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Intrauterine growth restriction (IUGR) arises when maternal stressors coincide
with peak placental development, leading to placental insufficiency. When the
expanding nutrient demands of the growing fetus subsequently exceed the
capacity of the stunted placenta, fetal hypoxemia and hypoglycemia result.
Poor fetal nutrient status stimulates greater release of inflammatory cytokines
and catecholamines, which in turn lead to thrifty growth and metabolic
programming that benefits fetal survival but is maladaptive after birth.
Specifically, some IUGR fetal tissues develop enriched expression of
inflammatory cytokine receptors and other signaling cascade components,
which increases inflammatory sensitivity even when circulating inflammatory
cytokines are no longer elevated after birth. Recent evidence indicates that
greater inflammatory tone contributes to deficits in skeletal muscle growth and
metabolism that are characteristic of IUGR offspring. These deficits underlie the
metabolic dysfunction that markedly increases risk for metabolic diseases in
IUGR-born individuals. The same programming mechanisms yield reduced
metabolic efficiency, poor body composition, and inferior carcass quality in
IUGR-born livestock. The ω-3 polyunsaturated fatty acids (PUFA) are diet-
derived nutraceuticals with anti-inflammatory effects that have been used to
improve conditions of chronic systemic inflammation, including intrauterine
stress. In this review, we highlight the role of sustained systemic inflammation
in the development of IUGR pathologies. We then discuss the potential for ω-3
PUFA supplementation to improve inflammation-mediated growth andmetabolic
deficits in IUGR offspring, along with potential barriers that must be considered
when developing a supplementation strategy.
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1 Introduction

Fetal intrauterine growth restriction (IUGR) occurs in an
estimated 1 out of every 5 pregnancies worldwide, resulting in
almost 30 million babies being affected by the condition each
year (Kesavan and Devaskar, 2019). Asymmetrical IUGR is a
pathological cause of low birth weight and small-for-gestational-
age (SGA) newborns. Unlike genetic causes of SGA, IUGR is an
adaptive response to chronic fetal hypoxemia, hypoglycemia, and
other sustained nutritional stresses, since slower fetal growth rates
require less nutrients (Sharma et al., 2016; Kesavan and Devaskar,
2019). However, these adaptations also reduce newborn vigor and
substantially increases the risk for early morbidity and mortality
(Garite et al., 2004). Globally, IUGR-born infants suffer 3-fold
greater perinatal demise than babies born at appropriate size for
their gestational age (Garite et al., 2004). Most commonly, IUGR-
born babies survive but are at much greater risk for chronic
metabolic disorders, including obesity, hyperlipidemia, and type
2 diabetes (Hales and Barker, 2001; Hicks and Yates, 2021). This is
because the programmed metabolic thrift that underlies IUGR and
benefits the nutrient-deprived fetus becomes an environmental
mismatch after birth, as offspring are no longer hypoxemic and
typically have better nutritional opportunities (Gibbs et al., 2020;
Posont et al., 2021). Hales and Barker were the first to link IUGR-
induced low birthweight to lifelong metabolic dysfunction and the
myriad associated health disorders (Hales et al., 1991; Hales and
Barker, 1992). In the decades since, research has begun to identify
the root causes for this link. For example, IUGR-born infants
typically undergo compensatory catch-up growth prior to
adolescence that is driven more so by fat deposition than by lean
tissue growth (Ong et al., 2000; Dulloo et al., 2012). Greater adiposity
compounds programmed metabolic thrift and further increases the
risk for insulin resistance, high blood pressure, and greater body
mass index (Ong and Dunger, 2000; Mericq et al., 2005; Lurbe et al.,
2009). In adulthood, these risks often manifest in diabetes,
hypertension, central obesity, hyperlipidemia, and heart disease
(Barker et al., 1993; Barker et al., 2002). Although modern
medical advances have markedly improved global IUGR infant
survival rates, prevalence of the condition has remained static for
decades (Goldenberg and Culhane, 2007; Mathews and Driscoll,
2017). Developing countries in South Asia and Sub-Saharan Africa
remain at the highest risk for IUGR pregnancies, but rates in
developed countries have also increased since 1981 (Gurung
et al., 2022). Moreover, rates among African-Americans and
among individuals from low-income areas have increased
disproportionately in the US (Goldenberg and Culhane, 2007).

Prenatal stressors in livestock and mammalian wildlife species
induce the same fetal programming mechanisms responsible for
IUGR in humans (De Blasio et al., 2007a; Yates et al., 2019). The lack
of perinatal vigor makes IUGR-born animals more susceptible to
starvation and predation, which is a major animal welfare issue that
costs the US livestock industry on average about 8% of its annual
product (Milligan BNF and Kramer, 2002; Wu et al., 2006). Like
humans, most IUGR-born animals survive but exhibit inefficient
growth and less desirable carcasses that create a great economic
burden (Greenwood et al., 1998; Ogata et al., 1999; Milligan BNF
and Kramer, 2002). There is an explicitly-recognized need for more
efficient livestock production to feed the world’s rapidly increasing

population, which is expected to double by 2050 (Godfray et al.,
2010). Improving growth efficiency in IUGR-born livestock would
allow more food to be produced from the same number of animals
without overgrowing normal animals. The clear impact of IUGR on
lifelong health in humans and on sustainability for the livestock
industry makes strategies to target maladaptive fetal programming a
fundamental need. This review presents the evidence for the role of
inflammatory programming in IUGR-associated metabolic
pathologies and discusses the potential nutraceutical efficacy of
anti-inflammatory omega-3 polyunsaturated fatty acids (ω-
3 PUFA) in mitigating those outcomes.

2 Characteristics of IUGR

2.1 Placental insufficiency: the common
culprit for IUGR

Fetal IUGR can result from any maternofetal stressor that stunts
placental development or otherwise limits fetal nutrient supply. For
humans, environmental and social stresses, nutritional imbalance
due to poor or limited diet, unhealthy lifestyle choices, and
pregnancies occurring after the age of 35 are some of the many
factors that increase the risk of impaired placental development and
growth (Beard et al., 2009; Nardozza et al., 2017). For livestock,
common causes of fetal and placental growth restriction include
chronic heat stress, restricted feed intake due to drought or
mismanagement, and grazing of noxious forages (Greenwood and
Cafe, 2007; Robinson et al., 2013). Placental insufficiency is also
common in small ruminants carrying multi-fetal pregnancies and in
swine carrying large litters (Milligan BNF and Kramer, 2002; De
Blasio et al., 2007a). Inadequate blood flow and/or nutrient supply
during the critical window for placental development (mid-gestation
for most species) causes stunting that ultimately prevents the
placenta from fulfilling the expanding nutritional needs of the
growing fetus, even when the cause of stunting has been resolved
(Burton and Jauniaux, 2018). As the fetus outgrows the stunted
placenta in late gestation, progressive IUGR ensues in a predictable
pattern (Nardozza et al., 2017). Several animal models have been
developed to study IUGR, from pigs (Tang and Xiong, 2022) to non-
human primates (Chassen et al., 2020). Sheep are particularly good
for IUGR research. The clinical characteristics and developmental
milestones of sheep pregnancies are remarkably comparable to
humans and other ruminant livestock, as previously described in
detail (Yates et al., 2018; Beede et al., 2019). Sheep fetuses are
uncommonly resilient, and ewes are typically easy to obtain and
house (Beede et al., 2019). A popular model for natural IUGR
induction is to expose pregnant ewes to chronic heat stress during
peak placental growth, which reliably induces placental insufficiency
and in turn fetal IUGR (Beede et al., 2019). Other natural IUGR
sheep models include maternal nutrient restriction, maternofetal
inflammation, high-altitude hypoxemia, and behavioral stress
(Zhang et al., 1998; Beede et al., 2019). Placental insufficiency
can also be created artificially via placental embolization,
umbilical artery ligation, or carunclectomy (Beede et al., 2019).

Placental stunting is the result of stress-induced alterations in
maternal nutrient flux. Normally, robust repartitioning of maternal
nutrients occurs to support the gravid uterus, which is facilitated in
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part by greater uterine blood flow (Thaler et al., 1990). Chronic
stress reduces maternal nutrient repartitioning to the uterus by
slowing uterine blood flow up to 50% in sheep models (Thureen
et al., 1992; Lang et al., 2000; Wallace et al., 2008). Reduced uterine
O2 delivery is particularly damaging, as a rodent model of maternal
hypoxemia yielded placental and fetal IUGR despite a compensatory
increase in uterine blood flow (Lane et al., 2020). Placental
vasculature expands rapidly beginning about 0.3 of pregnancy,
and stress-induced suppression of vasculogenesis during this
critical window cannot be recovered later in pregnancy (Burton
and Jauniaux, 2018). Underdeveloped placental villi and poor
fetoplacental angiogenesis in IUGR pregnancies culminate in as
much as two-fold reductions of placentome volume and
maternofetal vascular interface (Mayhew et al., 2004; Edwards
et al., 2020). Indeed, reduced peripheral capillary and villous
surface areas are hallmarks of the IUGR placenta (Teasdale,
1984). Not surprisingly, two key angiogenic factors are
dysregulated in IUGR placental tissues: vascular endothelial
growth factor (VEGF) and placental growth factor (PlGF)
(Regnault et al., 2002; Regnault et al., 2003). Diminished
maternofetal interface slows the movement of O2, glucose, and
other molecules that cross the placenta via simple or facilitated
diffusion (Regnault et al., 2003). Studies in IUGR sheep indicate a
50%–70% disparity in maternofetal O2 gradients (Limesand et al.,
2007; Beer et al., 2021). Nutrients that cross via facilitated diffusion
or active transport are also slowed by reduced placental expression
of transporters. For example, sheep pregnancies made IUGR by
maternal overfeeding or heat stress had reduced placental glucose
transport (Wallace et al., 2003; Brown et al., 2015) that coincided
with less of the Glut1, Glut3, and Glut8 glucose transporters
(Wallace et al., 2005). Placental transport of amino acids was also
reduced in IUGR sheep pregnancies (Brown et al., 2012). In humans
and rodents, this coincided with downregulation of the Na+-
dependent neutral amino acid transporter A system, which
moves alanine, serine, glutamine and glycine (Jansson et al.,
2006; Shibata et al., 2008; Alkhalefah et al., 2021). Conversely,
placental fatty acid transporters were downregulated in IUGR
mice but increased in the placenta of nutrient-restricted baboons
and in human pregnancies complicated by IUGR (Assumpcao et al.,
2017; Xu et al., 2019; Chassen et al., 2020).

2.2 The hallmark IUGR fetal phenotype

2.2.1 Fetal pathophysiology
Stress-stunted placentas can typically fulfill the relatively modest

fetal nutrient demands in early and mid-gestation, but exponential
fetal growth during late gestation pushes O2 and nutrient
requirements beyond the capacity of the stunted placenta
(Limesand et al., 2013; Macko et al., 2013). As the fetus
continues to grow, nutrient deficits progressively worsen. Natural
sheep models for IUGR produce up to 50% reductions in fetal blood
glucose near term (Saker et al., 1999; Limesand et al., 2007; Yates
et al., 2016; Edwards et al., 2020). Endogenous hepatic glucose
production is engaged in the IUGR fetus but only partially
compensates for its hypoglycemia (Fowden and Silver, 1995;
Limesand et al., 2007; Thorn et al., 2009; Thorn et al., 2013). In
response to limited nutrient availability, the fetus engages its own

nutrient repartitioning adaptations that prioritize vital nervous and
endocrine tissues over others, particularly skeletal muscle (Poudel
et al., 2015). Greater circulating lactate concentrations observed
when IUGR fetal sheep were experimentally made hyperglycemic
were consistent with a shift in muscle glucose metabolism from
oxidative phosphorylation to anerobic glycolysis (Thorn et al., 2013;
Lacey et al., 2021). Such shift coincides with and is perhaps
necessitated by the hypoxemic state of the fetus (Regnault et al.,
2003; Brown et al., 2015). However, less oxidative phosphorylation
diminishes energy status by reducing production of ATP (Cree-
Green et al., 2018). Despite this, IUGR fetuses exhibited greater
circulating CO2 due to compromised placental gas transfer, which
can affect acid-base balance (Macko et al., 2013; Lacey et al., 2021).
Disruptions in lipid homeostasis included 10%–25% lower
circulating cholesterol, which were reported in IUGR human and
rodent fetuses at term despite markedly higher precursor
concentrations and slower clearance rates (Cadaret et al., 2019a;
Pecks et al., 2019). This indicates that deficits were due at least
partially to impaired de novo cholesterol synthesis by the IUGR fetal
liver rather than solely due to deficient placental transport.
Conversely, ~15% reductions in circulating triglycerides coincided
with less placental fatty acid transporter expression and greater
disparity in maternofetal triglyceride gradients in IUGR fetal models
(Meyer et al., 2010; Cadaret et al., 2019a; Xu et al., 2019). Diminished
placental amino acid transporter expression together with less
effective Na+/K+-ATPase support is reflected in circulating amino
acid profiles in IUGR fetuses (Stremming et al., 2020; Rosario et al.,
2021). Brown et al. (2012) observed reduced placental transport of
isoleucine, leucine, phenylalanine, tryptophan, methionine, and
tyrosine, which notably lowered fetal circulating arginine and
methionine and muscle protein synthesis patterns in IUGR fetal
sheep. Interestingly, concentrations of some amino acids were
actually increased in these fetuses, which was presumably a
byproduct of reduced protein synthesis (Armstrong, 1973). Even
electrolyte homeostasis can be disrupted by placental insufficiency,
as fetal blood concentrations of Na+, K+, Ca++, and Cl− were
increased in IUGR fetal sheep (Jansson et al., 2006; Bacchetta
et al., 2009; Beer et al., 2021; Lacey et al., 2021).

Nutrient and O2 paucities stimulate fetal stress responses that
include systemic inflammatory and adrenergic components (Yates
et al., 2012a; Berbets et al., 2021). Hypoxemia, and to a lesser extent
hypoglycemia, stimulate secretion of the catecholamines
norepinephrine and epinephrine from the fetal adrenal medulla
(Gardner et al., 2002; Ly et al., 2011; Yates et al., 2012a). Circulating
norepinephrine (the primary fetal adrenal catecholamine) was
elevated by as much as 8-fold in IUGR fetal sheep, and
hypercatecholaminemia was among the earliest indicators of
placental insufficiency (Macko et al., 2013; Chang et al., 2019a).
Catecholamines are most associated with physiological mechanisms
aimed at immediate survival, and sustained exposure of tissues can
disrupt β adrenergic programming, the details and implications of
which have been reviewed elsewhere (Yates et al., 2011; Posont et al.,
2017; Gibbs and Yates, 2021). Perhaps the most consequential effect
of fetal hypercatecholaminemia is suppressed insulin activity. Basal
circulating insulin concentrations were often modestly decreased in
IUGR fetal sheep, but glucose-stimulated insulin secretion was
almost completely suppressed (Leos et al., 2010; Macko et al.,
2013; Cadaret et al., 2019b). In contrast, maternal nutrient
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restriction-induced IUGR did not affect insulin concentrations
(Edwards et al., 2020), which indicates that hypoxemia and
hypercatecholaminemia are the suppressors of insulin secretion.
Not surprisingly, circulating IGF-1 concentrations were likewise
reduced in IUGR fetal sheep during mid- and late-gestation (Thorn
et al., 2009; Macko et al., 2013; Rozance et al., 2018). As hypoxemia
stimulates the adrenal medulla, hypoglycemic conditions stimulate
the adrenal cortex to secrete cortisol, a steroid stress hormone
associated with changes in intermediary metabolism (Thorn
et al., 2013; Jonker et al., 2018). This has been documented
across many IUGR models and among several species
(Sutherland et al., 2012; Li et al., 2013; Thorn et al., 2013), and it
may ultimately lead to reduced sensitivity of the cortisol axis (Iwata
et al., 2019). Despite the anti-inflammatory effects of cortisol, IUGR
fetuses exhibited elevated circulating inflammatory cytokines,
including tumor necrosis factor α (TNFα), interleukin-1β (IL-1β),
and IL-6 (Cadaret et al., 2019b; Zhang et al., 2021), and lower
concentrations of anti-inflammatory IL-10 and IL-12 (Huang et al.,
2019). Cytokines mediate inflammatory responses to pathogens,
reactive oxygen species, and toxins, but they are also responsive to
hypoxemia and other physiological stressors (Lacy and Stow, 2011;
Hicks and Yates, 2021). They are released in greatest volume from
circulating white blood cells and resident tissue macrophages and
mast cells, and they act on tissues throughout the body (Tracey and
Cerami, 1993; Lacy and Stow, 2011). Elevated inflammatory
cytokines in IUGR fetuses can increase catabolism of skeletal
muscle and affect mobilization of nutrient stores (Hicks and
Yates, 2021). The concurrent appearance of systemic
inflammation and hypercatecholaminemia in near-term IUGR
fetuses is somewhat paradoxical, as macrophagic release of TNFα
and IL-6 is suppressed by adrenergic stimulation under normal
conditions (Donnelly et al., 2010; Papandreou et al., 2016).
Nonetheless, the combined heightened inflammatory and
adrenergic tones mediate many of the changes in metabolism
and growth that IUGR fetuses exhibit (Macko et al., 2013; Hicks
and Yates, 2021).

2.2.2 Fetal growth restriction
The bodyweights of IUGR fetal sheep and pigs were reduced by

as much as 55% near term (Tree et al., 2016; Cadaret et al., 2019c;
Tang and Xiong, 2022), and IUGR-born offspring remained lighter
well into the neonatal period (Gibbs et al., 2020; Shoji et al., 2020).
However, growth restriction is not equivalent among all fetal tissues.
In fact, sustained nutrient insufficiency and the resulting fetal stress
response yields hallmark asymmetric growth by disproportionally
slowing muscle accretion relative to cranial and skeletal growth
(Lapillonne et al., 1997). This was reflected in reduced muscle
protein accretion rates, muscle morphometrics, and body length-
to-mass ratios of IUGR fetal sheep (Yates et al., 2016; Rozance et al.,
2018; Cadaret et al., 2019b). In human fetuses for whom adiposity is
naturally high, disproportionally slower fat deposition was also
apparent from ultrasound diagnosis of IUGR (Padoan et al.,
2004; Ikenoue et al., 2021). The fetal hypoxemia-
hypercatecholaminemia-hypoinsulinemia cascade appears
instrumental in muscle growth restriction, as experimental
induction of each factor individually produced some degree of
IUGR in sheep (Philipps et al., 1991; Bassett and Hanson, 1998;
Rozance et al., 2018). Hypoxemia-induced inflammation also

limited muscle mass by increasing protein catabolism, reducing
protein accretion, and altering muscle stem cell function (Li W.
et al., 2009; Wang et al., 2014; Madaro et al., 2018; Posont et al.,
2022). Less severe reductions in body length, head circumference,
and cannon bone length observed in IUGR fetal lambs reflected the
modest nature of structural growth restriction (Rozance et al., 2018;
Cadaret et al., 2019c; Sandoval et al., 2020). As with bodyweight,
however, these mild deficits in structural metrics persisted postnatal
(Gibbs et al., 2020; Shoji et al., 2020). Ultimately, most IUGR-born
offspring undergo a period of catch-up growth that diminishes or
eliminates their weight disparity (Dulloo et al., 2006). However, this
compensatory weight gain results from greater fat accumulation and
does not reflect recovery of muscle mass (Ong et al., 2000; Gibbs
et al., 2020). Consequently, IUGR-born adolescents and adults are
more likely to develop high body mass indices (Fagerberg et al.,
2004; Zinkhan et al., 2018). For humans, altered body composition
was associated with a higher risk for metabolic and cardiovascular
dysfunction later in life (Ong et al., 2000; Fagerberg et al., 2004). In
food animals, IUGR-altered body composition resulted in smaller
and less valuable carcasses (Greenwood et al., 2005; Greenwood and
Bell, 2019).

Preferential reappropriation of fetal nutrients from muscle and
other peripheral soft tissues to vital brain and endocrine tissues is
reflected in blood flow patterns. In IUGR fetal sheep, blood flow was
maintained or increased in every region of the brain, and pancreatic
and adrenal blood flow increased by up to 2-fold (Poudel et al.,
2015). Conversely, blood flow to the hindlimb, which is about 45%
skeletal muscle (Hicks et al., 2021), was reduced by half (Poudel
et al., 2015; Hicks et al., 2021). In a baboon model of IUGR, less
hindlimb blood flow was associated with decreased size and
distensibility of the external iliac and femoral arteries, which was
sustained into adulthood (Kuo et al., 2018). In contrast, lower
ultrasound-estimated resistance in the carotid artery of human
IUGR fetuses reflected the brain-sparing characteristic of
asymmetric growth restriction (Groenenberg et al., 1989).
Preferential delivery of blood and nutrients maintained brain
weights across sheep models for IUGR (Yates et al., 2016;
Rozance et al., 2018; Wallace et al., 2020; Posont et al., 2021)
even when heart, lung, and liver weights were reduced (Hyatt
et al., 2007; Cadaret et al., 2019b; Wallace et al., 2020). Not
surprisingly, weights of individual hindlimb muscles relative to
fetal weight or hindlimb length were reduced in IUGR fetal
sheep by up to 40% (Rozance et al., 2018; Lacey et al., 2021).

Impaired myoblast function and slower protein synthesis each
contributed to reduced IUGR muscle mass (Yates et al., 2014; Soto
et al., 2017; Rozance et al., 2018; Felicioni et al., 2020), which
persisted after birth (De Blasio et al., 2007a; Gosby et al., 2009;
Gibbs et al., 2020). Myoblasts are the myogenic stem cells that
facilitate muscle fiber hypertrophy in late gestation and after birth
when fiber numbers have become largely static (Maier et al., 1992;
Wilson et al., 1992). Myoblasts undergo rate-limiting proliferation
and differentiation steps before fusing with existing muscle fibers to
increase the myonuclear content/protein capacity of the fiber (Allen
et al., 1979; Yates et al., 2012b). Histological and ex vivo assessments
indicated that differentiation capacity was impaired in myoblasts
from IUGR fetal lambs (Yates et al., 2014; Yates et al., 2016; Soto
et al., 2017; Posont et al., 2022). Myoblast proliferation was also
typically reduced by IUGR intrauterine conditions, although
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TABLE 1 Summary of literature reporting stress-induced placental and fetal growth restriction.

Age Species Placental weight Body weight Organ/Muscle weight Study

Spontaneous IUGR

Newborns Humans ↓34% Krajewski et al. (2014)

↓33% Miranda et al. (2018)

↓69% ↓80% Paolini et al. (2001)

↓34% Pecks et al. (2019)

↓13% Sharma et al. (2007)

↓12% Xiao and Li (2005)

↓12% ↓14% Souza et al. (2016)

Maternal Nutrient Restriction

Fetus Baboon ↓10% ↓7% Brain, ND Chassen et al. (2020)

Mouse ↓38% ↓48% Ganguly et al. (2016)

Rat ↓12% ↓21% Jansson et al. (2006)

↓26% Brain, ND Liver, ↓26% Sadiq et al. (1999)

↓9% ↓15% Brain, ND Kidney, ND Alkhalefah et al. (2021)

Liver, ND Heart, ND

Sheep ↓0%–32% Brain, ↓0%–9% Kidney, ↓0%–24% Sandoval et al. (2020)

Liver, ↓11%–43% Heart, ↓0%–22%

Gastrocnemius, ↓0%–30% Soleus, ↓0%–33%

L. dorsi, ↓0%–38% Fiber CSA, ↓0%–31%

↓21% Liver, ↓15% Zhang et al. (2021)

Neonate Baboon ↓10% Heart, ND Kuo et al. (2018)

Rat ↓11% Chen et al. (2016)

ND Brain, ND Liver, ND Sadiq et al. (1999)

↓14% Desai et al. (2009)

↓11% Liver, ↓14% He et al. (2018)

↓4% Gosby et al. (2009)

↓12% Tree et al. (2016)

↓36% Xing et al. (2019)

Mouse ↓8% Chisaka et al. (2015)

Maternal Overnutrition

Fetus Sheep ↓46% ↓34% Brain, ↓9% Liver, ↓36% Wallace et al. (2003)

↓26% Wallace et al. (2008)

Neonate Sheep ↓33% Wallace et al. (2008)

↓43% ↓42% Wallace et al. (2020)

Maternofetal Inflammation

Fetus Rat ↓8% Hindlimb CSA, ↓14% Cadaret et al. (2019a)

Sheep ↓22% Brain, ND Kidney, ↓23% Cadaret et al. (2019b)

Liver, ↓8% Lungs, ↓9%

Heart, ↓8%

(Continued on following page)
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TABLE 1 (Continued) Summary of literature reporting stress-induced placental and fetal growth restriction.

Age Species Placental weight Body weight Organ/Muscle weight Study

Neonate Sheep ↓18% Brain, ND Kidney, ↓16% Posont et al. (2021)

Liver, ↓9% Lungs, ↓14%

Heart, ↓24%

Maternal Heat Stress

Fetus Sheep ↓55% ↓43% Brain, ↓14% Liver, ↓47% Brown et al. (2012)

Carcass, ↓48%

↓47% ↓40% Brown et al. (2015)

↓40% Biceps femoris, ↓45% Tibialis anterior, ↓48% Chang et al. (2019a)

Flexor dig. superficialis, ↓48% Fiber CSA, ↓37%

Fiber no., ↓32%

↓36% ↓36% Brain, ↓11% Kidney, ↓29% Chang et al. (2021)

Liver, ↓27% Lungs, ↓34%

Heart, ↓28% Pancreas, ↓21%

Spleen, ↓32% Tibialis anterior, ↓35%

Flexor dig. superficialis, ↓33% Gastrocnemius, ↓37%

Extensor dig. longus, ↓57% Soleus, ↓58%

Fiber CSA, ↓36% Fiber no., ↓40%

↓26% Brain, ↓9% Kidney, ↓24% Lacey et al. (2021)

Liver, ↓9% Lungs, ↓25%

Heart, ↓22% Hindlimb, ↓23%

Semitendinosus, ↓26% Soleus, ↓42%

Flexor dig. superficialis, ↓36% L. dorsi, ↓25%

↓58% Pancreas, ↓59% Limesand et al. (2005)

↓60% ↓55% Limesand et al. (2006)

↓40% ↓15% Brain, ND Liver, ↓22% Limesand et al. (2013)

Pancreas, ↓8%

↓38% ↓3% Brain, ND Liver, ND Macko et al. (2013)

↓68% ↓53% Brain, ↓15% Semitendinosus, ↓51% Pendleton et al. (2019)

Biceps femoris, ↓50%

Maternal Heat Stress (Cont’d)

Fetus Sheep ↓51% ↓42% Regnault et al. (2003)

↓54% ↓56% Pancreas, ↓42% Rozance et al. (2015)

↓42% ↓41% Brain, ↓14% Hindlimb, ↓46% Rozance et al. (2018)

Biceps femoris, ↓45% Gastrocnemius., ↓45%

Flexor dig. superficialis, ↓48% Tibialis anterior, ↓48%

Extensor dig. longus, ↓45%

↓36% Bicpes femoris, ↓32% Gastrocnemius., ↓32% Soto et al. (2017)

Tibialis anterior, ↓23% Soleus, ↓25%

(Continued on following page)
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TABLE 1 (Continued) Summary of literature reporting stress-induced placental and fetal growth restriction.

Age Species Placental weight Body weight Organ/Muscle weight Study

↓60% ↓56% Liver, ↓62% Thorn et al. (2009)

↓41% ↓38% Thorn et al. (2013)

↓53% ↓35% Liver, ↓43% Heart, ↓38% Wai et al. (2018)

Kidney, ↓47% Pancreas, ↓14%

Spleen, ↓43% Biceps femoris, ↓34%

Flexor dig. superficialis, ↓48% Tibialis anterior, ↓35%

Extensor dig. longus, ↓33% Gastrocnemius, ↓37%

↓70% ↓68% Yates et al. (2014)

↓56% ↓55% Yates et al. (2016)

Neonate Sheep ↓50% ↓21% Chen et al. (2010)

↓33% Yates et al. (2019)

↓21% Brain, ND Liver, ND Cadaret et al. (2022)

Heart, ↓37% Lungs, ↓9%

Kidney, ↓13% Hindlimb, ↓32%

Flexor dig. superficialis, ↓19%

Juvenile Sheep ↓12% Brain, ND Liver, ↓13% Gibbs et al. (2021)

Heart, ↓29% Lungs, ↓29%

Kidney, ↓15% Hindlimb, ↓17%

Flexor dig. superficialis, ↓22% L. dorsi CSA, ↓14%

Fiber CSA, ↓21%

Carunclectomy

Fetus Sheep ↓65% ↓33% Brain, ↓9% Liver, ↓51% Poudel et al. (2015)

Heart, ↓36% Kidney, ↓29%

Lungs, ↓40% Pancreas, ↓32%

Spleen, ↓52%

Neonate Sheep ↓26% Fat, ND Adipocyte CSA, ND Duffield et al. (2009)

↓39% ↓25% Fat, ↑40% Semitendinosus, ↓18% De Blasio et al. (2007a)

Biceps femoris, ND Flexor capri, ↓49%

Gastrocnemius, ↓18% Tibialis anterior, ↓32%

Soleus, ND Vastus lateralis, ↓30%

Extensor dig. longus, ND

Juvenile Sheep ND Fat, ↑49% De Blasio et al. (2007b)

Uterine Artery Ligation

Fetus Rat ↓26% Brain, ND Liver, ↓26% Sadiq et al. (1999)

Sheep ↓27%–34% ↓15%–33% Brain, ↓0%–6% Liver, ↓28%–36% Lang et al. (2000)

Heart, ↓16%–31% Lungs, ↓11%–27%

(Continued on following page)
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proliferation was increased in one model induced by maternofetal
inflammation (Soto et al., 2017; Cadaret et al., 2019a; Posont et al.,
2022). Myoblast dysfunction is reflected in expression of key
myogenic transcription factors, which hint at mechanisms for
IUGR myoblast deficits. Specifically, differentiation factors myoD
and myogenin were reduced in IUGR fetal myoblasts near term,
whether assessed in vivo or ex vivo (Yates et al., 2014; Chang et al.,
2019b; Rozance et al., 2021; Posont et al., 2022). Reduced myoblast
proliferation, differentiation, and fusion slowed myonuclear
accumulation in all muscle fiber types, which in IUGR fetal
lambs restricted cross-sectional fiber area by as much as 60%
(Yates et al., 2016; Chang et al., 2019b). Smaller muscle fibers
have also been documented in IUGR piglets and rats (Cadaret
et al., 2019a; Felicioni et al., 2020). Although some variation
exists among IUGR models, species, and even specific muscles,
disproportional reduction of muscle and other soft tissues as a
means of sparing brain and structural growth is a well-conserved
phenotype. Table 1 illustrates the distinct size reductions of specific
tissues and organs that yield asymmetric body composition.

2.2.3 Fetal metabolic adaptations: muscle glucose
metabolism

Limiting skeletal muscle growth contributes to fetal nutrient
sparing necessitated by placental insufficiency (Brown, 2014).
Additionally, the IUGR fetus alters tissue-specific utilization,
metabolism, and storage of nutrients (Rozance and Wolfsdorf,
2019; Yates et al., 2019; Zhang et al., 2021). As with growth
restriction, these changes disproportionally affect muscle. Several
IUGR fetal sheep models found that muscle-specific glucose
oxidation rates were reduced by up to 80% near term, which
along with reduced hepatic oxidative metabolism produced a
~50% reduction in whole-fetus glucose oxidation (Peterside et al.,
2003; Limesand et al., 2007; Brown et al., 2015; Cadaret et al., 2019b).
This deficit was observed under normal resting conditions and
experimental hyperinsulinemia, and it persisted well after birth
(Gibbs et al., 2021; Posont et al., 2021; Cadaret et al., 2022).
Impaired glucose oxidation also occurred despite normal rates of
glucose uptake by muscle, which has been observed before (Rozance
et al., 2018; Cadaret et al., 2019c) and after birth (Gibbs et al., 2021;
Posont et al., 2021; Cadaret et al., 2022). Although IUGR muscle
expressed less of the insulin-dependent glucose transporter Glut4 in

some studies (De Blasio et al., 2012; Duan et al., 2016; Yates et al.,
2019; Jones et al., 2022), glucose uptake may have been rescued by an
increase in the insulin-independent transporter Glut1 (Brown et al.,
2015; Yates et al., 2019). Moreover, it should be noted that some
studies found no changes in IUGRmuscle content of Glut1 or Glut4
(Limesand et al., 2007; Garg et al., 2009). Not surprisingly,
Glut1 expression in the brain was increased by over 60% in
IUGR fetal lambs and rats as well as in IUGR-born neonatal rats
(Sadiq et al., 1999; Limesand et al., 2007), which is consistent with
brain sparing during chronic hypoglycemia (Gibbs and Yates, 2021).

Reduced skeletal muscle glucose oxidation rates coincided with
lower proportions of slow oxidative (type I) fibers relative to
intermediate (type IIa) and fast glycolytic (type IIx) fibers in
hindlimb muscles of IUGR fetal sheep and loin muscles of IUGR
fetal pigs (Wang et al., 2013; Yates et al., 2016; Stremming et al.,
2022). Furthermore, IUGR muscle exhibited reduced activity of
pyruvate dehydrogenase and citrate synthase enzymes that generate
Krebs cycle intermediates, as well as increased expression of
(inhibitory) pyruvate dehydrogenase kinase and impaired
function of Electron Transport Chain Complex I (Brown et al.,
2015; Pendleton et al., 2019; Stremming et al., 2022). These
observations, combined with reduced O2 utilization, normal
glucose utilization, and greater lactate dehydrogenase B content
(Brown et al., 2015; Pendleton et al., 2019), indicated that much of
the reduction in glucose oxidative phosphorylation was replaced by
greater glycolytic lactate production. This is evident in elevated
circulating lactate concentrations, which were as much as 3-fold
greater in IUGR fetuses, particularly during experimental
hyperglycemia or hyperinsulinemia (Limesand et al., 2007; Davis
et al., 2021; Camacho et al., 2022). Lactate-O2 quotient was also 2-
fold greater, meaning that more lactate was produced from each
mole of O2 consumed (Rozance et al., 2018). Like other IUGR
pathologies, hyperlactatemia appears to be driven primarily by
hypoxemia-induced hypercatecholaminemia. In fetal sheep made
experimentally hypoxemic (but not hypoglycemic) for 9 days, the 3-
fold increase in circulating norepinephrine resulted in 20% less
glucose oxidation, 3.5-fold greater circulating lactate, and 2-fold
greater fetal lactate production (Jones et al., 2022). This model also
demonstrated that hyperlactatemia may indicate condition severity,
as circulating lactate concentrations were elevated by robust fetal
hypercatecholaminemia (3-fold or greater increase) but not by a

TABLE 1 (Continued) Summary of literature reporting stress-induced placental and fetal growth restriction.

Age Species Placental weight Body weight Organ/Muscle weight Study

↓16% Lungs, ↓10% Sutherland et al. (2012)

Neonate Rat ND Brain, ND Liver, ↓7% Sadiq et al. (1999)

Uterine Overcrowding

Neonate Pig ↓40% Brain, ↓12% Liver, ↓45% Felicioni et al. (2020)

Heart, ↓36% Semitendinosus, ↓52%

Semitendinosus CSA, ↓14% Fiber CSA, ↓16%

Fiber no., ↓32%

↓47% Niu et al. (2019)

CSA, cross-sectional area; ND, not different.
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more modest 1.4-fold increase in norepinephrine (Jones et al., 2019;
Rozance et al., 2021; Jones et al., 2022). Catecholamine-induced
hyperlactatemia also persisted in IUGR-born neonates (Chen et al.,
2010). Some studies have reported normal blood lactate in IUGR
fetuses (Wai et al., 2018; Cadaret et al., 2019b; Pendleton et al., 2020),
but this does not necessarily mean that lactate was produced at
normal rates. Rather, IUGR fetuses were shown to engage hepatic
gluconeogenesis that converts lactate and other substrates to
glucose, a mechanism that is largely idle under normal
intrauterine conditions (Limesand et al., 2007). This was reflected
in elevated expression of gluconeogenic enzymes such as
phosphoenolpyruvate carboxykinase and glucose 6-phosphatase
and their transcriptional promoters in IUGR sheep, pigs, and
rodents in late gestation and after birth (Peterside et al., 2003;
Vuguin et al., 2004; Limesand et al., 2007; Thorn et al., 2009;
Brown et al., 2015; Ying et al., 2017). Hepatic gluconeogenesis
allows the IUGR fetus to utilize greater skeletal muscle lactate
production to partially offset poor glucose supply via the Cori
cycle (Soeters et al., 2021).

2.2.4 Fetal metabolic adaptations: amino acids and
protein cycling

The IUGR fetus’s diminished protein supply affects utilization of
amino acids for tissue accretion and for energy production.
Foundational work by researchers at the University of Colorado
School of Medicine found that hindlimb protein accretion was
reduced by 55% in IUGR fetal sheep (Rozance et al., 2018; Wai
et al., 2018). This coincided with a comparable reduction in total
amino acid uptake rates by the hindlimb, although rates among
individual amino acids were not affected uniformly (Rozance et al.,
2018). For example, hindlimb uptake rates of the essential branched-
chain amino acids leucine, valine, and isoleucine, were reduced by
up to 73% in IUGR fetal sheep, whereas alanine, glutamine, and
glycine were actually secreted from the hindlimb, despite slightly less
protein breakdown (Chang et al., 2019a). These differential fluxes
are presumably an attempt at metabolic thrift, as branched-chain
amino acids can be converted into alanine, glutamine, and glycine,
which are substrates for hepatic gluconeogenesis (Chang et al.,
2019a). Indeed, expression of enzymes that facilitate this
conversion was greater for IUGR fetal rats and sheep (Kloesz
et al., 2001; Chang et al., 2019a). Interestingly, long-term infusion
of essential amino acids into IUGR fetal sheep did not consistently
increase protein accretion, indicating that amino acid utilization was
restricted by more than just the short supply (Wai et al., 2018).
Together, these studies show definitively that protein accretion in
the IUGR fetus is impeded primarily by slower protein synthesis and
not by greater protein breakdown. Like amino acid uptake, the
impact of IUGR on individual amino acid oxidation rates is not
uniform. For example, IUGR fetal sheep oxidized 47% less threonine
(Anderson et al., 1997) but 2-fold more lysine (Limesand et al.,
2009). Leucine oxidation rates were reduced by 34% in one early
study of IUGR fetal sheep (Ross et al., 1996) but were normal in
others (Rozance et al., 2018; Wai et al., 2018). Moreover, leucine
oxidation was not affected in fetal sheep made chronically
hypoxemic (Rozance et al., 2021), hypoglycemic (Carver et al.,
1997), hyperglucagonemic (Cilvik et al., 2021), or
hyperinsulinemic (Brown et al., 2016) late in gestation, but it was
markedly reduced by elevated circulating IGF-1 (Stremming et al.,

2021). A greater amount of leucine was oxidized when normal
fetuses were experimentally administered excess amino acids
(Rozance et al., 2009; Maliszewski et al., 2012), but this effect was
blunted in IUGR fetuses (Brown et al., 2012). Amino acids and
glucose are normally competitive oxidative substrates (Brown et al.,
2017). However, the apparent lack of compensatory amino acid
oxidation in IUGR fetuses despite substantial deficits in glucose
oxidationmay have been the result of mitochondrial deficits. Indeed,
IUGR fetal skeletal muscle had less citrate synthase, which is an
indicator of intact and functional mitochondria (Stremming et al.,
2022). It also expressed less BCAT1 and BCAT2, the transaminase
enzymes that convert leucine and isoleucine into the Krebs cycle
intermediate succinate, and less ALT, the enzyme that converts
alanine to pyruvate (Chang et al., 2019a). The coincident deficits in
glucose and amino acid oxidation ultimately diminished ATP
content in IUGR fetal muscle (Stremming et al., 2020).

2.2.5 Fetal metabolic adaptations: lipid
homeostasis

The impact of IUGR on lipid homeostasis is perhaps less clear.
Elevated triglycerides and non-esterified (or free) fatty acids (NEFA)
in cord blood at birth is a hallmark of IUGR in humans (Youssef
et al., 2021; Chassen et al., 2022) and has been used for decades as a
clinical indicator of fetal stress (Elphick et al., 1978). High blood
lipid concentrations in late gestation and after birth have also been
documented in piglets with spontaneous IUGR (i.e., litter runts) (Li
et al., 2018) and in several IUGR sheep models (Wallace et al., 2014;
Wallace et al., 2020; Posont et al., 2021; Zhang et al., 2021), although
we are aware of at least one study that found reduced circulating
NEFA in young IUGR-born lambs (Duffield et al., 2009). The impact
of IUGR on circulating cholesterol is similarly inconsistent and may
depend in part upon the lipoprotein to which cholesterol is bound.
For example, Youssef et al. (2021) observed 23% greater total
cholesterol but 20% less HDL-C in cord blood from IUGR
babies, whereas Pecks et al. (2012) reported reductions in both
total cholesterol and HDL-C. Circulating cholesterol was elevated in
several IUGR fetal sheep studies and correlated tightly with fetal
weights (Meyer et al., 2010; Zywicki et al., 2016; Sun et al., 2018;
Zhang et al., 2021). As neonates, however, IUGR-born lambs had
normal or even reduced circulating cholesterol, although HDL-C
was still elevated (Wallace et al., 2014; Posont et al., 2021). Changes
in intracellular lipids within IUGR tissues may also differ between
prenatal and postnatal stages. In fetal sheep, for example, IUGR due
to nutrient restriction or fetal crowding increased blood NEFA and
triglycerides by as much as 50% but reduced liver triglycerides and
hepatic lipase, the enzyme responsible for their hydrolysis (Meyer
et al., 2010; Zywicki et al., 2016; Sun et al., 2018; Zhang et al., 2021).
In IUGR fetal guinea pigs, hepatic utilization of palmitate (the most
common saturated fatty acid in animals and plants) was reduced by
about 50% (Detmer et al., 1992). Conversely, IUGR-born neonatal
goats had greater liver accumulation of NEFA, triglycerides, and
cholesterol (Liu et al., 2022), and IUGR-born runt piglets had more
expansive hepatic lipid droplets, particularly after undergoing catch-
up growth (Wang et al., 2022). IUGR-induced changes in lipid
metabolism were largely tissue-specific, as were changes in de novo
synthesis. Shortly after birth, IUGR infants exhibited greater rates of
whole-body triglyceride mobilization and fatty acid oxidation (Patel
and Kalhan, 1992). Moreover, gene expression for the key β-
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oxidation facilitator PPARα was increased in liver tissue from
IUGR-born runt piglets (Wang et al., 2022) and in cardiac
muscle from IUGR-born adult guinea pigs (Botting et al., 2018).
Gene expression for CPT1 and HADHA, which play rate-limiting
roles for fatty acid β-oxidation, was reduced in liver tissues of IUGR-
born rats (Lane et al., 2001a). However, skeletal muscle from these
rats had greater CPT1 and HADHA expression along with greater
triglyceride content (Lane et al., 2001b). Cardiac muscle from IUGR
fetal sheep also expressed less mRNA for CPT1 and for enzymes
associated with β-oxidation and esterification of fatty acids (Drake
et al., 2022). This coincided with greater circulating acylcarnitines,
which are indicative of impaired or incomplete fatty acid oxidation
(Drake et al., 2022). Fatty acid synthesis rates were reduced in liver
and lung tissues of IUGR rat fetuses, but not in brain tissue (Vileisis
et al., 1982). Interestingly, maternofetal O2 supplementation did not
recover fatty acid synthesis in these fetuses, which indicates that the
deficit was not a product of hypoxemia (Vileisis, 1985). As adults,
fatty acid synthesis was normal in liver and muscle from IUGR-born
rats but was elevated in adipose tissues (Yee et al., 2016). Disruptions
in lipid homeostasis almost certainly contribute to greater adiposity
in IUGR-born offspring (Ong et al., 2000; Zinkhan et al., 2018).
Indeed, IUGR-born lambs exhibited markedly greater insulin
sensitivity for fat deposition (De Blasio et al., 2007b). They also
produced muted increases in circulating NEFA in response to
epinephrine challenge, indicating a reduced capacity for lipid
mobilization (Harwell et al., 1990; Chen et al., 2010).

2.2.6 Fetal metabolic adaptations: insulin secretion
Deficient insulin production and secretion is a key contributor

to poor growth and metabolic dysfunction in IUGR fetuses and
offspring (Limesand et al., 2006; Xing et al., 2019). Large reductions
in basal circulating insulin and complete inhibition of nutrient-
stimulated insulin secretion observed in IUGR fetal sheep
(Limesand et al., 2007; Cadaret et al., 2019b) were the direct
result of fetal hypoxemia and hypoglycemia. To illustrate, when
normoxemia and euglycemia were experimentally restored for a 5-
day period in IUGR fetal sheep, basal insulin concentrations
normalized and glucose-stimulated insulin secretion was rescued
(Camacho et al., 2022). Conversely, acute or chronic experimental
hypoxemia or hypoglycemia in otherwise uncompromised fetal
sheep reduced insulin secretion (Rozance et al., 2006; Yates et al.,
2012a; Benjamin et al., 2017). Basal hypoinsulinemia was also
resolved postnatal, as IUGR-born offspring were no longer
hypoxemic or hypoglycemic after birth (Posont et al., 2021;
Cadaret et al., 2022). The suppressive effects of these conditions,
particularly hypoxemia, on pancreatic β cell function are mediated
in large part by adrenergic signaling. In fact, blocking the adrenergic
response to IUGR conditions via pharmaceutical antagonists or
adrenal demedullation not only rescued insulin secretion, but in
most cases revealed a compensatory enhancement in β cell stimulus-
secretion coupling (Leos et al., 2010; Yates et al., 2012a; Macko et al.,
2013; Macko et al., 2016). Comparable enhancements in β cell
function were observed following chronic norepinephrine
infusion into otherwise normal fetal sheep or rats (Chen et al.,
2014; Chen et al., 2017; Li et al., 2021). Despite greater sensitivity of β
cells, IUGR pancreatic islets are poorly developed. Specific islet
deficits are reviewed in detail elsewhere (Boehmer et al., 2017) but
include smaller size with fewer β cells/islet, less production and

sensitivity to growth factors, and poor vascularity (Limesand et al.,
2005; Styrud et al., 2005; Limesand et al., 2006; Ham et al., 2009;
Rozance et al., 2015).

2.3 Inflammatory contributions to IUGR
pathologies

Systemic inflammation has been observed in IUGR fetuses of
several species. Although the role of inflammation in IUGR
pathologies are not fully characterized, overexposure to
inflammatory cytokines is known to disrupt progenitor cell
function, tissue growth, and metabolism, as detailed in previous
reviews (Joanisse and Parise, 2016; Hicks and Yates, 2021; Most and
Yates, 2021). Inflammatory cytokines such as TNFα, IL-1β, and IL-6
were increased in blood and liver of IUGR fetal lambs and mice
(Hudalla et al., 2018; Cadaret et al., 2019b; Zhang et al., 2021) and in
cord blood of IUGR infants (Amarilyo et al., 2011). In humans,
piglets, and rats, circulating inflammatory cytokines remained
elevated for the first few hours, days, or even weeks after birth
(Krajewski et al., 2014; Riddle et al., 2014; Chisaka et al., 2015;
Huang et al., 2019). Eventually, however, high circulating cytokine
concentrations subsided and in many cases even fell below normal;
plasma TNFα was reduced by 50% in IUGR-born neonatal lambs
(Posont et al., 2021), and IFNγ, IL-1β, IL-4, and IL-8 concentrations
were reduced in young IUGR-born piglets (Zhong et al., 2012).
Resting blood TNFα, IL-6, and IL-1β concentrations were normal in
IUGR-born adult rats but were 25%–40% less elevated in response to
immune challenge (Desai et al., 2009; Rueda-Clausen et al., 2011).
We should note that at least one study of IUGR-born adult rats
observed modestly greater circulating inflammatory cytokines (He
et al., 2018), although the reason for this unusual finding was not
clear. Moreover, when these researchers produced IUGR piglets
using the same model of maternal nutrient restriction, they found
postnatal circulating cytokine concentrations that were indeed
below normal (Dong et al., 2015).

Postnatal reductions in circulating inflammatory cytokines are
likely a compensatory response to heightened inflammatory
sensitivity that develops in several IUGR fetal tissues and persists
after birth (Hicks and Yates, 2021). In a landmark example from
humans, the soluble form of the TNFα receptor, TNFR1, was
observed to be 2.5-fold greater in the umbilical cord of IUGR
newborn infants (Laskowska et al., 2007). Enhanced
inflammatory sensitivity is also apparent in IUGR skeletal
muscle, as hindlimb muscles from IUGR fetal sheep and rats
exhibited greater gene expression for TNFR1, the IL-6 receptor
(IL6R), and even the TWEAK receptor (Fn14) near term (Cadaret
et al., 2019a; Posont et al., 2022). Muscle from these IUGR fetal
sheep also contained less of the NFκB arrest protein, IκBα (Posont
et al., 2022). As neonates, IUGR-born lambs continued to exhibit
greater skeletal muscle TNFR1 content, although IκBα content was
increased, perhaps in compensation (Posont et al., 2021). Adaptive
enrichment of inflammatory signaling components in the muscle of
IUGR-born offspring may arise in part from intrauterine
programming of muscle progenitors, which are established
prenatal but are incorporated into muscle over the entire lifespan
(Allen et al., 1979). Indeed, myoblasts isolated from IUGR fetal
sheep had greater gene expression for TNFR1, IL6R, and TLR4 and
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also had more c-Fos, a cytokine-responsive protein that can disrupt
cellular differentiation (Posont et al., 2022). In culture, these IUGR
fetal myoblasts exhibited greater phosphorylation of NFκB when
stimulated with TNFα and were more sensitive to inhibitors of the
canonical signaling enzyme, IκB kinase, under basal conditions
(Posont et al., 2022). The impact of enhanced inflammatory
sensitivity in skeletal muscle on growth and metabolic
homeostasis is substantial, as the tissue comprises about 60% of
total juvenile body mass and expands substantially between fetal and
juvenile stages (Calnan et al., 2021; Hicks et al., 2021). As illustrated
in Figure 1, however, it is not the only tissue to develop this
phenotype. Fat tissues of IUGR-born juvenile rats exhibited
greater gene and protein expression for TNFα and TNFR1
(Riddle et al., 2014), and transcriptome analyses of pancreatic
islets from IUGR fetal sheep indicated enriched TNFα signaling
pathways (Kelly et al., 2017). Liver content of TNFα, IL-6, IL-1,
TLR4, MyD88, phosphorylated and total NFκB, phosphorylated
IκBα, and phosphorylated IκB kinase were elevated in IUGR fetal

sheep and newborn mice, although the latter also exhibited
tempered hepatic TNFα production in response to acute LPS-
stimulation (Zarate et al., 2021; Zhang et al., 2021). Greater
hepatic TNFα, IL-6, and TLR4 were also observed in IUGR-born
pigs at weaning and in IUGR-born rats in adulthood, which
corresponded to greater percentages of phosphorylated IκBα and
NFκB (Liu et al., 2014; Tarry-Adkins et al., 2016; He et al., 2018).
Intestinal tissues of newborn IUGR piglets exhibited a paradoxical
reduction of IFNγ but had increased IL-4 and the inflammation-
mediating transcription factor FOXO3a (Zhong et al., 2012).
Intestinal tissues from these piglets also exhibited less of the anti-
inflammatory cytokine, IL-10 (Zhong et al., 2012). By weaning,
intestinal gene and protein expression for cytokines and their
canonical pathways were robustly enhanced, which corresponded
to greater phospho-activation and nuclear translocation of NFκB
and greater activation of the inflammation-mediating kinase, JNK
(Niu et al., 2021; Cui et al., 2022). Lung tissue from IUGR-born rats
likewise exhibited greater gene expression for inflammatory

FIGURE 1
Stress-induced programming of enriched inflammatory signaling pathways in IUGR sheep tissues. Findings compiled from the literature are shown
for skeletal muscle (Llovera et al., 1997; Bodell et al., 2009; Gray et al., 2009; Cadaret et al., 2017; Cadaret et al., 2019c; Hicks and Yates, 2021; Posont et al.,
2022), liver (Fitzgerald et al., 2003; Zarate et al., 2021; Zhang et al., 2021; Wang et al., 2022), pancreas (Hadjivassiliou et al., 1998; Andersson et al., 2005;
Ellingsgaard et al., 2011; Kelly et al., 2017), and adipose tissue (Kras et al., 2000; Sharkey et al., 2009; Beer, 2022). Green boxes indicate signaling
components reported to be upregulated and red boxes indicate downregulated components.
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cytokines and reduced expression for the anti-inflammatory IL-10,
which corresponded to greater phospho-activation of the
inflammatory mediator, STAT3 (Alejandre Alcazar et al., 2012).
Even skin tissues of IUGR-born rats exhibited evidence of enhanced
inflammation, as indicated by greater macrophage infiltration and
increased gene expression for the interleukin receptor, IL7R, and its
cofactor, cytokine receptor-like factor 2 (Polányi et al., 2020). One
noteworthy exception for this phenotype appears to be white blood
cells, as IUGR-born piglets and lambs had little or no change in
circulating leukocyte profiles (Zhong et al., 2012; Amdi et al., 2020;
Posont et al., 2021; Cadaret et al., 2022). Moreover, IL-1β production
and proliferation by IUGR leukocytes was less responsive to LPS
stimulation (Zhong et al., 2012; Amdi et al., 2020).

Inflammation and oxidative stress are inherently-linked stress
conditions. The major reactive oxygen species that mediate oxidative
stress are listed in Figure 2. These are physiological byproducts that
serve important roles in cellular communication, but excessive
accumulation causes cellular damage and increases risk for
chronic inflammatory diseases (Pizzino et al., 2017). Reactive
oxygen species stimulate greater cytokine secretion from many
cell types (Bulua et al., 2011; Enoki et al., 2016). They also
directly stimulate inflammatory pathways by activating IκB
kinase, stimulating IκB/NFκB dissociation, and facilitating greater
nuclear NFκB dimerization (Lugrin et al., 2014). Coincidentally,
inflammatory stimulation often increases production of reactive
oxygen species (Floyd et al., 1999; Reid and Li, 2001; Langen
et al., 2002; Sriram et al., 2011). For example, skeletal muscle of
IUGR-born juvenile rats overexpressed components of NADPH
oxidase 2, a membrane-bound enzyme that produces reactive
oxygen species for immune signaling but is also a prominent
source for overproduction (Chisaka et al., 2015; Tarry-Adkins
et al., 2016). The short-lived nature of reactive oxygen species
makes them difficult to measure in situ, but greater hepatic
reduction of oxidized glutathione was indicative of severe
oxidative stress in IUGR-born neonatal pigs (Niu et al., 2019).
Hepatic concentrations of malondialdehyde and protein carbonyl,
the primary indicators of lipid peroxidation and oxidative protein
damage, respectively, were also increased in IUGR-born adult rats

and neonatal pigs (He et al., 2018; Niu et al., 2019). Tissues of IUGR-
born offspring are more susceptible to reactive oxygen species due to
maladaptive reductions in several intracellular antioxidant
compounds. Hepatic concentrations of the antioxidant enzyme
glutathione reductase, which clears oxidized glutathione, was
reduced in IUGR-born pigs (Niu et al., 2019). Glutathione
reductase was one of several antioxidant proteins for which
hepatic gene expression was downregulated in IUGR-born
neonatal piglets and rats (Tarry-Adkins et al., 2016; Niu et al.,
2019), which culminated in an almost 50% reduction in total
antioxidant capacity of the liver (He et al., 2018; Niu et al., 2019).

3 Mitigating the impact of IUGR with
ω-3 PUFA

3.1 Overview of dietary ω-3 PUFA

Nutraceutical use of two natural bioactive ω-3 PUFA,
eicosapentaenoic acid (EPA; 20:5 ω-3) and docosahexaenoic acid
(DHA; 22:6 ω-3), has increased in popularity as their anti-
inflammatory and antioxidant effects have been more firmly
established (Shahidi and Ambigaipalan, 2018). Although EPA
and DHA can be synthesized de novo from α-linolenic acid in
modest amounts, additional dietary sources result in health benefits
(Russell and Burgin-Maunder, 2012). Many ocean fish and algae
species are particularly rich sources of exogenous ω-3 PUFA and are
used to produce commercial fish oil-extract supplements (Shahidi
and Ambigaipalan, 2018). Consumer interest inω-3 PUFA has led to
the marketing of food products such as milk and bacon that are
enriched with exogenous EPA and DHA (Bernal-Santos et al., 2010;
Meadus et al., 2010).

Studies performed in vivo and in vitro report notable anti-
inflammatory and antioxidant effects of ω-3 PUFA. Incubation of
cultured macrophages with either EPA or DHA for only 48 h
mitigated the normally robust LPS-induced secretion of TNFα,
IL-1β, and IL-6 by up to 90% (Weldon et al., 2007). This effect
was facilitated by stimulation of the GPR120 receptor pathway,

FIGURE 2
Common stress-induced reactive oxygen species. These are natural cellular byproducts that can be damaging when overproduced during
inflammation or other stress conditions (Turrens, 2003; Collin, 2019; Juan et al., 2021).
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which suppresses NFκB binding to DNA and thus inhibits
transcription of additional inflammatory factors, including
cytokines and toll-like receptors (Weldon et al., 2007; Oh et al.,
2010; Block et al., 2012). Even in generally healthy individuals, daily
EPA and DHA supplementation reduced circulating IL-6 and TNF-
α concentrations by about 15% (Kiecolt-Glaser et al., 2011; Kiecolt-
Glaser et al., 2012). In mice genetically engineered to overproduce
EPA and DHA, endotoxin-stimulated blood TNFα concentrations
were 5-fold less than in normal mice, and hepatic gene expression
was reduced for several inflammatory cytokines (Schmocker et al.,
2007). Rats supplemented ω-3 PUFA via daily inhalation likewise
had less severe elevation of circulating inflammatory cytokines in
response to endotoxin (Kocherlakota et al., 2022). Biomedical
studies showed that ω-3 PUFA were particularly effective for
individuals with chronic inflammatory conditions, including type
2 diabetes, cancers, and cardiovascular diseases (Natto et al., 2019;
Xiao et al., 2022; da Silva et al., 2016; Koppelmann et al., 2021).
Moreover, DHA and EPA were shown to downregulate production
of reactive oxygen species and were effective scavengers of
superoxide anions (da Silva et al., 2016; Richard et al., 2008).
Indeed, supplementation of ω-3 PUFAs mitigated both systemic
inflammation and excessive production of reactive oxygen species in
acute and chronic disease states (Li et al., 2017; Alorabi et al., 2022;
Gortan Cappellari et al., 2022; Khan et al., 2022). Although few
studies have investigated ω-3 PUFA supplementation in IUGR
outcomes, extensive literature documenting their antioxidant and
anti-inflammatory functions indicate their potential for
ameliorating IUGR pathologies.

3.2 Inflammation and oxidative stress as
targets to improve IUGR outcomes

3.2.1 Potential for recovering growth
Inflammatory cytokines are dynamic regulators of myoblast

function and thus play a complex role in postnatal muscle
growth (Bodell et al., 2009; Alvarez et al., 2020). In vitro studies
found that proliferation rates increased when myoblasts were
incubated for short periods with low or moderate concentrations
of TNFα, IL-1β, or IL-6 (Otis et al., 2014; Alvarez et al., 2020). For
TNFα and IL-6 incubations, greater proliferation was coincident
with impaired differentiation (Langen et al., 2001; Alvarez et al.,
2020; Posont et al., 2022). Indeed, exposure to either cytokine
substantially reduced the early differentiation transcription factor,
myoD, and modestly reduced the later differentiation factor,
myogenin (Alvarez et al., 2020). However, nuclear expression of
the myoblast-specific proliferation factor, pax7, was also reduced by
these incubations (Alvarez et al., 2020). Furthermore, high
physiological concentrations of IL-6 actually diminished myoblast
proliferation, and incubation for longer periods of time dampened
the inhibitory effect on differentiation (Steyn et al., 2019). These
idiosyncratic outcomes were associated with the respective up or
downregulation of IL6R by moderate or substantial IL-6 exposure
(Steyn et al., 2019). Moreover, IL6R inhibition diminished not only
the effects of IL-6 but those of TNFα and IL-1β as well (Alvarez et al.,
2020). Nevertheless, all cytokine effects were lost when myoblasts
were incubated with NFκB inhibitors (Otis et al., 2014). Disruption
of the balance between myoblast proliferation and differentiation

clearly reduces the capacity for muscle hypertrophy. To illustrate,
intramuscular IL-6 infusion in young rats decreased muscle growth
by about 10% over 2 weeks (Bodell et al., 2009). This coincided with
greater gene expression for cytokine signaling components,
including TNFα, TNFR1, and atrogin-1 (Haddad et al., 2005;
Bodell et al., 2009). In TNFα-infused mice, an observed increase
in muscle catabolism was attributed to greater ubiquitin-dependent
proteolysis (Llovera et al., 1997). The combination of greater relative
muscle catabolism and decreased myoblast-facilitated muscle
hypertrophy associated with experimentally-elevated cytokine
exposure was comparable to the phenotype observed in the
IUGR fetus (Yates et al., 2014; Soto et al., 2017; Rozance et al.,
2018; Posont et al., 2022).

Like inflammation, oxidative stress impairs skeletal muscle
hypertrophy in similar but independent fashion (Jang et al.,
2020). Addition of even modest concentrations of reactive
oxygen species to myoblast incubations increased proliferation
(Sciancalepore et al., 2012) and inhibited differentiation (Langen
et al., 2002; Sandiford et al., 2014), regardless of the presence of
inflammatory cytokines. When primary mouse myoblasts were
engineered to overproduce H2O2, only about half as many
stained positive for myogenin, expressed myosin heavy chain
protein, or fused with other myoblasts (Sandiford et al., 2014).
Furthermore, accumulation of reactive oxygen species both directly
and indirectly resulted in muscle catabolism (Jang et al., 2020). In
addition to directly damaging cellular proteins, elevated reactive
oxygen species in antioxidant-deficient mice upregulated cysteine
proteases, which increased protein breakdown by the ubiquitin-
proteasome and autophagy-lysosome systems (Muller et al., 2006;
Jang et al., 2020). These mice were characterized by a reduction in
muscle mass of up to 50%, along with poor exercise performance
(Muller et al., 2006).

3.2.2 Potential for improving metabolism
Sustained exposure to elevated inflammatory cytokines or

reactive oxygen species dysregulates skeletal muscle glucose
metabolism and impairs insulin signaling and secretion. Brief
incubations with high physiological IL-6 concentrations increased
glucose uptake, oxidation, and incorporation into glycogen and also
reduced lactate production in primary human and rodent muscle, as
well as in culture-derived myotubes (Al-Khalili et al., 2006; Glund
et al., 2007; Gray et al., 2009; Cadaret et al., 2017). Glucose uptake
was stimulated at much lower IL-6 concentrations when its receptor
was added to the incubation in concert (Gray et al., 2009). In
primary rat muscle and myotubes, TNFα similarly elevated
glucose uptake and oxidation (Yamasaki et al., 1996; Cadaret
et al., 2017). Moreover, greater glucose oxidation was observed in
vivo when healthy young adults were infused with moderate
amounts of IL-6 over several hours (Carey et al., 2006). Some of
these studies indicated that cytokine regulation of muscle glucose
utilization was independent of insulin and its major pathway
components, IRS1 and Akt (Yamasaki et al., 1996; Glund et al.,
2007; Gray et al., 2009; Cadaret et al., 2017). Rather, cytokines
appeared to stimulate translocation of sequestered Glut4 glucose
transporters to the membrane by activating the kinase enzyme,
AMPK (Al-Khalili et al., 2006; Carey et al., 2006). In fact, longer
periods of cytokine exposure generally disrupted insulin signaling
(Rotter et al., 2003; Al-Khalili et al., 2006; Cadaret et al., 2017),
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although the direct effects on glucose utilization remained. This was
demonstrated particularly well by in vitro incubation of myoblast
cell lines with TNFα, which increased basal glucose uptake by almost
3-fold but reduced insulin-stimulated glucose uptake by about 75%
(Yamasaki et al., 1996; Grzelkowska-Kowalczyk and Wieteska-
Skrzeczynska, 2006; Remels et al., 2015). Infusion of TNFα into
mice resulted in a 50% reduction of insulin-stimulated hindlimb
glucose uptake but did not affect resting glucose uptake rates (Youd
et al., 2000). The primary target of cytokines within the insulin
signaling pathway appears to be the phospho-activation of Akt, a
hub that facilitates myriad insulin effects (Ji et al., 2022). Incubation
of primary rat muscle with moderate concentrations of TNFα or IL-
6 for as little as 2 h reduced insulin-stimulated Akt phosphorylation
by more than 50% (Cadaret et al., 2017). Similar deficits were
observed in culture-derived myotubes after 6-day incubation with
TNFα (Grzelkowska-Kowalczyk and Wieteska-Skrzeczynska, 2006)
and in primary bovine adipocytes after 12 h (Du et al., 2022). In
addition to disrupting insulin signaling, cytokines also impair
insulin stimulus-secretion coupling in pancreatic islets, although
this effect is quite dependent upon duration of exposure. In fact,
when mice were injected with IL-6, glucose-stimulated insulin
secretion was increased over the first 45 min, but this effect was
gone by 1 h (Ellingsgaard et al., 2011). Incubation of primary mouse
islets with IL-1β alone or in combination with IFNγ increased
glucose-stimulated insulin secretion for the first few hours but
reduced it after 20 h (Andersson et al., 2005). Likewise, 48-h
incubation with TNFα alone or together with IL-1β and IFNγ
had no effect on basal insulin secretion but completely inhibited
glucose-stimulated insulin secretion in primary rat islets and in INS-
1 rat β cells (Hadjivassiliou et al., 1998; Zhang et al., 2022). This
combination of cytokines also reduced insulin content in primary
human islets after 48 h (Hadjivassiliou et al., 1998). The 40%
reduction in glucose-stimulated insulin secretion and 25%
reduction in pyruvate-stimulated insulin secretion observed in
INS-1 rat β cells after 24 h with IL-1β and IFNγ coincided with
reduced indicators of oxidative metabolism, the facilitating
mechanism for β cell stimulus-secretion coupling (Rozance et al.,
2007; Barlow et al., 2018).

Like cytokines, in vitro exposure of primary rat muscle to
reactive oxygen species for less than 1 h increased glucose uptake
by up to 48% and glycogen synthase activity by about 20% by
enhancing canonical insulin signaling (Kim et al., 2006; Higaki
et al., 2008). In fact, concurrent exposure to insulin and reactive
oxygen species for 20 min had an additive effect on glucose
uptake (Higaki et al., 2008). Short-term oxidative stress
reflects the normal microenvironment of muscle and is not
particularly harmful, but sustained exposure becomes
deleterious (Higaki et al., 2008; Diamond-Stanic et al., 2011).
Incubation of rat muscle with high concentrations of reactive
oxygen species ceased stimulating basal glucose uptake after 6 h
(Diamond-Stanic et al., 2011). Insulin-stimulated glucose uptake
and Akt phosphorylation were hindered by reactive oxygen
species after only 2 h (Diamond-Stanic et al., 2011). The
adverse effects of longer exposure on insulin signaling
components were mediated in part by p38 MAPK and were
evident even at modest reactive oxygen species concentrations
(Archuleta et al., 2009; Diamond-Stanic et al., 2011).
Interestingly, reactive oxygen species did not appear to affect

function of primary rat or human islets after 48 h of incubation
(Hadjivassiliou et al., 1998).

Inflammatory cytokines help to regulate lipid homeostasis and
metabolism by skeletal muscle in coordination with their effects on
muscle glucose utilization. Infusion of IL-6 into healthy individuals
for 3 hours increased total fatty acid oxidation rates during and for
several hours after the infusion period (van Hall et al., 2003). In
primary rat muscle, 1-h incubations with high IL-6 concentrations
increased palmitate oxidation but not deposition, whereas 1-h
incubation with TNFα increased deposition but not oxidation
(Bruce and Dyck, 2004). Conversely, 3-h incubation of culture-
derived human myotubes with IL-6 increased palmitate uptake and
oxidation rates (Al-Khalili et al., 2006). Greater oxidation occurred
in the presence and absence of insulin and was mediated primarily
by AMPK pathways (Bruce and Dyck, 2004; Al-Khalili et al., 2006).
To facilitate greater lipid utilization by muscle, cytokines
concurrently mobilize lipid deposits from adipose and other
tissues. This was demonstrated by infusions of moderate or high
concentrations of IL-6 into humans, both of which elevated
circulating NEFA and triglycerides (van Hall et al., 2003).
Moreover, blocking IL-6 signaling by administering a long-lasting
IL6R antagonist reduced indicators of fatty acid mobilization in
adult men during various degrees of physical activity and across a
range of body mass indices (Trinh et al., 2021). In primary rat
muscle, IL-6 stimulated lipid mobilization in part by disrupting
insulin’s lipogenic effects (Bruce and Dyck, 2004). Unlike IL-6,
TNFα had no impact on endogenous or exogenous skeletal
muscle fatty acid oxidation (Bruce and Dyck, 2004). However,
several in vitro studies have shown that even modestly elevated
TNFα concentrations stimulated lipolysis (Ryden et al., 2004; Lee
and Fried, 2012; Du et al., 2022). This was recapitulated by 7-day
TNFα infusion into mice, which elevated their circulating
triglycerides and NEFA concentrations (Li L. et al., 2009).
Moreover, both glycerol and NEFA were released from
adipocytes at greater rates when stimulated with TNFα in vitro
(Green et al., 2004; Ryden et al., 2004). TNFα-mediated lipolysis was
facilitated in large part by downregulation of perilipin, a protein that
mediates hormone-sensitive lipase activity in lipid droplets (Morin
et al., 1995; Wu et al., 2004). Studies in rats and cultured adipocytes
found that TNFα also reduced activity and expression of lipoprotein
lipase, an enzyme that breaks down circulating lipoproteins for
deposition into adipocytes (Morin et al., 1995; Wu et al., 2004). The
increased production of reactive oxygen species in cytokine-
stimulated adipocytes further contributed to lipolysis (García
et al., 2021), an effect that was dampened by concurrent
inhibition of superoxide production in culture (Krawczyk et al.,
2012; Issa et al., 2018). The impact of reactive oxygen species on
adipocyte lipolysis coincided with phospho-activation of hormone
sensitive lipase (Krawczyk et al., 2012; Issa et al., 2018).

3.3 Prenatal and perinatal supplementation
of ω-3 PUFA

3.3.1 Potential benefits
Benefits of ω-3 PUFA supplementation during critical windows

for fetal development on growth and metabolic outcomes have been
documented in humans and animals. Meta-analyses of global health
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records and clinical trials indicated that dietary ω-3 PUFA
supplementation over the 2nd half of gestation was associated
with reductions of up to 73% in perinatal mortality rates as well
as fewer neonatal intensive care stays (Saccone et al., 2015; Saccone
et al., 2016; Ali et al., 2017; Middleton et al., 2018). The supplements
were also associated with lower incidence of IUGR in many world
populations (Cetin et al., 2002; Agostoni et al., 2005; Fares et al.,
2015; Saccone et al., 2015; Gholami et al., 2020). In one prime
example, DHA supplementation in primigravidae women in Mexico
reduced IUGR rates by half (Ramakrishnan et al., 2010). Better
pregnancy outcomes coincided with positive effects on
uteroplacental tissues, as clinical trials found that ω-3 PUFA
supplements increased uterine and umbilical blood flow and
reduced placental apoptosis (Wietrak et al., 2015; Ali et al.,
2017). Moreover, dietary ω-3 PUFA supplementation in pregnant
rats reduced indicators of placental oxidative stress and increased
placental and fetal mass (Jones et al., 2013). Even direct infusion of
EPA into the bloodstream of IUGR fetal sheep benefitted placental
function, as maternofetal glucose and O2 gradients were improved
(Beer et al., 2021). Importantly, maternal ω-3 PUFA supplements
directly benefit the fetus as well as the placenta. Clinical trials found
that IUGR fetuses and newborns were deficient in ω-3 PUFA due to
impaired de novo production and that maternal supplementation
was effective in increasing circulating concentrations in the fetus/
newborn (Cetin et al., 2002; Agostoni et al., 2005; Llanos et al., 2005;
Fares et al., 2015; Wietrak et al., 2015). These findings were
recapitulated in rats, where IUGR-born neonates were found to
be DHA-deficient, but maternal supplementation increased
circulating DHA concentrations in these offspring by 3.25-fold
(Morand et al., 1981; Joss-Moore et al., 2010). In pigs, maternal
ω-3 PUFA supplementation increased DHA and EPA and reduced
ω-6:ω-3 PUFA ratios in fetal blood and skeletal muscle near term,
which coincided with greater blood glucose, less cholesterol, and a
reduction in the incidence of IUGR from 22% to 14% (Heras-Molina
et al., 2021; Heras-Molina et al., 2022). These benefits persisted after
birth, as weaning-aged pigs born to ω-3 PUFA-supplemented sows
had less circulating total cholesterol, HDL-C, and LDL-C as well as
greater total ω-3 PUFA content and lower ω-6:ω-3 PUFA ratios in
adipose, muscle, and liver tissues (Heras-Molina et al., 2020). When
pregnant rodents carrying IUGR pregnancies were supplemented
DHA, birthweight and neonatal growth of their offspring were
improved without increased adiposity (Bagley et al., 2013; Velten
et al., 2014). Offspring from dams supplemented DHA or ω-3
PUFA-rich fish oil had greater circulating adiponectin, smaller
adipocytes, and adipose tissue that expressed more PPARγ,
adiponectin, and adiponectin receptors R1 and R2 (Bringhenti et al.,
2011; Bagley et al., 2013; Ghnaimawi et al., 2022). Supplementing
pregnant cows with ω-3 PUFA (delivered as Ca2+ salts for ruminal
protection) during late gestation increased circulating DHA in the dam
by 5-fold, and calves born to supplemented cows exhibited 6%–10%
better average daily gain in the feedlot (Marques et al., 2017). At harvest,
these calves produced marginally larger carcasses and loin muscles with
~10% greater marbling (Marques et al., 2017). In sheep, maternal
supplementation of ω-3 PUFA Ca2+ salts for the final trimester of
gestation had no adverse effects on dam or fetus and increased blood
concentrations of EPA and DHA in the ewe by ~40% and in the
newborn lamb by ~50% (Coleman et al., 2018; Rosa Velazquez et al.,
2020; Rosa-Velazquez et al., 2022). Greater fetal ω-3 PUFA availability

appeared to be particularly beneficial to IUGR muscle and pancreatic
islets. Inmice, protein content for the insulin receptor and themyogenic
transcription factor, myoD, as well as several genes regulating
myogenesis were upregulated in skeletal muscle of newborn pups
born to ω-3 PUFA-supplemented dams (Ghnaimawi et al., 2022).
Moreover, 5-day infusion of EPA directly into IUGR fetal sheep
improved growth of several muscles, restored normal fiber type
proportions in the semitendinosus, and modestly improved deficits
inmuscle glucose uptake and oxidation (Lacey, 2021; Lacey et al., 2021).
It also recovered about 50% of the deficit in glucose-stimulated insulin
secretion (Lacey, 2021; Lacey et al., 2021). These benefits coincided with
anti-inflammatory indicators, as EPA infusion ameliorated the elevated
circulating TNFα concentrations and reduced total circulating white
blood cells observed in IUGR fetal sheep (Lacey, 2021; Lacey et al.,
2021). Likewise, maternal ω-3 PUFA supplementation reduced
oxidative stress in brain tissues of fetal rats and resolved the
heightened macrophage invasion observed in lung tissues of IUGR
newborn mice pups (Velten et al., 2014).

Postnatal supplementation of ω-3 PUFA to IUGR-born
offspring is also effective in improving metabolic deficits. For
example, IUGR-born rats exhibited 50% reductions in circulating
triglycerides and 33% reductions in blood urea nitrogen when
nursing foster dams that were fed diets high in ω-3 PUFA
(i.e., supplemented to offspring via milk) (Voggel et al., 2022).
Likewise, directly feeding ω-3 PUFA-enriched diets or
supplementing ω-3 PUFA-rich fish oil to IUGR-born juvenile
rats partially resolved their hyperlipidemia and reduced their
adiposity (Wyrwoll et al., 2006; Bringhenti et al., 2011; Chen
et al., 2016; Chicco et al., 2016). It also decreased adipocyte size
and leptin secretion, ameliorated inflammatory markers in adipose
tissues, and resolved elevated TNFα in circulation (Wyrwoll et al.,
2006; Bringhenti et al., 2011; Mark et al., 2014). Postnatal fish oil
supplementation improved HOMA-estimated insulin sensitivity,
glucose tolerance, and markers of systemic inflammation in
IUGR-born rats (Bringhenti et al., 2011; Chen et al., 2016).

3.3.2 Potential limitations
As of this writing, fish oil and other ω-3 PUFA supplements are

considered safe for pregnant women by the American Pregnancy
Association, which is supported by several Cochrane meta-analyses
(Kar et al., 2016; Middleton et al., 2018; Wieland, 2019). Challenges
regarding the use of ω-3 PUFA as dietary supplements in livestock
include post-ingestive feedback (Freidin et al., 2011), bioavailability in
ruminants (Chikunya et al., 2004), and meat sensory traits when fed at
high concentrations (Burnett et al., 2020). Reduced palatability and
ruminal microbiome changes associated with fish oil can cause animals
to eat less when too much is included in a dietary ration, and livestock
studies have indicated that the threshold limit is around 2% of the diet.
Indeed, inclusion of fish oil at 1% of the diet in dairy cows did not affect
ad libitum intake, but inclusion at 2% and 3% reduced intake by up to
11% and 32%, respectively (Donovan et al., 2000; Whitlock et al., 2002;
Alizadeh et al., 2012; Kairenius et al., 2018). Although milk yield was
increased by dietary fish oil at 1% and 2% in these cows, the large drop
in dietary intake at 3% caused milk yield to fall (Donovan et al., 2000).
Calves fed milk replacer enriched with 0.5% fish oil maintained their
intake frombirth to 2 months of age, which facilitated amodest increase
in their average daily gain (Melendez et al., 2022). Lambs fed Ca2+ salts
of ω-3 PUFA at 1.5% also maintained dry matter intake (Carranza
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Martin et al., 2018). In Angus feedlot steers, dry matter intake was
reduced by dietary inclusion of fish oil at 2.4% but not at 0.8% or 1.6%
(Shingfield et al., 2010). Limits on dietary inclusion could be
problematic for ruminant livestock, as bioavailability of ω-3 PUFA is
reduced by the markedly high rates of microbial biohydrogenation
(i.e., saturation of previously unsaturated fatty acids) in the rumen
(Jenkins et al., 2008). To illustrate, 93% of EPA and DHA from
unprotected sources were absorbed unmodified across the intestinal
wall of the rat (Chen et al., 1985), but as little as 7% were absorbed
unmodified in cows (Dewhurst and Moloney, 2013). Similar outcomes
were created by the rumen microbiome in sheep, where
biohydrogenation rates were upward of 75% (Chikunya et al., 2004;
Jenkins et al., 2008). Processing techniques for ω-3 PUFA-rich feed
ingredients like flaxseed increased bioavailability of EPA by 30% and
totalω-3 PUFAby 23% in lambs (Kronberg et al., 2012). In young goats,
heat treatment of linseed oil diets increased DHA bioavailability by 62%
and total ω-3 PUFA bioavailability by 19%, which corresponded with
greater liver and adipose tissue concentrations (Wang et al., 2019).
Freeze-drying of a microalgae-based supplement reduced ruminal
biohydrogenation of EPA in lambs from 80% to about 45% (Vítor
et al., 2021). Supplements utilizing Ca2+ salts of ω-3 PUFA helped
maintain or increase bioavailability through ruminal passage without
producing off-target effects such as reduced intake and milk fat
(Castañeda-Gutiérrez et al., 2007; Oyebade et al., 2020). It is worth
noting that even unprotected dietary sources still deliver meaningful
amounts of absorbableω-3 PUFA in ruminants. For example, inclusion
of 1.1% fish oil in a silage-based diet for dairy cows increased the
amount of EPA and DHA bypassing the rumen microbiome by 2-fold
and 3-fold, respectively, despite 78% and 83% biohydrogenation rates
(Kairenius et al., 2018). In meat animals, ω-3 PUFA supplementation
strategiesmust consider the effects on product appearance and shelf life.
Like all fatty acids, ω-3 PUFA are prone to oxidation that can discolor
the surface of meat products (Burnett et al., 2020). Steers fed diets with
3% fish oil had 1.5-fold–2-fold greater carcass EPA andDHA content at
harvest (Vatansever et al., 2000). Hamburger patties from these steers
reached unacceptable discoloration 1–3 days sooner than normal and
cooked sirloin scored about 11% lower in overall liking, despite no
reduction in flavor score (Vatansever et al., 2000). It should be noted
that most of the individual fatty acids measured in this study were
increased in meat from fish oil-supplemented animals and that linseed
oil supplementation in the same study increased ω-3 PUFA content
without the same adverse sensory effects. Thus, adverse sensory traits
may be attributable more to the use of a high volume of fish oil as a
source than to the increase in ω-3 PUFA per se. Indeed, palatability and
tolerability of German sausage products were not affected by
enrichment with ~1% purified EPA, DHA, and α-linolenic acid
(Köhler et al., 2017). Nevertheless, fish products are the most
common source for ω-3 PUFA supplements in livestock (Burnett
et al., 2020), and lamb cuts from animals fed diets with 9% fish
meal for 6 weeks were scored ~9% lower in juiciness by a trained
sensory panel, although flavor, aroma, and palatability were not affected
(Ponnampalam et al., 2002). Likewise, meat from lambs fed diets
enriched with 1.5% fish oil for 6 weeks was scored 14% lower in
overall palatability, despite no reduction in individual scores for flavor,
aroma, or juiciness and no issues with discoloration or shelf life
(Ponnampalam et al., 2001; Ponnampalam et al., 2002). Because of
the potential for reduced meat sensory traits, investigation into the

benefit of withdrawing ω-3 PUFA supplements prior to harvest may be
warranted.

4 Summary

Fetal IUGR is a common condition in humans and animals that
impacts metabolic function and growth capacity before and after birth. It
ismost often associated with prenatal stressors during the critical window
for placental development, which functionally and structurally stunts
placental tissues. Placental insufficiency limits O2 and nutrient delivery to
the growing fetus, which by late gestation can no longer keep upwith fetal
requirements for growth. Consequently, the fetus undergoes a prolonged
period of progressive hypoxemia and hypoglycemia that in turn increases
fetal adrenergic and inflammatory tones and induces oxidative stress.
These changes drive nutrient-sparing adaptations, which manifest in
asymmetric fetal growth restriction and thrifty metabolic function that
persist postnatal. Mechanisms for these adaptations include reduced
adrenergic responsiveness, enhanced inflammatory sensitivity, and
increased oxidative stress. IUGR adaptations aid fetal survival, but
after birth they increase health risks in humans and reduce growth
efficiency in livestock. Enhanced inflammatory sensitivity in IUGR
skeletal muscle and other tissues appears to be a key underlying
factor in growth and metabolic pathologies. Consequently, anti-
inflammatory nutraceuticals such as ω-3 PUFA have yielded promise
as potential supplemental strategies for recovering health and
performance outcomes in IUGR fetuses and offspring. However,
several potential factors must be considered, including issues of
palatability, bioavailability, and potential off-target effects.
Nevertheless, initial proof-of-concept studies indicate that dietary ω-3
PUFA supplements could provide the basis for recovering growth and
metabolic function in IUGR-born individuals.
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