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Abdominal aortic aneurysm (AAA) is a life-threatening vascular disease for which
surgical or endovascular repair are the only currently available therapeutic
strategies. The development of AAA involves the breakdown of elastic fibers
(elastolysis), infiltration of inflammatory cells, and apoptosis of smooth muscle
cells (SMCs). However, the specific regulators governing these responses remain
unknown. We previously demonstrated that Cysteine and glycine-rich protein 3
(Crp3) sensitizes SMCs to apoptosis induced by stretching. Building upon this
finding, we aimed to investigate the influence of Crp3 on elastolysis and apoptosis
during AAA development. Using the elastase-CaCl2 rat model, we observed an
increase in Crp3 expression, aortic diameter, and a reduction in wall thickness in
wild type rats. In contrast, Crp3−/− rats exhibited a decreased incidence of AAA,
with minimal or no changes in aortic diameter and thickness. Histopathological
analysis revealed the absence of SMC apoptosis and degradation of elastic fibers in
Crp3−/− rats, accompanied by reduced inflammation and diminished proteolytic
capacity in Crp3−/− SMCs and bone marrow-derived macrophages. Collectively,
our findings provide evidence that Crp3 plays a crucial role in AAA development by
modulating elastolysis, inflammation, and SMC apoptosis. These results
underscore the potential significance of Crp3 in the context of AAA
progression and offer new insights into therapeutic targets for this disease.
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Introduction

Abdominal aortic aneurysm (AAA) is a complex vascular disease
characterized by the progressive dilation of the abdominal aorta, which
can ultimately lead to aortic dissection and rupture (Golledge et al.,
2006; Golledge et al., 2009). The current management of AAA, whether
ruptured or symptomatic non-ruptured, relies on open or minimally
invasive surgical procedures (IMPROVE Trial Investigators, 2017;
Chaikof et al., 2018). However, these approaches still carry a high
risk of morbidity and mortality (Norman et al., 1998; Patel et al., 2016),
underscoring the need for improved therapeutic strategies for the
prevention and treatment of AAA.

Chronic inflammation of the aorta is a key mechanism associated
with AAA development (Lindeman et al., 2011; Meng et al., 2014; Dale
et al., 2015). Infiltrating monocytes and macrophages release enzymes
such as matrix metalloproteinases (MMPs) and serine proteases, which
contribute to the breakdown of elastic fibers (known as elastolysis), a
crucial component of the vascular extracellular matrix (ECM) (Pearce
and Koch, 2006; Folkesson et al., 2007). This interplay between
inflammation, elastolysis, and oxidative free radicals leads to
dysfunction and apoptosis of smooth muscle cells (SMCs), further
weakening the aortic wall (Thomas et al., 2006; Wang et al., 2015; Cao
et al., 2017; Li et al., 2017; Sakalihasan et al., 2018).

We have previously demonstrated that absence of the cysteine and
glycine-rich protein 3 (Crp3) in SMCs prevents apoptosis (Campos
et al., 2009; Campos et al., 2018), promoting SMCs accumulation and
the ultimate occlusion of vein grafts (Campos et al., 2009; Campos et al.,
2018). Crp3 belongs to the cysteine and glycine-rich protein (CRP)
family of LIM-only proteins, which play a role in coordinating SMC
differentiation, migration, and survival by promoting the formation of
macromolecular signalosomes (Chang et al., 2003; Weiskirchen and
Günther, 2003; Wang et al., 2006; Chen et al., 2013). We also
demonstrated that Crp3 is constitutively expressed by arterial SMCs,
while its expression is sensitive to stretch in vein SMCs (Campos et al.,
2009), suggesting that it may be required to the vascular response to
mechanical damage. However, to this date, evidence of the
Crp3 participation in AAA pathogenesis is lacking. Gene expression
analyses have shown differential expression of the Crp3 paralogs
Crp1 and Crp2 in aneurysmal disease (Hinterseher et al., 2012;
Matsumoto et al., 2014) and the absence of Crp2 was recently found
to prevent angiotensin II-induced AAA in mice (Chen et al., 2022).
However, the expression and functional impact of Crp3 in AAA, as well
as its potential role in linking elastolysis, SMC inflammation, and
apoptosis during AAA development, remain to be elucidated.

In this study, we show evidence demonstrating the critical role of
Crp3 expression in the development of experimental AAA in rats.
We observed an upregulation of Crp3 expression in rat and human
AAA samples, whereas Crp3 knockout attenuated SMC apoptosis
and elastolysis in the abdominal aorta, resulting in reduced
incidence and development of AAA in rats.

Materials and methods

Human tissue collection

Normal aortic samples were obtained from patients undergoing
aortocoronary bypass surgery at the Heart Institute, while human

abdominal aortic aneurysm samples were collected from patients
undergoing open repair surgery at the Hospital das Clínicas,
Faculdade de Medicina da Universidade de São Paulo. The
samples were placed in 4% paraformaldehyde and embedded in
paraffin for histological processing.

Rat model of abdominal aortic
aneurysm (AAA)

The Crp3−/− rat was generated on aWistar background, where pairs
of custom CompoZr® Zinc Finger Nucleases (Sigma-Aldrich, St. Louis,
MO) targeting the Csrp3 gene generated a 4-bp frameshift deletion
(deleted CATGC and inserted A) overlapping the start codon in exon 1,
as previously described (Campos et al., 2018).Malewild type andCrp3−/−

rats (10–12 weeks old, 250–350 g) were submitted to intraperitoneal
injection of heparin (70 UI/kg) and anesthetized with ketamine
(50 mg/kg) and xylazine (10 mg/kg). After anesthesia, a midline
section was made to expose the abdominal cavity. The bladder and
the intestines were suspended and kept moist with water-soaked gauze
during the entire procedure. The infrarenal segment of the abdominal
aortawas exposed, clamped in its extremities andAAAwas inducedwith
intraluminal filling with porcine pancreatic elastase (1 U/μL, EMD
Millipore 324682) and extraluminal exposure to 0.5 M calcium
chloride (CaCl2), as previously described in the literature (Tanaka
et al., 2009). The control animals underwent to the same surgical
procedures as AAA animals and saline solution was used instead of
elastase and CaCl2. After 20 min of exposure, the clamps were removed
to restore blood flow, the bladder and intestines were returned to the
abdominal cavity and the incision was closed with a 5.0 nylon suture.
The animals were kept warm in a recovery cage until recovery from
anesthesia. All animal procedures were in accordance with the Heart
Institute guidelines for the use and care of laboratory animals (SDC
4398/16/064 CEUA 080/16).

Aortic diameter measurements

The abdominal aortic diameter of saline and AAA rats was
determined in a high-resolution ultrasound system set to perform
two-dimensional imaging (B Mode) with a real time
microvisualization scanhead (RMV 704), central frequency of
40MHz (30 Hz frame rate), focal length of 6 mm and field of view
of 8 mm× 8mm (Visualsonics). Briefly, rats anesthetizedwith amixture
of xylazine and ketamine were laid supine on a heated table, and
ultrasound transmission gel was applied to their abdomen. Short-axis
scans of the abdominal aorta from the region between the left renal
arterial branch and the infrarenal regions were taken before aneurysm
surgery and 3, 7 and 14 days after Elastase-CaCl2-induced AAA. Lumen
diameter enlargement was expressed as dilation ratio % = [(AAA
diameter—aortic diameter)/aortic diameter] × 100. AAA was defined
as aortic dilation above 50% (Johnston et al., 1991).

Histopathologic analyses

Fourteen days after AAA induction, the rats were killed with
sodium pentobarbital overdose (200 mg/kg), aortic segments were
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harvested, washed with a heparinized saline solution, fixed by
pressure perfusion with 4% paraformaldehyde and embedded in
paraffin for the downstream histomorphological analysis. To
evaluate collagen and elastin content, 3 µm-thick transverse
sections were stained with picrosirius red and Verhoeff’s van
Gieson, respectively. The evaluation of apoptotic events was
performed with Click-iT™ Plus TUNEL Assay Kits for In Situ
Apoptosis Detection, following the manufacturer’s instructions.
Tissue treated with DNase I to induce TUNEL-positive DNA
strand breaks was used as positive control. The negative control
samples were not incubated with TdT reaction mixture
(Supplementary Figure S1A).

For the immunohistochemistry assays, rat and human (when
stated) aortic sections were deparaffinized in citrisolv®, dehydrated
in serial alcohol dilutions and submitted to antigen retrieval in
citrate buffer, pH 6.0 at 90°C for 40 min. Blocking of endogenous
peroxidase and unspecific binding was performed with hydrogen
peroxide and bovine serum albumin, respectively. Sections were
incubated overnight in the presence rabbit anti-Crp3 (Santa Cruz
Biotechnology sc-98827 1:100), succeeded by rabbit HRP-
conjugated secondary antibody (Invitrogen, 1:1,000) and
counterstain with Meyer’s hematoxylin. The stained sections were
examined by light microscopy and quantified with aid of the Leica
Qwin Software (Leica). Heart samples were used as Crp3-positive
reaction. Heart and aorta negative controls were not incubated with
antibody (Supplementary Figure S1B).

The detection of macrophages in aneurysm lesions was
performed by incubating rat aortas with a primary antibody
against CD68 (Abcam ab49777 1:50) and subsequent incubation
with Alexa fluor 555-conjugated secondary antibody (Molecular
Probes, 1:250) and DAPI (1:1,000, Molecular Probes) for 2 h. The
binding reaction was performed with Histofine® (Nicherei
Bioscience). Fluorescent sections were imaged in the Zeiss Axio
Observer Z1 Microscope with an air objective of ×20 and light
source intensity of 58.32%. The number of CD68+ nuclei was
quantified with Image J.

SMC apoptosis and Mmp measurements

Primary wild type and Crp3−/− aortic SMCs were obtained via
explant, as previously described (Campos et al., 2018). Shortly, aortic
segments were cleaned off the adventitia and intima layer, cut in
small fragments and plated on gelatin-coated six-well plates. The
fragments were allowed to adhere and cultured in Dulbecco’s
Modified Eagle’s Medium (DMEM) (LGCbio) supplemented with
20% FBS (Gibco), 100 U/mL penicillin (Gibco), and 100 μg/mL
streptomycin (Gibco). SMCs derived from aortic fragments were
isolated and expanded up to passage 3. Apoptosis evaluation was
performed in serum-starved wild type and Crp3−/− aortic SMCs
exposed to 100 μMN-acetyl-D-sphingosine (Ceramide; Sigma
A9171) for 24 h, then stained with propidium iodide and
fluorescein isothiocyanate–annexin V (Molecular Probes). The
detection of SMCs with hypodiploid nuclei was performed in a
FACSCalibur flow cytometer and analyzed with the aid of the Cell
Quest software (Becton Dickinson). Data expressed as the % of
propidium iodine negative/annexin V positive cells. Around twenty
thousand events were considered in all assays.

To evaluate the secretion of Mmps and their inhibitor Timp-2,
cells were serum starved for 24 h, then stimulated with 10 ng/mL of
Interleukin (IL)-1β (IL-1β, Peprotech) for other 24 h. After this
period, cell media was collected and Timp-2 (Abcam ab213923),
Mmp-2 (GE Healthcare RPN2631) or Mmp-9 (GE Healthcare
RPN2634) secretion and/or activity were analyzed with specific
immuno-capture assays following the manufacturer’s instructions.
Following media collection, total cell protein was lysed in ice-cold
RIPA buffer (50 mM NaCl, 50 mM Tris/HCl, pH 7.4, 1 mM EDTA,
1% Triton X-100, 0.1% NP-40, 1 mM PMSF, protease and
phosphatase inhibitors’ cocktails) and protein concentration was
determined with the Pierce Assay (Thermo Scientific) to further
normalize total and active Mmp levels.

SMCs gelatinase/collagenase and elastase
activity assay

The gelatinolytic/collagenolytic and elastolytic activities of
SMCs were measured by means of the EnzChek gelatinase/
collagenase and elastase assay kits (E12055 and E12056,
respectively, Molecular Probes, United States), following the
manufacturer’s instructions. Briefly, cells at 100% confluence in a
96-wells plate were serum starved for 24 h, then stimulated with
10 ng/mL of Interleukin-1β (IL-1β, Peprotech) for other 24 h. After
this period, the cells were washed with 1x phosphate-buffered saline
(PBS; pH 7.4) and fixed using 100% methanol at −20°C for 15 min.
The cells were incubated with DQ gelatin at a 100 μg/mL or DQ
elastin at 25 μg/mL concentration for 2 h, light protected at room
temperature. The nuclei were next stained with DAPI. Images were
acquired on the EVOS M7000 imaging system (Thermo Fisher
Scientific, United States), and image analysis (mean fluorescence
intensity in the cytoplasm) was performed using CellProfiler v.4.1.3.

Macrophage harvesting and culture

Wild type and Crp3−/−macrophages were prepared by collecting
bone marrow cells from femurs, as previously described (Zogbi et al.,
2020). The cell suspension was passed through a 100 µm-nylon cell
strainer (BD Falcon), collected by centrifugation at 1200 RPM for
5 min at 4°C, and resuspended in RPMI medium containing 10%
FBS, 100 U/mL penicillin, 100 mg/mL streptomycin. The cells were
then cultured in the presence of macrophage colony stimulating
factor (30 ng/ml M-CSF; Peprotech) for 7 days. After this period,
macrophages were stimulated with M-CSF combined with either
interferon-γ (10 ng/mL; Peprotech) or interleukin-4 (20 ng/mL;
Peprotech) for the classical (M1) or alternative (M2) polarization,
respectively. 48 h post-stimulation, the cells were lysed with Trizol
reagent (Invitrogen) for downstream expression analysis.

cDNA synthesis and real-time RT-PCR

Total RNA was isolated from polarized macrophages using
Trizol reagent (Invitrogen) and cDNA was synthetized with
SuperScript III Reverse Transcriptase (Invitrogen) according to
the manufacturer’s specifications. 100 ng of cDNA were used for
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the RT-PCR reaction (SYBR Green PCR Master Mix-PE Applied
Biosystems), performed on the ABI Prism 7700 Sequence Detection
System (Applied Biosystems). The list of the oligonucleotide primers
used can be found in Table 1. Analysis of target gene expression was
assayed in triplicate and the comparative threshold (CT) cycle
method was used for data analysis.

Statistical analysis

Data expressed as mean ± standard deviation. Data normality
was assessed by the Shapiro–Wilk test or the Kolmogorov–Smirnov
test. When the interaction between genotype (wild type versus
Crp3−/−) and treatment (saline versus AAA; control versus IL-1β;
DMSO versus Ceramide) was evaluated, two-way ANOVA followed
by Tukey’s post hoc test was employed. Genotype × Genotype or
Normal × AAA comparisons were made with Student’s t-test. p
values < 0.05 were considered statistically significant.

Results

Absence of Crp3 prevents abdominal aortic
aneurysm development and protects SMCs
from apoptosis

Histopathological analysis revealed that Crp3 expression was
comparably induced in human and rat abdominal aortic aneurysm
(AAA) samples (Figures 1A, B). Interestingly, in both human and rat
AAA samples, Crp3 expression was no longer confined to the media
layer, but present across the entire vascular wall. To investigate the impact
of Crp3 on AAA, we utilized the elastase/CaCl2 AAA model (Tanaka
et al., 2009). We observed progressive aortic dilation in wild-type (WT)
rats (Figure 2A), resulting in a 73% increase in lumen diameter after
14 days (Figure 2B). In contrast, Crp3−/− rats exhibited only a 44% lumen
enlargement with attenuated AAA incidence (Figure 2C), indicating
protection against AAA development. Consistent with these findings,
vessel wall thickness decreased in WT rats, whereas Crp3−/− abdominal
aorta wall thickness remained unchanged (Figure 2D).

Considering the crucial role of elastolysis in AAA, we initially
assessed the baseline levels of elastic fiber content associated with
genetic ablation of Crp3 and observed no changes compared to WT
animals (Figure 3). AAA induction resulted in reduced elastic fibers
in WT rats but not in Crp3−/− rats (Figure 3). Collagen content
increased in WT aortas, whereas it remained unchanged in Crp3−/−

aortas, suggesting a compensatory collagen response to the
decreased elastic fibers in WT (Figure 4).

SMC apoptosis is a hallmark of AAA development (Cao et al.,
2017) and Crp3 was previously implicated as a sensitizer of SMCs to
apoptosis (Wang et al., 2006; Campos et al., 2018). The absence of
Crp3 abolished the apoptotic events observed in WT AAA, as
demonstrated by TUNEL labeling of aortic specimens (Figures
5A, B). Indeed, in response to ceramide (an inducer of the
mitochondrial apoptotic pathway), cultured Crp3−/− aortic SMCs
demonstrated reduced apoptosis when compared to WT SMCs, as
assessed by annexin V staining (Figure 5C). This evidence is
consistent with our previous observations in SMCs from jugular
vein (Campos et al., 2018) and indicates that the absence of
Crp3 prevents AAA development, at least in part, by protecting
aortic SMCs from apoptosis.

Impairment of inflammation-induced
gelatinase and elastase activity in Crp3−/−

SMCs

The early stages of AAA are driven by inflammation, leading to the
activation of proteases and apoptosis of SMCs, resulting in extracellular
matrix (ECM) degradation and aortic wall thinning. To better
understand how the absence of Crp3 prevents AAA development,
we treated SMCs with IL-1β, one of the main cytokines found at
aneurysm lesions (Johnston et al., 2013). IL-1β treatment induced the
activation of Mmp-2 in WT SMCs but failed to affect Crp3−/− SMCs
(Figure 6A), while total Mmp-2 levels remained unchanged in both
groups (Figure 6B). The activity of Mmp-9 could not be detected.
However, IL-1β induced the secretion of Mmp-9 in WT SMCs but not
in Crp3−/− SMCs (Figure 6C). Secretion of Timp-2, an inhibitor ofMmp
activity, was not influenced by IL-1β exposure in both genotypes
(Figure 6D). As both Mmp-2 and Mmp-9 are known to cleave
collagen and elastin, these observations indicate that the activity of
Mmp-2 and secretion of Mmp-9 induced by IL-1β are impaired in
Crp3−/− SMCs. Consequently, IL-1β did not increase the gelatinase
activity in Crp3−/− cells (Figure 6E) and elastolysis induced by IL-1β in
WT SMCs is reduced in Crp3−/− SMCs (Figure 6F).

The absence of Crp3 promotes
elastoprotective macrophage gene
expression

Since infiltrating inflammatory cells in human and rat AAA
demonstrated Crp3 expression (Supplementary Figure S2A), we
quantified CD68+ cells to evaluate the presence of macrophages.
As expected, we found no staining in normal aortas. Upon AAA
induction, there was a surge in CD68+ cells that was comparable in
wild type and Crp3−/− rats (Supplementary Figure S2B).
Macrophages have the ability to transition between classical (M1)
and alternative (M2) phenotypes, so we examined whether there was
a change in the phenotype of bone marrow-derived macrophages
from Crp3−/− animals that could contribute to their protection
against AAA. Polarization of primary macrophages towards the
alternative (M2-like) phenotype was accompanied by Mmp-9
expression (Figure 7A), with no counterbalance from the Mmp

TABLE 1 List of oligonucleotide primers used in the real time RT-PCR.

Gene Forward oligonucleotide Reverse oligonucleotide

Gapdh ATGGTGAAGGTCGGTGTG GAACTTGCCGTGGGTAGAG

Mmp2 AGAAGGCTGTGTTCTTCGCA AAAGGCAGCGTCTAC
TTGCT

Mmp9 CCTGGAACTCACACAACGTC CCGGTTGTGGAAACT
CACAC

Timp2 ACATCTATGGCAACC
CCATCA

GGGGGCCGTGTAGAT
AAATTC
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inhibitor Timp-2 (Figure 7B). In contrast, M2-like Crp3−/−

macrophages exhibited no upregulation of Mmp-9 but showed
increased expression of Timp-2 (Figures 7A, B). Mmp-2

expression levels remained unchanged in both groups
(Figure 7C). There were no changes in the expression of genes
used as markers of polarized phenotypes in wild-type vs. Crp3−/−

FIGURE 1
Crp3 expression is induced in human and rat abdominal aortic aneurysm (AAA). (A) Representative images of Crp3 staining (brown) in human AAA.
The quantification showsmodulation of Crp3 in human AAA (n= 5) compared to normal aorta (n= 12). (B) Representative images of Crp3 staining (brown)
in rat AAA. Similarly, Crp3 expression increases after 14 days of elastase-calcium chloride induction of AAA in rats (n = 9). The black scale bar represents
50 μm. **** indicates p < 0.0001 and ** indicates p = 0.0036.
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macrophages (Supplementary Figure S3). Taken together, these
findings suggest that the modulation of the inflammatory status
of aortic SMCs and macrophages may synergistically act to prevent
the establishment and progression of AAA in Crp3−/− rats.

Discussion

We explored, for the first time, the role of the Crp3 and its
underlying mechanisms involved in the development of AAA.
Crp3 showed pleiotropic influence on key cellular processes
including SMCs apoptosis, inflammatory response and proteolytic
activity and may be explored as a novel therapeutic target to AAA.

We showed that Crp3 expression increases in response to AAA
in human samples, similarly to previously described regulation of
Crp1 and Crp2 (Crp3 paralogs) in abdominal and thoracic aorta
aneurysms (Hinterseher et al., 2012; Matsumoto et al., 2014). These
findings corroborate previous evidence from our group and others
demonstrating the role of Crp3 in the vascular stress response
(Wang et al., 2006; Campos et al., 2009; Campos et al., 2018)
and led us to hypothesize that it would impact AAA
development. Elastase-CaCl2 AAA induction was accompanied of
Crp3 induction (which was no longer restrained to the medial
vascular layer) increased aortic diameter and reduced wall

thickness in WT AAA compared to saline. In contrast, Crp3−/−

rats showed attenuated aortic dilation and reduced AAA incidence,
demonstrating overall protection against AAA development. The
ability of this model to recapitulate the main histopathological
aspects of the human AAA is well-documented in the literature
(Tanaka et al., 2009) and the findings of Crp3 induction further
confirmed its usefulness to dissect the role of Crp3 in AAA
pathogenesis.

In the aorta, Crp3 is expressed by SMCs, and in contrast to the
terminally differentiated striated muscle cells, aortic SMCs transit
between differentiated and dedifferentiated phenotypes in response
to changes in their environment, such as the establishment of a local
inflammatory response (Bennett et al., 2016). This is confirmed by
the diminished expression of SM α-actin upon stimulation with IL-
1β (Herring and Smith, 1996; Clément et al., 2007). It is well-
established that Crp1 and Crp2 act as cofactors of the Serum
responsive factor (SRF), gatekeeper of the SMC transcription
machinery (Chang et al., 2003; Alexander and Owens, 2012). In
this scenario, taking into account its poor capacity of activating SMC
gene promoters (Chang et al., 2003), Crp3 could prevent SMC
differentiation mediated by the SRF-GATA-Crp1-Crp2 complex,
therefore promoting the inflammatory response in the vicinity of
vascular disease. In line with this concept, we observed a blunted
inflammatory response in Crp3−/− SMCs stimulated with IL-1β,

FIGURE 2
Crp3 absence prevents AAA development. (A) Aortic diameter analysis performed 3 days (n = 10–14), 7 days (n = 5–9) and 14 days (n = 26–28) after
elastase-CaCl2-AAA induction, showing increase in aortic diameter in AAA compared to saline inWT rats, whichwas attenuated in Crp3−/− AAA. * indicates
p=0.020. (B)Depiction of the increase in aortic lumen diameter 14 days after AAA induction inWT andCrp3−/− rats and (C) graphical representation of the
lowered AAA incidence in Crp3−/− rats in comparison with WT AAA. WT (n = 26) and Crp3−/− (n = 27) *** indicates p < 0.001 and **** indicates p <
0.0001. (D) AAA development in WT rats was associated with reduction in intima: media thickness, while no change was observed upon AAA induction in
Crp3−/− rats. WT saline (n = 25), Crp3−/− saline (n = 15), WT AAA (n = 6), Crp3−/− AAA (n = 15). * indicates p = 0.014.
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leading to a reduced proteolytic profile, measured as the secretion
and activation of matrix metalloproteinases. Similar effect was
observed in the phenotype of bone marrow-derived macrophages

isolated from Crp3−/− rats. Despite the similarity in the common
aspects of M1 and M2-like macrophage polarization between WT
and Crp3−/− macrophages and in their recruitment to aneurysmal

FIGURE 3
Absence of elastolysis in response to AAA induction in Crp3−/− rats. Verhoeff’s van Gieson staining depicting elastic fibers degradation in WT AAA vs.
saline but no difference between saline and AAA in Crp3−/− animals, as shown in the quantification. WT saline (n = 13), Crp3−/− saline (n = 15), WT AAA (n =
18), Crp3−/− AAA (n = 14). The black scale bar represents 500 μm (images at lower magnification or 30 μm (images at higher magnification). *** indicates
p = 0.0002.
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lesions, we found that while WT polarization towards the alternative
(M2-like) phenotype is accompanied of increased expression of
Mmp-9, Crp3−/− M2-like macrophages showed no increase in

Mmp-9, but rather upregulation in the expression of the Mmp
inhibitor Timp-2, suggesting that there is a common mechanism for
Crp3 in the inflammatory state of both, SMC and macrophages. In

FIGURE 4
Absence of collagen deposition in response to AAA induction in Crp3−/− rats. Collagen amount evaluation via Picrosirius Red staining, demonstrating
thatWT AAA development increases collagen, while Crp3−/− remains unchanged.WT saline (n= 11), Crp3−/− saline (n= 8),WT AAA (n= 11), Crp3−/−AAA (n=
10). The black scale bar represents 500 μm (images at lower magnification or 30 μm (images at higher magnification). ** indicates p = 0.0093.
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addition, AAA was associated with Crp3 increase across the entire
vascular wall, suggesting that fibroblast and endothelial cell
Crp3 expression is also subject to forces and may play a role in
AAA pathogenesis.

The underlying mechanism for the effect of Crp3 in the
inflammatory response of SMCs remains to be elucidated but we
have previously demonstrated that Crp3 interacts with and
modulates the activation of the Focal adhesion kinase (Fak)
(Campos et al., 2018). Fak is implicated in the SMC inflammatory
response via c-Jnk activation, upregulating Monocyte chemoattractant
protein-1 (Mcp-1) and Matrix metalloproteinase-2 (Mmp-2)
(Varadarajulu et al., 2005; Yamashita et al., 2013). Thus, changes in
the Crp3-Fak axis could also impact inflammation and elastolysis
during AAA development in the absence of Crp3. In fact, while
AAA induction was accompanied of marked elastolysis in WT rats,

Crp3−/− showed no change in elastic fibers content. These findings were
associated with the inflammatory response of Crp3−/− SMC that, in the
presence of IL-1β, displayed reduced secretedMmp-9 and activeMmp-
2 levels, leading to blunted elastolytic activity. A similar behavior for
Crp2 was described in breast cancer. Analysis performed in a cohort of
over one thousand breast cancer patients showed that Crp2 expression
positively correlates with expression of inflammatory genes such as the
Urokinase plasminogen activator surface receptor (uPAR), Mmp-2 and
Mmp-14 (Hoffmann et al., 2018). Crp2 absence abrogated synthesis
and secretion of Mmp-9 and also the Mt1-Mmp-mediated ECM
degradation in breast cancer cell lines (Hoffmann et al., 2016;
Hoffmann et al., 2018). In SMCs, Chen et al. (2022) recently
demonstrated that Crp2 knockout inhibits SMC Erk 1/2-
Mmp2 signaling, promoting ECM homeostasis and preventing AAA
development in mice.

FIGURE 5
Absence of Crp3 protects SMCs from apoptosis. (A) Representative images of TUNEL assay demonstrating the presence of apoptosis in WT AAA but
not in Crp3−/−. The white scale bar represents 50 μm. (B)Quantitative analysis of TUNEL staining performed in saline and elastase-CaCl2 aortas of WT and
Crp3−/− rats for detection of apoptotic nuclei. AAA development was accompanied of apoptosis in WT AAA but not in Crp3−/− AAA. WT saline (n = 6),
Crp3−/− saline (n = 7), WT AAA (n = 4), Crp3−/− AAA (n = 4). ** indicates p = 0.043 and *** indicates p = 0.0002. (C) Quantification of apoptosis in
isolated aortic SMCs. While WT cells (n = 3) showed apoptotic response to 100 µM ceramide, little or no apoptosis is detected in Crp3−/− SMC (n = 3). ****
indicates p < 0.0001.
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In addition to the role in inflammation and elastolysis,
Crp3 absence also modulated the apoptosis of SMCs, a key event in
AAA (Golledge, 2019).We found that Crp3 absence impaired apoptosis
in the setting of AAA in rats, as well as in isolated SMC exposed to
ceramide. The role of Crp3 in apoptosis is one of the evidences
highlighting its singularity among the other two CRPs expressed in
the arterial tree, as absence of Crp3 (Wang et al., 2006) but not of
Crp1 or Crp2 was able to protect SMCs from apoptosis in response to
wire injury (Lilly et al., 2010), thus it should be considered a potential
therapeutic target to be explored. Evidences from our group
demonstrated that Crp3 role in SMC apoptosis was attributed, at
least in part, to its interaction with Fak, therefore affecting integrin-
dependent signaling pathways (Campos et al., 2018). Collectively, this
evidence allows us to establish a model where Crp3 lies at the interface
between the signaling mechanisms coordinating SMC inflammation,
elastolysis and apoptosis. In the absence of Crp3, there is an impairment
in these mechanisms, ultimately protecting Crp3−/− from AAA
development.

Like any study employing experimental models of disease, this
study has limitations. While the elastase-CaCl2 model successfully
reproduces phenomena such aortic dilation, elastin degradation, and

inflammatory cell infiltration, it lacks features such as atherosclerosis
and intraluminal fibrosis, which are commonly found in human AAA
lesions and have a major impact in AAA progression (Golledge et al.,
2006; Tanaka et al., 2009). Human AAA is generally fusiform and
eventually ruptures, while elastase-CaCl2-induced AAA is saccular
and does not undergo rupture (Tanaka et al., 2009), differences that
explain the lethality of AAA in humans but not in this model. It is
well-established that AAA primarily affects males, with prevalence
four-to-five times higher in males compared to age-matched females
(Katz et al., 1997; Lederle et al., 2001). Some authors may even
consider female sex a negative risk for the development of small AAA
(Lederle et al., 2000). Nevertheless, AAA in females is small but more
aggressive, with high rupture incidence (Hannawa et al., 2009). The
Crp3 contribution to AAA development in male and females remains
to be elucidated. Finally, while we focused on smooth muscle cells,
further research is warranted to understand the mechanisms of
Crp3 induction in endothelial cells and fibroblasts during AAA, as
well as their contribution to the development and progression of this
disease.

Altogether, we provide evidence for a new Crp3 role in the
development of abdominal aortic aneurysm. Although further

FIGURE 6
The absence of Crp3 blunts the proteolytic profile of aortic SMCs. (A)Quantitative analysis of the secretion and activation of Mmp-2 in the media of
control and IL-1β-stimulated aortic SMCs. IL-1β increased Mmp-2 activation, a response that was attenuated in Crp3−/− SMCs (WT n = 4, Crp3−/− n = 5). **
indicates p=0.027 (B) Total Mmp-2 levels remained unchanged (WT n= 6, Crp3−/− n= 7). (C) The secretion ofMmp-9was induced by IL-1β inWT, but not
in Crp3−/− SMCs (WT n = 8, Crp3−/− n = 5). ** indicates p = 0.0048, *** indicates p < 0.001 (D) Secreted Timp-2 levels remained unchanged in
response to IL-1β inWT andCrp3−/− SMCs (WT n= 7, Crp3−/− n= 7). (E) The collagenase activity was induced by IL-1β inWT, but not in Crp3−/− SMC (WT n=
17, Crp3−/− n= 17). *** indicates p=0.0009. (F) The elastolytic activity was induced by IL-1β in bothWT andCrp3−/− SMC, but in a higher level inWT (WT n=
11, Crp3−/− n = 11). * indicates p = 0.0208, and **** indicates p < 0.0001.
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investigation of themechanisms bywhichCrp3 expression affects AAA,
therapeutic modulation of Crp3 might serve to attenuate inflammation
andmedia layer degeneration, therefore preventing the progression and
rupture of abdominal aortic aneurysms.
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