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Since 2011, ecological operation trials of the Three Gorges Reservoir (TGR) have
been continuously conducted to improve the spawning quantity of the four major
Chinese carp species below the Gezhouba Dam. In particular, exploring the
effects of short-term water velocity stimulation on ovarian development in
grass carp (Ctenopharyngodon idellus) is essential to understand the response
of natural reproduction to ecological flows.We performed ovary histology analysis
and biochemical assays among individuals with or without stimulation by running
water. Although there were no obvious effects on the ovarian development
characteristics of grass carp under short-term water velocity stimulation,
estradiol, progesterone, follicle-stimulating hormone (FSH), and
triiodothyronine (T3) concentrations were elevated. Then, we further explored
the ovarian development of grass carp under short-term water velocity
stimulation by RNA sequencing of ovarian tissues. In total, 221 and 741 genes
were up- or downregulated under short-term water velocity stimulation,
respectively, compared to the control group. The majority of differentially
expressed genes (DEGs) were enriched in pathways including ABC
transporters, cytokine-cytokine receptor interaction, ECM-receptor interaction,
and steroid hormone biosynthesis. Important genes including gpr4, vtg1, C-type
lectin, hsd17b1, cyp19a1a, cyp17a1, and rdh12 that are involved in ovarian
development were regulated. Our results provide new insights and reveal
potential regulatory genes and pathways involved in the ovarian development
of grass carp under short-termwater velocity stimulation, whichmay be beneficial
when devising further ecological regulation strategies.

KEYWORDS

grass carp, water velocity, ovary, hormones, transcriptome

Introduction

Construction of hydraulic engineering not only significantly alters the natural hydrologic
regime and water quality in the upstream and downstream of the dam (Poff and Schmidt,
2016; Chen et al., 2020), but also has undesirable ecological effects on aquatic species (Stone,
2016), and finally reduces the aquatic biodiversity (Liu et al., 2021). As the most severely
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affected biota at the top of the aquatic food chain, fish are often
chosen as indicator species for determining the health status of the
riverine ecosystems (Gao et al., 2009; She et al., 2023). Dam
operations affect the spawning activity of native fish species and
thus threaten aquatic populations and communities (Barbarossa
et al., 2020; Mouchlianitis et al., 2021), and have been reported on
rivers all over the world, such as the Madeira River, the Snake River,
and the Colorado River in foreign basins (Finch et al., 2015; Cella-
Ribeiro et al., 2017; McClure et al., 2020), as well as the Yangtze
River, the Jinsha River, the Pearl River, the Han River, the Gan River,
and the Lancang-Mekong River in domestic basins (Zhang C. et al.,
2019; Zhang P. et al., 2019).

Fish reproduction is likely triggered by a variety of
environmental factors, including flow velocity, water temperature,
photoperiod, and dissolved oxygen (King et al., 2016; Buddendorf
et al., 2017; Fellman et al., 2019). These environmental factors have a
complex impact on fish spawning behaviors and gonadal
development through adjusting the biological process of hormone
synthesis and secretion. Among these environmental factors, water
flow velocity is a key environmental factor that affects spawning and
fertilization for fishes delivering drifting eggs (Lechner et al., 2014).
Moreover, water flow velocity plays a crucial role in determining
nutrient retention and oxygen delivery during fish spawning
(McDonnell, 2000). Additionally, water flow velocity also affects
gonadal development. Stimulated by water flows, fish generate
impulses into the hypothalamus through sensory organs, and
stimulate gonadotropin-releasing hormone (GnRH) release that
direct acts on GnRH nerve terminals (Liu et al., 2021). Besides,
the weakening of the water flow stimulus will lead to a decline in
gonadal development among fish, resulting in a reduction of
spawning quantity in watersheds, and potentially causing long-
term cumulative differences in the population structure of fish
stocks (Zhang W. et al., 2019).

The four major Chinese carp species, including grass carp
(Ctenopharyngodon idellus), silver carp (Hypophthalmichthys
molitrix), bighead carp (Hypophthalmichthys nobilis), and black carp
(Mylopharyngodon piceus), play important roles in Chinese aquaculture
and capture fisheries (Cao et al., 2015). A spawning site fromYichang to
Chenglingji, situated at the middle reaches of the Yangtze River, is one
of the most important natural reproduction zones of these Chinese
carps, which accounting for 42.7% of the total spawning capacity along
the river (Guo et al., 2011; Li et al., 2013a). However, in recent decades,
due to the remarkable changes in hydrological conditions caused by the
impoundment of the Three Gorges Reservoir (TGR), spawning
behaviors and sexual maturation process of the four carp species
have been severely hindered (Chen et al., 2021). In 2003, the
number of fish eggs and larvae was only 10% of that in 2002, when
the TGR began operation (Xie and Chen, 2001; Li et al., 2013b).
Previous studies showed that water flow velocity suitable for grass
carp spawning and sexual maturation mainly ranged from 0.33 to
1.50 m/s (Lin et al., 2022). Thus, providing essential ecological flows is
widely recognized as an effective means of maintaining ecological
integrity and restoring habitats for the spawning of major fish
species in rivers (Stamou et al., 2018; Yang et al., 2019). However,
the physiological mechanism of the response of natural reproduction to
ecological flows is still unclear.

In this study, we used sexually mature female grass carp to
conduct laboratory experiments to explore the effect of flow velocity

on gonadal development in fish. The objective of the present study
was to understand how flow velocity affect the gonadal development
of grass carp. Specifically, we sought to a) explore the effect of short-
term flow velocity on biochemical response, and b) analyze the
possible regulatory mechanism of short-term flow velocity on the
gonadal development of female grass carp. Our findings will provide
a scientific basis for riverine ecosystem protection of the Yangtze
River.

Materials and methods

Fish

Sexually mature females (n = 30, body length of 70.56 ± 3.13 cm,
body weight of 5.16 ± 0.85 kg) and males (n = 30, body length of
68.40 ± 3.03 cm, body weight of 4.45 ± 0.70 kg) of grass carp were
collected fromTengda Ecological Agriculture Development Co., Ltd.
in Zhijiang City, Hubei Province, China. The grass carps were
domesticated in Chinese Sturgeon Research Institute for 2 weeks,
kept in a recirculating aquaculture system under controlled
temperature conditions (21°C ± 0.5°C) with constant aeration,
and fed in excess duckweed twice a day prior to the experimental
trials.

Experimental design

The experiment was performed in 20,000 L PVC circular tanks.
Sixty grass carps were randomly divided into three groups with
10 females and 10 males, including the water velocity stimulation
group, the hormone injection group, and the control group, labelled
ZS, JS, and NS, respectively. Previous studies showed that suitable
water flow velocity for grass carp spawning and sexual maturation
mainly ranged from 0.33 to 1.50 m/s. However, even though
ecological flows are provided, water mobility will weaken
significantly in the middle and lower reaches of the Yangtze
River. It was found that the flow velocity is rarely exceeding
0.5 m/s from April to June (Zhou et al., 2009; Wang et al., 2016;
Liu et al., 2021). In some reservoir areas, the flow velocity cannot
even reach 0.2 m/s (Xu et al., 2017). Therefore, we set a water
velocity of 0.5 m/s in the ZS group. In the JS group, the females were
injected with 2 mg/kg domperidone and 2.5 μg/kg LHRH-A2, at the
base of the pectoral fin.

After 3 h, females were selected for sampling, including blood
and ovaries. To avoid catching stress, fish were anesthetized by
immersion with benzocaine (200 mg/L) (Geraylou et al., 2012;Wang
et al., 2015), and then killed by a sharp blow to the head based on a
previously described procedure (Hultmann et al., 2012). Blood
samples were collected quickly from the caudal vein of each fish,
then centrifuged at 3,000 g for 15 min at 4°C. The obtained serum
samples were then transferred to −80°C for storage until enzyme
linked immunosorbent assay (ELISA). Ovary tissues were also
collected, and some of them were quickly fixed in 4%
paraformaldehyde (PFA) in phosphate-buffered saline (PBS) at
room temperature for 24 h for histological sections, and other
ovaries were rapidly frozen in liquid nitrogen, then stored
at −80°C until ELISA and RNA extraction.

Frontiers in Physiology frontiersin.org02

Shu et al. 10.3389/fphys.2023.1248999

https://www.frontiersin.org/journals/physiology
https://www.frontiersin.org
https://doi.org/10.3389/fphys.2023.1248999


Histological analyses (hematoxylin and eosin
(H&E) staining)

The fixed ovaries were dehydrated in graded ethanol solutions,
and infiltrated with xylene. The sectioning and staining procedures
were performed as described in a previous study (Lau et al., 2016).
Briefly, the samples were embedded and processed for paraffin
sectioning using a Leica RM2235 microtome (Leica Biosystems,
Germany). Paraffin sections of 5 µm in thickness were mounted on
slides, deparaffinized, rehydrated, and washed with ultrapure water.
After staining with H&E, dehydrated, and mounted, the sections
were observed and imaged by a Nikon Eclipse Ni-U microscope
(Nikon, Japan). Scale bars are provided in the lower right corner of
each image.

Hormones measurement using ELISA

The concentrations of testosterone, estradiol, progesterone,
and 17α,20β-dihydroxy-4-pregnen-3-one (DHP), as well as
triiodothyronine (T3), thyroxine (T4), follicle-stimulating
hormone (FSH), and luteinizing hormone (LH) in serum and
ovaries were measured using commercial ELISA kits (mlbio,
Shanghai). Briefly, 300 µL of serum was diluted to 500 µL with
PBS, while 0.1 g ovary samples were isolated and homogenized in
1 mL PBS in a TGrinder H24R Tissue Homogenizer (TIANGEN,
China). Following homogenization, the hormones were extracted
with an organic solvent four times according to the manufacturer’s
instructions. The layers were allowed to separate by vortex and
centrifugation. Then the organic phase was transferred to a fresh
tube and evaporated by heating to 30°C under a gentle stream of
nitrogen. Finally, the extracts were dissolved in 200 µL ELISA buffer
and the hormone concentrations were measured according to the
manufacturer’s instructions.

Transcriptome analyses

The ovary samples from grass carp were isolated and
homogenized in a TGrinder H24R Tissue Homogenizer
(TIANGEN, China), and total RNA was extracted by TRIzol
reagent (Ambion, America) following the manufacturer’s
instructions. RNA concentration was determined using
NanoDrop One (Thermo Scientific, America), and the integrity
and quality were assessed by RNA denaturing gel electrophoresis.
High-quality RNA samples were selected for library construction.
Using an Illumina NovaSeq 6000 system, RNA-Seq reads were
generated by sequencing. Fastp (version 0.19.7) was used to
generate clean reads. Then de novo assembly of clean reads was
conducted with Trinity software (v2.6.6) and all assembled full-
length sequences were named unigenes. All the unigenes were
predicted and used for Blastx search and annotation against the
NR, NT, KOG, SwissProt, PFAM, KEGG, and GO databases. After
assembly, gene expression abundance was calculated using the
Fragments Per Kilobase of transcript per Million mapped reads
(FPKM) values. Differential expression analysis was performed
using the DESeq2 package (v1.20.0) with a log2 fold change (FC)
of 1.5 and a p-value cutoff of 0.05 (|log2FC|≥1.5, p < 0.05). GO

function enrichment analysis and KEGG pathway enrichment
analysis of differential gene sets were implemented using the
Bioconductor R package clusterProfiler (v 3.18.1).

Quantitative real-time PCR (qRT-PCR)

Independent RNA samples were extracted and used for cDNA
synthesis for qRT-PCR to confirm the transcriptome results. RNA
template with a content of 1.5 μg was used for reverse transcription
to synthesize cDNA using the EasyScript® One-Step gDNA Removal
and cDNA Synthesis SuperMix kit (TransGen Biotech, Beijing)
according to the manufacturer’s guidelines. All primers were
designed using Primer-BLAST in the National Center for
Biotechnology Information (NCBI), and the sequences are listed
in Table 1. The primers for qRT-PCR were validated by agarose gel
electrophoresis and DNA sequencing of PCR products. For
amplification, the TransStart® Tip Green qPCR SuperMix
(TransGen Biotech, Beijing) and StepOnePlus™ real-time system
(ABI, America) were used. All mRNA levels were calculated as the
fold expression relative to the housekeeping gene, β-actin, ef1a, and
gapdh and expressed as a fold change compared to the control
group. Each sample was run in triplicate repeats and data analysis
was performed using the ΔΔCt method (Schmittgen and Livak,
2008).

Statistical analysis

Statistical analysis was performed with GraphPad Prism
8.0 software (GraphPad software, America). All results were
presented as mean ± standard deviation (SD) in each
experimental group. Differences were determined using one-way
ANOVA followed by Fisher’s least significant difference (LSD) test
for multiple comparisons. For all statistical comparisons, p <
0.05 was considered statistically significant.

Results

Histopathology of ovary

To determine the maturation level of grass carp gonads, we
examined dissected ovaries by histological sections with H&E
staining. Well-differentiated ovaries were observed in all groups,
occupied by many full-grown follicles with normal reproductive
characteristics (Figure 1). After short-term water velocity
stimulation and the hormone injection, respectively, the
development characteristics were similar to those of the control
group. Specifically, the yolk filled the ovaries. Oocytes were easily
identified by their large spherical nucleoli, each of which contained
numerous nucleoli and a large cytoplasmic region bordered by a
visible cell membrane. Each oocyte was a different size and was
surrounded by a thin follicular cell layer. Most follicular cells
contained ovoid nuclei and were stained with black, indicating
that the fish used was in the pre-spawning period. No substantial
effect was observed in the histological sections of the JS and ZS
groups when compared to the NS group.
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Measurement of hormone concentrations

The concentrations of several important sex steroids were
measured in female grass carp. Serum and ovary testosterone
concentrations did not differ among the three groups (Figures
2A,E). Serum and ovary estradiol, progesterone, as well as DHP
concentrations were significantly higher in the JS group than those
in the NS group (Figures 2B–D,F–H). However, only ovary estradiol
and progesterone concentrations in the ZS group were significantly
elevated (Figures 2F,G). Serum estradiol, progesterone, and DHP
concentrations, as well as ovary DHP concentration in the ZS group

were slightly increased, although there were not statistically
significant (Figures 2B–D,H).

Meanwhile, we examined serum and ovary gonadotropins, FSH
and LH, in female grass carp. Both serum and ovary FSH and LH
concentrations in the JS group were significantly increased compared to
the NS group (Figures 3A,B,E,F). However, only enhanced serum and
ovary FSH concentrations were observed in the ZS group (Figures
3A,E). LH concentrations were also compared, but did not show any
significant differences. (Figures 3B,F).

Serum and ovary T3 and T4 concentrations were also evaluated
in female grass carp. We observed that serum and ovary

TABLE 1 Primer Sequences Used for qRT-PCR Analysis.

Gene Directiona Primer sequences (5′to 3′) Primer length (bpb) Amplicon length (bp)

cyp17a1 F TGAGGAACACAAGGTGACCTACAG 24 109

R GACATCACGAGTGCTGCTG 19

hsd17b1 F GGCACCATCCGCACCA 16 111

R CTCGTTGAATGGCAAACCCT 20

slc12a2 F GTTGCTGAAGACCTCCGTCA 20 208

R TATCAAGTCCCTCTCGCAGT 20

vtg1 F GTGATGCACCTGCCCAGATTG 21 159

R CCTTGAACTGAGACCAGATAGCCTC 25

β-actin F TGGACTCTGGTGATGGTGTGAC 22 247

R GAGGAAGAAGAGGCAGCGGTTC 22

ef1a F AAAATTGGCGGTATTGGAAC 20 274

R TGATGACCTGGGCAGTGAA 19

gapdh F CACCCATGGCAAGTACAAGG 20 151

R GACACCGGTAGACTCCACAA 20

aF, forward; R, reverse.
bbase pairs.

FIGURE 1
Histological sections of the ovarian status of grass carp. (A) NS group. (B) JS group. (C) ZS group. PG, primary growth follicle; PN, perinucleolar
follicle; PV, previtellogenic follicle; FG, full-grown follicle; N, nucleus; Y, yolks; FC, follicle cells.
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T3 concentrations in the JS and ZS groups were significantly higher
than that in the NS group while elevated serum and ovary
T4 concentrations were only observed in the JS group (Figures
3C,D,G,H).

Overview of RNA-Seq

To identify the underlying molecular signaling pathways of
short-term water velocity stimulation on the ovary
transcriptional profile in grass carp, nine mRNA libraries were

constructed and sequenced from NS, JS, and ZS ovary tissues
using the Illumina NovaSeq 6000 system. All datasets from the
Illumina sequencing platform are available in the NCBI Short
Read Archive (SRA) database with the accession number
(PRJNA977722). The main sequencing characteristics are
listed in Table 2. A total length of 206,508,378 bp raw reads
were obtained from the nine samples, and an average length of
21,593,012 bp clean reads were obtained from each sample after
strict filtering. The Q20, Q30, and mapping rates for each group
were within 96.90%–97.31%, 92.29%–93.18%, and 83.94%–

85.97%, respectively, indicating that sequencing quality was

FIGURE 2
The sex steroid hormones measurements. Serum concentrations of testosterone (A), estradiol (B), progesterone (C), and DHP (D) in the NS, JS, and
ZS groups. Ovary concentrations of testosterone (E), estradiol (F), progesterone (G), and DHP (H) in the NS, JS, and ZS groups. The letters in the bar charts
represent significant differences.

FIGURE 3
The gonadotropins and thyroid hormones measurements. Serum concentrations of FSH (A), LH (B), T3 (C), and T4 (D) in the NS, JS, and ZS groups.
Ovary concentrations of FSH (E), LH (F), T3 (G), and T4 (H) in the NS, JS, and ZS groups. The letters in the bar charts represent significant differences.
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acceptable for further analysis. Totally, 37,976 unigenes were
acquired from de novo assembly. All unigenes were annotated by
seven databases, including NR, NT, KOG, SwissProt, PFAM,
KEGG, and GO databases (Table 3).

Differentially expressed genes (DEGs) and
pathway analysis

RNA sequencing analysis showed that the transcriptome profiles
of JS and ZS groups were distinct from the NS group. Out of
21,248 annotated genes, we identified 561 differentially regulated
genes between the JS and NS groups. Among the 561 regulated
genes, 287 genes were highly expressed in the NS group while
274 genes were upregulated in the JS group (Figures 4A,C).
Compared with expression levels in the NS group, 962 genes

were differentially expressed in the ZS group, of which 221 and
741 were up- or downregulated in the ovary of treated fish (Figures
4B,C). Genes includingG protein-coupled receptor 4 (gpr4), caspase a
(caspa), solute carrier family 12, member 2 (slc12a2), sterile alpha
motif domain containing 9 like (samd9l), SRY-box transcription
factor 4 (sox4), forkhead box B1 (foxb1), collagen type IV alpha
1 chain (col4a1), early growth response 1 (egr1), vitellogenin 1 (vtg1),
and cytochrome P450 family 17, subfamily A member 1 (cyp17a1)
were significantly regulated (Table 4). These results suggest that
short-term water velocity stimulation had a significant effect on
transcription in the ovary.

We evaluated DEGs between the NS and JS groups, as well as the
NS and ZS groups by GO and KEGG functional enrichment
analyses. GO analysis revealed that genes from different signaling
networks were significantly affected in the JS and ZS groups
compared to the NS group. The important gene ontology

TABLE 2 Basic information of mRNA sequencing data of all samples in this study.

Sample Raw reads Clean reads Q20 (%) Q30 (%) GC content (%) Mapping ratio (%)

JS1 23,250,235 21,795,802 97.15 92.88 43.70 84.65

JS2 22,783,142 21,723,825 97.18 92.90 46.41 85.28

JS3 22,340,031 21,024,203 97.27 92.97 45.99 85.66

NS1 23,968,696 22,360,102 97.20 92.87 46.84 85.79

NS2 23,074,431 21,666,859 97.31 93.18 47.96 85.97

NS3 23,007,719 21,557,974 97.07 92.71 44.24 83.94

ZS1 23,045,475 21,720,377 97.04 92.62 45.22 84.70

ZS2 22,332,042 21,181,680 96.90 92.29 44.39 85.70

ZS3 22,706,607 21,306,290 97.19 92.91 45.47 84.48

TABLE 3 The statistics of annotation.

Total unigenes NR NT KOG SwissProt PFAM GO KEGG

Number of Unigenes 37,976 24,104 34,400 9,022 20,054 17,969 17,966 13,402

Percentage (%) 100 63.47 90.58 23.75 52.8 47.31 47.3 35.29

FIGURE 4
Volcano diagram of differential expression genes and numbers of DEGs in each comparison. (A) Volcano diagram of differential expression genes in
JS vs. NS group. (B) Volcano diagram of differential expression genes in ZS vs. NS group. Significantly upregulated and downregulated genes are indicated
in red and blue, respectively, and those not significantly different are in black. (C) The number of differentially expressed genes between different groups.
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upregulated in the JS and ZS groups included signaling receptor
activator activity (cxcl11.6, slc12a2, abcg5), signaling receptor
binding (cxcl11.6, slc12a2, abcg5), transmembrane signaling
receptor activity (gpr4, or131-2, tas1r1, cd84), and nucleoside
binding (rab9a, rab1a, abcc2) (Figures 5A,B, Supplemental Table
S1, S2). Significantly downregulated gene ontology in the JS and ZS
groups contained tetrapyrrole binding (ba1, lama1, cyp17a1,
cyp19a1a), cell wall macromolecule metabolic process (col4a1,
pc), DNA polymerase activity (pol, znf180), and ubiquitin-like
protein transferase activity (znf180, znf333, birc6, ercc6, rnf114)
(Figures 5C,D, Supplemental Table S1, S2).

By comparing the DEGs to the KEGG pathway enrichment
database, potential functions of the significant DEGs were analyzed
to further understand the ovarian development of grass carp under
short-term water velocity stimulation. For short-term water velocity
stimulation treatment, 30 KEGG pathways (7 upregulated and
23 downregulated pathways) were significantly enriched in the
ZS group (Figures 6B,D). Besides, compared with the NS group,
37 KEGG pathways (11 upregulated and 26 downregulated

TABLE 4 Some significantly regulated genes.

Gene Log2 fold change

JS vs. NS ZS vs. NS

gpr4 8.02 7.91

caspa 5.83 5.41

samd9l 3.53 3.58

slc12a2 2.03 2.02

sox4 1.88 1.84

foxb1 −6.94 −4.4

col4a1 −4.56 −5.4

egr1 −2.91 −3.51

vtg1 −2.91 −2.87

cyp17a1 −2.11 −2.05

FIGURE 5
GO terms enrichment analysis of the differentially expressed genes. (A)Upregulated GO terms in JS vs. NS group. (B)Upregulated GO terms in ZS vs.
NS group. (C) Downregulated GO terms in JS vs. NS group. (D) Downregulated GO terms in ZS vs. NS group.
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pathways) were significantly enriched in the JS group (Figures
6A,C). The KEGG enrichment analysis showed that genes
involved in different pathways, such as ABC transporters (abcc2,
abcg5), bile secretion (abcc2, abcg5), cytosolic DNA-sensing
pathway (caspa, cxcl11.6), legionellosis (caspa, rab1a), ECM-
receptor interaction (lama1, col1a1, col4a1, col6a2, col1a2,
col6a1), protein digestion and absorption (mme, col1a1, col4a1,
col6a2, col1a2, col6a1), ovarian steroidogenesis (cyp17a1,
cyp19a1a, hsd17b1), focal adhesion (lama1, col1a1, col4a1, col6a2,
col1a2, col6a1), steroid hormone biosynthesis (cyp17a1, cyp19a1a,
hsd17b1), and AGE-RAGE signaling pathway in diabetic
complications (col1a1, col4a1, col1a2) were differentially regulated
in the JS and ZS groups (Figures 6A–D; Supplemental Table S3, S4).

RNA sequencing data confirmation

Four DEGs (cyp17a1, hsd17b1, slc12a2, and vtg1) were randomly
selected to further validate the reliability of DEGs identified by

RNA-Seq. The qRT-PCR results were consistent with those of RNA-
Seq (Figure 7; Supplemental Figure S1, S2), indicating that the RNA-
Seq data was accurate.

Discussion

Because of the influence of large reservoirs distributed in the
Yangtze River, the flow regime has been severely altered and flow
velocity in the middle and lower river reaches is rarely exceeding
0.5 m/s from April to June (Zhou et al., 2009; Wang et al., 2016; Liu
et al., 2021). In some reservoir areas, the flow velocity cannot even
reach 0.2 m/s (Xu et al., 2017). To explore the effect of flow velocity
on the ovarian development of female grass carp, we evaluated
ovarian histology, hormone concentrations, and transcription levels
of genes related to the ovaries. Our results revealed that even if
ovarian development characteristics were not affected by short-term
water velocity stimulation, the concentrations of sex steroids,
gonadotropins, and thyroid hormones, as well as the

FIGURE 6
KEGG pathways enrichment analysis of the differentially expressed genes. (A)Upregulated pathways in JS vs. NS group. (B)Upregulated pathways in
ZS vs. NS group. (C) Downregulated pathways in JS vs. NS group. (D) Downregulated pathways in ZS vs. NS group.
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transcriptional levels were significantly altered in female grass
carp. These findings provide fundamental knowledge for
technical support for ecological protection and restoration of
hydraulic engineering.

Normal oocyte development and maturation are critical for
successful reproduction in fish (Nakayama et al., 2004). However,
no spawning activity was observed in the ZS group at a velocity of
0.5 m/s. Previous studies have shown that the required flow velocity
for spawning differs greatly among different fish species. The
determined triggering velocity of female silver carp was about
1.0 m/s in flume experiments (Chen et al., 2021), and female
Atlantic salmon (Salmo salar)) constructs spawning redds in
areas with an averaged flow velocity of 0.53 m/s (Beland et al.,
1982). Generally, for the four major Chinese carp species, the
velocity during the spawning period was 0.6–1.3 m/s, and the
most appropriate velocity was 0.9–1.0 m/s (Dai et al., 2022).

The hypothalamus-pituitary-gonad (HPG) axis is responsible
for fundamental regulation of all developmental stages of ovarian
follicles, including progression to maturation or follicular atresia.
And the pituitary gonadotropins, FSH and LH, which subsequently
act on the ovary and regulate ovarian follicular development,
maturity, steroidogenesis, and growth factor production, are the
key players in the HPG axis (Patino et al., 2001; Nagahama and
Yamashita, 2008; Zhang D. et al., 2022). In this study, we used serum
and ovary testosterone, estradiol, progesterone, and DHP, as well as
FSH, LH, T3 and T4 levels to represent gonadal development
(Gadekar, 2014; Tucker et al., 2020), and measured these levels
using ELISA. Normal reproductive functions in female fish are
attributed to the sex steroid hormones, which mainly include
testosterone, estradiol, progesterone, and DHP. By triggering
germinal vesicle breakdown during final oocyte maturation,
testosterone may contribute to oocyte growth and development
(So et al., 1985). Moreover, testosterone is also involved in female
steroidogenesis and acts as a substrate for aromatase during estradiol
synthesis, which concentration is not stable in female fish
(Barannikova et al., 2004). Estradiol is a crucial sex steroid
hormone, and plays a significant role in stimulating the liver to

produce the yolk precursor protein, vitellogenin, which is
subsequently incorporated into the developing oocyte
(Barannikova et al., 2004). Estradiol levels increase dramatically
in the oocytes during vitellogenesis and decrease when vitellogenesis
is complete (Amiri et al., 1996; Barannikova, 1999). Progesterone is a
vital steroidogenic mediator for oocyte growth and maturation in
female fish (Al-Hasawi, 2022). Our study showed that ovary
estradiol and progesterone concentrations were all upregulated in
the ZS and JS groups compared to the NS group (Figures 2F,G),
indicating a positive effect of flow stimulation on fish gonad
development. DHP acts as the most potent maturation-inducing
steroid (MIS) in stimulating final oocyte maturation in fish (Amiri
et al., 1999). In our study, serum and ovary DHP concentration in
the ZS group was slightly increased (Figures 2D,H), although this
was not statistically significant. Pituitary gonadotropins, FSH and
LH, are major regulators of steroidogenesis by the ovary, resulting in
the synthesis of sex steroid hormones that play critical roles in the
orderly progression of growth and development of ovarian follicles
(Harding et al., 2023). It is well known that thyroid hormones,
T3 and T4, play a dominant role in oocyte development and final
maturation and are well established in fish (Weber et al., 1992). We
found that serum and ovary FSH and T3 concentrations in the ZS
group were significantly elevated, as well as in the JS group (Figures
3A,C,E,G). However, no significant changes in LH and T4 levels
were observed in the ZS group (Figures 3B,D,F,H). The underlying
mechanism is unknown and requires further exploration. However,
these data still show that short-term water velocity stimulation has
an important influence on the ovarian development in female
grass carp.

To understand the impact of short-term water velocity
stimulation on gene expression of selected endocrine pathways
and explore their underlying molecular mechanisms in fish,
ovary samples from the NS, JS, and ZS groups were analyzed.
Transcriptomic analysis of ovaries from the NS, JS, and ZS
groups provided evidence that the water flow velocity is
important for regulating genes from different signaling pathways.
G protein-coupled receptors (GPRs), the largest membrane receptor

FIGURE 7
Validation of randomly selected four DEGs of RNA-Seq results using qRT-PCR analysis. All mRNA levels were calculated as the fold expression
relative to the housekeeping gene β-actin. (A) Relative fold change of DEGs between qRT-PCR and RNA-Seq results in JS vs. NS group. (B) Relative fold
change of DEGs between qRT-PCR and RNA-Seq results in ZS vs. NS group. Relative expression levels from the RNA-Seq results were calculated as
log2FC values.
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family in eukaryotes, play a pivotal role in regulating various
essential physiological and biochemical processes, including
sexual maturation and reproduction (Flaherty et al., 2008;
Nguyen et al., 2018). Ovarian development and maturation are
controlled by many important factors, such as hormones and their
receptors, which predominantly bind and activate GPRs on the cell
surface, thereby initiating multiple downstream cascades (Zhang X.
et al., 2022). We showed that gpr4 was significantly upregulated in
the ZS group, suggesting that it may regulate the ovarian
development of grass carp under short-term water velocity
stimulation. In fish oocytes, lectin may prevent polyspermy
fertilization and participate in the formation of fertilization shell
through binding with glycoproteins. Furthermore, lectin and vitellin
are closely bound to ovomucin to form the basic structure of the
vitellin outer membrane (Kido et al., 1992). In our study, the
expression of C-type lectin was upregulated in the ZS group,
suggesting that lectin affects ovarian development in grass carp
under short-term water velocity stimulation.

Vitellogenin 1 (Vtg1) which plays a very important role in
oocytes development was downregulated in the ZS group
(Table 4). A large proportion of energy-related biomolecules
from the liver, such as vitellogenin and lipids, are absorbed and
utilized by the reproductive system (Della Torre et al., 2014; Zhang
D. et al., 2022). In the turbot (Scophthalmus maximus), Xue et al.
found that the ovary displayed a higher estradiol level and lower vtg
expression, indicating that some other factors limit high vtg
expression (Xue et al., 2018). Similar to the results of the present
experiment, previous work in conger eel (Conger myriaster) also
reported that flowing water could inhibit the gene expression of liver
vtg and reduce VTG synthesis in the liver, which may promote lipid
accumulation (Liu et al., 2022). In our study, flowing water
stimulation may inhibit yolk accumulation during the ovarian
development of grass carp. Retinol and its derivatives are known
to play important roles in female reproductive processes, including
follicular development, ovarian steroidogenesis, and oocyte
maturation (Wang et al., 2022). Retinol dehydrogenase 12
(rdh12), a novel member of the microsomal short-chain
dehydrogenase/reductase protein superfamily, has been identified
as a key component in steroid metabolism (Keller and Adamski,
2007). In our results, rdh12 expression was also decreased in the ZS
group. Researchers have identified several genes that encode crucial
enzymes in the steroidogenesis pathway, including cyp19a1a,
cyp17a1, and hsd17b1, which could synthesize estradiol and
progesterone, and play an important role in ovarian development
and reproduction in fish (Fang et al., 2019; Li et al., 2021).
Transcriptomic analysis showed that cyp19a1a, cyp17a1, and
hsd17b1 were also downregulated in the ZS group compared to
the NS group. It has been proven that cyp19a1a, cyp17a1, and
hsd17b1 mRNAs showed a significant decrease when oocytes
matured. Moreover, gene set enrichment analysis (GSEA) showed
that the steroid hormone biosynthesis pathway was downregulated
and that cyp19a1a, cyp17a1, and hsd17b1 were core genes in this
pathway (Dong et al., 2021). These findings revealed that these genes
and this pathway play key roles in oocyte maturation. As previously
described in ovoviviparous black rockfish (Sebastes schlegeli), the
transcription level of cyp19a1a in ovary declined when the ovary
developed from vitellogenic stage to ovulation stage during the
reproductive cycle (Wen et al., 2014). A decreased cyp19a1a

expression was also reported in amago salmon (Oncorhynchus
rhodurus), rainbow trout (Oncorhynchus mykiss), and spotted
scat (Scatophagus argus) during final maturation (Young et al.,
1983; Gohin et al., 2011; Liu et al., 2015). In Japanese eel
(Anguilla japonica), the expression of related transcripts hsd17b1
and cyp19a1a declined at the migratory nucleus stage (Lai et al.,
2022). These suggest that they can promote gonadal maturation in
grass carp.

Utilizing KEGG pathway enrichment, the main biochemical
metabolism and signal transduction pathways involved in genes
can be identified. Generally, follicle development strongly
depends on communication between germ cells and
surrounding somatic cells through cytokine-cytokine receptor
interaction, such as Kit and KitL (Matzuk et al., 2002; Saatcioglu
et al., 2016). We observed a great number of genes in cytokine-
cytokine receptor interaction obviously upregulated in ovaries of
the ZS group (Figure 6B; Supplemental Table S4), indicating that
the normal conservation between germ cells and somatic cells
was already activated. Pathway analysis results indicated that
7 genes, including lama1, col1a1, col1a2, col4a1, col6a1, col6a2,
and col6a3, enriched in ECM-receptor interaction were down
regulated under short-term water velocity stimulation
(Figure 6D; Supplemental Table S4). The pathways associated
with ECM-receptor interaction play crucial roles in various
biological processes, including cell migration, proliferation,
follicle growth, and oocyte maturation (Berkholtz et al., 2006;
Reing et al., 2009; Deng et al., 2022). Therefore, we speculate that
these genes might have significant implications in the transition
from the follicular development stage to the oocyte maturation
stage. However, the specific mechanism remains unknown, and
the functions of these genes in the reproductive cycle require
further study.

Conclusion

We investigated the ovarian development of grass carp under
short-term water velocity stimulation by histology analysis,
biochemical assays, and RNA-Seq technology. Although there was
no obvious effect on the ovarian development characteristics of grass
carp under short-term water velocity stimulation, estradiol,
progesterone, FSH, and T3 concentrations were elevated. Totally,
962 DEGs with 741 downregulated genes and 221 upregulated genes
were identified in transcriptome data. The key genes identified were
enriched in ABC transporters, cytokine-cytokine receptor interaction,
ECM-receptor interaction, and steroid hormone biosynthesis, which
play an essential role in the response of the ovaries in grass carp to
short-term water velocity stimulation. This study provides new
insights into the ovarian development of grass carp under short-
term water velocity stimulation. However, these transcriptomic data
are still preliminary, and the function of the DEGs in reproductive
cycle of fish species requires further investigation.
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