, and blood vessels, as well as components of the
extracellular matrix (Clayton et al., 2019). There are also several
examples of SGs “not associated with hair follicles” like those found
at mucosal sites, including oral epithelium, perianal region, and
eyelids (meibomian glands) (Ahmed et al., 2022). The SG comprises
sebocytes around the lumen in a centripetally layered structure
corresponding to various stages of differentiation of the sebocyte
units (Figure 1). Undifferentiated and proliferative sebocytes
populate the outermost part of the SG, called the peripheral
zone. Differentiating sebocytes, which accumulate lipid droplets
and dramatically increase cell size, reside in the maturation zone,
adjacent to the peripheral one. Finally, in the necrotic zone, fully
differentiated sebocytes disintegrate resulting in the holocrine
secretion of sebum through the ducts. The sebocyte
differentiation process takes around 7–14 days (Clayton et al.,
2019; Clayton et al., 2020). Sebum is a complex mixture of

different types of lipids, namely, triglycerides, fatty acids, wax
esters, squalene, cholesterol esters, and cholesterol. Triglycerides
and free fatty acids, taken together, account for the predominant
proportion (40%–60%), followed by wax esters (20%–30%),
squalene (10%–20%), and cholesterol and its esters (2%–10%).
Squalene and wax esters are the most characteristic products of
sebaceous secretion. Sebum is enriched in squalene, sebum-specific
fatty acids, i.e., terminally branched-ones and the monounsaturated
sapienic acid, and wax esters. Their exceptional amounts are unique
to sebum and not found anywhere else in the body nor among the
epidermal surface lipids (Pappas et al., 2009; Picardo et al., 2009;
Camera et al., 2016). Sebum is a skin surface protectant serving
several key functions in the skin, including lubrication,
moisturization, and thermoregulation. By providing an
antimicrobial and antioxidant barrier, sebum contributes to
shielding environmental and pro-aging insults (Zouboulis et al.,
2016; Clayton et al., 2020). Sebum synthesis is regulated by various
mediators, which target the numerous regulatory receptors
expressed by sebocytes and are consequently involved in the
control of sebum secretion. The major receptors include the
corticotrophin–releasing hormone (CRH) receptor, melanocortin
receptors (MC-R1-5), opiate-R, androgen receptor (AR), growth
hormone receptor (GHR), IGF-1 receptor (IGF-1R), insulin
receptor (IR), retinoid X receptor (RXR), retinoic acid receptor
(RAR), peroxisome proliferator-activated receptors (PPAR),
neuropeptide Y receptor (NYR), etc., (Zouboulis et al., 2016).
The multiplicity of interactions established between endogenous

FIGURE 1
Schematic representation of the overall SG structure and partition into zones corresponding to various stages of sebocyte differentiation. Parts of
Figure 1 were drawn using images from Servier Medical Art, provided by Servier, licensed under a Creative Commons Attribution 3.0 unported license.
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factors and the sebocytes ensures the continuous and the inherent
activity of the SG under physiological conditions. Beyond the
production of sebum, the SG presents intrinsic metabolic,
neuroendocrine, and immunological functions, which places the
SG among the key players in the multicellular network underlying
skin homeostasis (Picardo et al., 2015; Zouboulis et al., 2016; Szollosi
et al., 2018; Clayton et al., 2020).

3 Insulin production and mechanisms
of action

Insulin synthesis and secretion is exclusive to the islet cells of the
pancreas. The primary trigger of insulin secretion from the pancreas
is glucose. Other factors like ketones, fatty acids, incretins like
glucagon-like peptide (peptides released from the gut in response
to food) can stimulate insulin release. After meals, insulin secretion
increases once the concentration of glucose in the blood rises beyond
3.9 mmol/L. The insulin facilitates the upload of glucose from the
blood into the tissue for storage in various forms like glycogen in the
liver and muscles and lipids in the adipose tissue. Analogously to
liver and adipose tissue, the SG accumulates glycogen. The glycogen-
derived glycerophosphate has been addressed as a key player in the
synthesis of sebum triacylglycerides by the SG from acetate (Downie
and Kealey, 1998). Insulin ensures glucose entries cells and, at the
same time, blood sugar remains within normal limit for maintaining
body homeostasis (Raptis et al., 1975; Baumgard et al., 2016). Insulin
virtually affects all the organs of the body by binding to the IR
expressed at the cell surface. Insulin also binds IGF-1R but with less
affinity (Giustina et al., 2015). The IR and IGF-1R are similar in their
structure (Ullrich et al., 1986). In addition, there are insulin/IGF-
1 hybrid receptors in most organs (Soos et al., 1990; Seely et al., 1995;
Bailyes et al., 1997). These hybrid receptors have the capacity to
dimerize and bind either insulin or IGF-1. The binding of insulin/
IGF-1 to the receptors triggers the phosphatidylinositide-3-kinase
(PI3K) second messenger pathway (Clemmons, 2012). This
generates multiple effects in different tissues and organs. The
overall effects are promoted cell growth, reduced blood glucose
levels, increased glucose storage, protein synthesis and lipogenesis
(Powers, 2012). In addition, insulin increases the serum levels of free
IGF-1 by stimulating hepatic IGF-1 synthesis and suppressing the
hepatic synthesis of IGFBP-1 (Clemmons, 2012).

4 Effect of insulin on the sebaceous
gland

Insulin affects the function of the SG by inducing the increase in the
size and number of sebocytes, as well as lipogenesis (Ding et al., 2015),
through the binding to IR and IGF-1R and the consequent activation of
the PI3K/Akt pathway (Mirdamadi et al., 2015; Briganti et al., 2020).
The stimulation of IGF-1R is also enhanced by the incretion of free IGF-
1 that occurs when insulin secretion increases. A critical downstream
element in the Akt pathway is the mammalian target of rapamycin
(mTOR) (Melnik and Schmitz, 2009; Huang and Fingar, 2014;
Monfrecola et al., 2016), a nutrient-sensitive regulatory factor
involved, through the mTOR complex 1 (mTORC1) (Wang and
Proud, 2009), in the upregulation of the sterol response element

binding protein-1 (SREBP-1) (Porstmann et al., 2009; Quinn and
Baum, 2012) and the gamma isoform of PPAR (PPARγ)
(Porstmann et al., 2009; Laplante and Sabatini, 2013), which are
both involved in the lipid synthesis occurring in sebocytes
(Ricoult and Manning, 2013). The activation of the PI3K/Akt
pathway produced the concomitant reduction of the nuclear level of
forkhead box class-O1 (FoxO1) transcription factor (Van Der Heide
et al., 2004; Huang and Fingar, 2014), thus removing the suppression of
SREBP1 (Smith et al., 2006; Smith et al., 2008b), PPARg (Trivedi et al.,
2006; Dozsa et al., 2014), androgen receptors (AR) (Li and Al-Azzawi,
2009; Lai et al., 2012), liver X receptor (LXR) (Russell et al., 2007; Hong
et al., 2008), leading to the further promotion of sebocyte lipogenesis,
cell growth, and proliferation (Armoni et al., 2006; Fan et al., 2007; Fan
et al., 2009). Furthermore, the PI3K/Akt signalling is able to activate
hypoxia-inducible factor 1a (HIF-1a), a transcription factor involved
also in lipid accumulation in sebocytes and the upregulation of the
inflammatory mediators (Semenza, 2013; Choi et al., 2021) (Figure 2).

The effect of insulin on sebocytes is affected by the level of
sebocyte differentiation. Low differentiated SZ95 sebocytes tend to
have a higher basal expression of IGF-1R and IR at the protein level,
associated with an upregulation of phospho-Akt (pAkT) and
phospho-S6 (pS6) and a down-modulation of phosphatase and
tensin homolog (PTEN) expression, compared to differentiated
ones (Ottaviani et al., 2020). This leads to increased susceptibility
to insulin stimulus of poorly differentiated SZ95 sebocytes.

5 Implications of insulin effect on the
sebaceous gland

Diseases of the SG like acne vulgaris are related to abnormal
hormonal stimulation of the gland. The reports of insulin resistance
in patients with severe acne (Del Prete et al., 2012; Emiroglu et al.,
2015; Nagpal et al., 2016) and the association of acne with diets
delivering high glycaemic loads (Adebamowo et al., 2008; Smith
et al., 2008a; Melnik, 2015) create a strong basis to examine the role
of insulin in SG function. No acne has been found in non-
Westernized populations still living under Paleolithic dietary
conditions constraining carbohydrates, milk, and dairy products
(Cordain et al., 2002; Melnik, 2018). On the other hand,
consumption of dairy milk products has been associated with a
higher frequency and severity of acne, as its components enhance
the effects of insulin and IGF-1 on the production of androgen
hormones and sebum and stimulate the formation of comedones
(Bhate and Williams, 2014; Bronsnick et al., 2014; Albalwa et al.,
2023). Acne manifests mostly at puberty, coincidentally with
peaking androgens levels and insulin/IGF-1 signalling. Insulin
reinforces the entire androgen axis: The pituitary gland, where it
acts as a gonadotrophin amplifier; the gonads where it stimulates
androgen synthesis; the adrenal glands, where it stimulates the
production of androgenic precursors; the liver, where it inhibits
the production of sex hormone binding globulin (SHBG), an
important carrier for regulating androgen activity, and the skin,
where SG is the major site of androgen biosynthesis (Chen et al.,
2011; Nikolakis et al., 2016; Ju et al., 2017; Zhao et al., 2023). Insulin/
IGF-1 and androgens trigger the mTOR pathway, which represents a
central node between puberty, diet, and acne onset. In post-
adolescence acne patients, increased glycaemia levels have been
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observed (Imperato-McGinley et al., 1993; Dozsa et al., 2014; Balta
et al., 2015). The plasma glucose levels, which are directly associated
with glucose intake, provide a carbon source for fatty acid synthesis
(Strable and Ntambi, 2010; Lodhi et al., 2011) and stimulate the
release of insulin and its signalling (Ameer et al., 2014), affecting de
novo lipogenesis (DNL). DNL is a complex and highly regulated
pathway that synthetizes fatty acids from exceeding carbohydrates
(Ameer et al., 2014) and local DNL within SG is primarily
responsible for human sebum production (Esler et al., 2019).
Deregulated DNL is commonly associated with insulin resistance
(Jensen-Urstad and Semenkovich, 2012). A low-glycaemic diet
results in an improvement of insulin sensitivity and acne severity
(Raptis et al., 1975; Imperato-McGinley et al., 1993; Ding et al.,
2015) associated also with an improvement in the fatty acid
composition of sebum (Smith et al., 2008b). The insulin/IGF1-
dependent hyperstimulation of DNL promotes an increased
release of fatty acids, leading to lipotoxicity, inflammation, and
further promotion of the IR downstream signalling (Jensen-Urstad
and Semenkovich, 2012; Ameer et al., 2014; Kim et al., 2017; Esler
et al., 2019). Moreover, inflammatory cues contribute to creating a
microenvironment facilitating the initiation and the aggravation of
acne manifestations. The interplay of inflammatory cytokines and
oxidated lipids, which are part of compositional modifications of

acne sebum, concur to the acne lesions onset and progression
(Capitanio et al., 2009; Capitanio et al., 2010; Ottaviani et al.,
2010). This process also involves keratinocytes of the
pilosebaceous duct, contributing to comedone formation due to
increased proliferation of the infundibular epithelium (Zouboulis
et al., 2014; Mastrofrancesco et al., 2017; Manfredini et al., 2019;
Briganti et al., 2020). Acne may also be a common component of
many systemic diseases or syndromes, which are also linked to
insulin resistance (Chen et al., 2011). Patients with the polycystic
ovarian syndrome (PCOS), hyperandrogenemia, insulin resistance,
and acanthosis nigricans (HAIR-AN) syndrome, where
hyperinsulinemia is present, also develop hyperseborrhea and
acne (Elmer and George, 2001; Lowenstein, 2006; Kelekci et al.,
2010). Acne may serve as a cutaneous marker for these syndromes.
In metabolic diseases like type 2 diabetes mellitus and metabolic
syndrome, characterized by insulin resistance (hyperinsulinemia)
and increased mTORC1 signaling, acne may be a cutaneous feature
(Nagpal et al., 2016; Melnik, 2018). There is a need for an improved
dietary management of acne like in the other metabolic disorders,
like type 2 diabetes mellitus, where balanced diets are essential. More
studies are required to invigorate the connection between acne and
these metabolic diseases. It is possible that in the future, acne will be
viewed as a component of metabolic syndrome in adults.

FIGURE 2
Insulin effects on the sebaceous gland. Insulin binding to IR/IGF-1R triggers the PI3K/Akt pathway and the critical downstream element mTORC1,
which in turn activates the key lipogenic transcription factor SREBP1 and induces hyperproliferation. Moreover, insulin signaling enhances androgen
synthesis as well as inflammatory response. A high glycemic diet and a sebocyte low differentiation grade exacerbate insulin stimulus. TG, triglycerides;
FFA, free fatty acids; WE, wax esters; CE, cholesterol esters; CH, cholesterol. Parts of Figure 2 were drawn using images from Servier Medical Art,
provided by Servier, licensed under a Creative Commons Attribution 3.0 unported license.
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6 Possible therapeutic strategies in
acne

Due to the implication of a high glycemic diet and insulin/IGF-
1 in the pathogenesis of acne, mechanisms of abatement of insulin
level or action are useful targets in the treatment of this disorder.
Sensitizers of the IR like the biguanides, have been evaluated as
adjunct therapy in moderate to severe acne vulgaris. Metformin
improves insulin sensitivity resulting in the increased uptake of
glucose in peripheral tissues and inhibits the mTORC1 complex
action (Fabbrocini et al., 2016; Lee and Smith, 2017; Albalat et al.,
2022). Acetyl-Coenzyme A Carboxylase (ACC), which catalyzes the
conversion of acetyl-CoA to malonyl-CoA, is the rate-limiting
enzyme in DNL, a process highly responsive to insulin. The
pharmacological inhibition of ACC, leading to the suppression of
sebum production, may also be exploited as a potential therapeutic
option for the treatment of acne (Esler et al., 2019). Another possible
therapeutic strategy may target sebocytes with a low grade of
differentiation, which present upregulated expression of IR and
enhanced mTOR signalling, resulting in a higher susceptibility to
insulin stimulus. Scientific evidence suggests a role of altered
sebocyte differentiation in the development of acne (Ottaviani
et al., 2020), in agreement with genetic data on the involvement
of the differentiation process of the pilosebaceous unit in the
pathogenic mechanisms (Barrault et al., 2015; Clayton et al.,
2019; Common et al., 2019). Induction of differentiation in
sebocytes by means of a PPARγ modulator has proven effective
in abating the effects of the insulin challenge in sebocyte
inflammation and sebogenesis. Topical application of a PPARγ
modulator in acne patients has resulted in amelioration of
clinical signs and improvement of the lipid balance in sebum
(Mastrofrancesco et al., 2017; Ottaviani et al., 2020).

7 Conclusion

SG is an active partaker in the cell-cell cross talk in the skin. The SG
activity is relevant to both physiological homeostasis and pathological
processes. A plethora of autocrine and paracrine factors regulates the SG
functions. Affecting themetabolic processes in the SG, insulin is amajor
hormonal trigger in acne development. Insulin induces an increase in
the size and number of sebocytes, as well as lipogenesis and
inflammatory response, contributing to the initiation and
aggravation of acne manifestations. These effects, predominantly in
low differentiated sebocytes, are essentially mediated through the
Insulin/IGF-1 receptor and the PI3K/Akt signalling pathway. By
increasing glucose loads and stimulating insulin secretion, high

glycaemic diets worsen the effects of insulin/IGF-1 on the SG. In
addition, acne is a common cutaneous feature of diseases and
syndromes linked to insulin resistance and related hyperinsulinemia,
such as PCOS. Acne could be viewed as a metabolic disease, or a
component of the metabolic syndrome where dietary management is
very important. A better understanding of the mechanisms of insulin
action on the SG may stimulate the development of novel therapeutic
strategies targeting specific molecular pathways in the management
of acne.
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