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The PreEpiSeizures project was created to better understand epilepsy
and seizures through wearable technologies. The motivation was to
capture physiological information related to epileptic seizures, besides
Electroencephalography (EEG) during video-EEG monitorings. If other
physiological signals have reliable information of epileptic seizures, unobtrusive
wearable technology could be used to monitor epilepsy in daily life. The
development of wearable solutions for epilepsy is limited by the nonexistence of
datasets which could validate these solutions. Three different form factors were
developed and deployed, and the signal quality was assessed for all acquired
biosignals. The wearable data acquisition was performed during the video-EEG
of patients with epilepsy. The results achieved so far include 59 patients from 2
hospitals totaling 2,721 h ofwearable data and 348 seizures. Besides thewearable
data, the Electrocardiogram of the hospital is also useable, totalling 5,838 h of
hospital data. The quality ECG signals collected with the proposed wearable is
equated with the hospital system, and all other biosignals also achieved state-
of-the-art quality. During the data acquisition, 18 challenges were identified, and
are presented alongside their possible solutions. Though this is an ongoing work,
there were many lessons learned which could help to predict possible problems
in wearable data collections and also contribute to the epilepsy community with
new physiological information. This work contributes with original wearable data
and results relevant to epilepsy research, and discusses relevant challenges that
impact wearable health monitoring.
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1 Introduction

Over the past years, research in epilepsy has been integrating
more physiological information (i.e. biosignals) besides the
electrical brain activity, captured by the Electroencephalography
(EEG) (Ranjan et al., 2019). In fact, some devices with non-
EEG biosignals have already been approved as medical devices
by the Federal Drugs Administration (FDA), for their ability to
detect of Generalised Tonic-clonic Seizures (GTCS) (Bruno et al.,
2020). Examples include the Embrace Smartwatch by Empatica
(McCarthy et al., 2016; Regalia et al., 2019), or the SPEAC device
by Brain Sentinel (Whitmire et al., 2019). Additionally, non-
EEG biosignals are also being used in epilepsy research for
ambulatory daily monitoring of people with epilepsy (PWE), and
for the development of seizure forecast and prediction models,
where the most frequently mentioned device is the smartwatch
E4 by Empatica (Meisel et al., 2020; Brinkmann et al., 2021;
Vieluf et al., 2022). One essential aspect for the development of
end-user solutions is the access to large datasets of multimodal
quality data. This has been the focus of multiple international
initiatives, such as the Remote Assessment of Disease and
Relapse-Central Nervous System (RADAR-CNS), an initiative
focused on ambulatory data collection is based on an open-
source platform (RADAR-Base) to integrate data from different
sources including smartphone and wearables (Ranjan et al.,
2019).

The use of biosignals in epilepsy is especially relevant for the
prevention of Sudden Unexpected Death in Epilepsy (SUDEP)
(Van de Vel et al., 2013), which is thought to be a consequence
of severe cardio-respiratory dysfunctions (Sivathamboo et al.,
2020; 2021). With this in mind, our research group has given
special focus to peripheral physiological signals which have
shown to be of interest for these pathological changes, such
as Electrocardiography (ECG), Respiration (RESP) and Chest
Motion.

The PreEpiSeizures project was motivated by the collection
of multimodal non-EEG data from PWE through wearables, in
order to be leveraged towards the development of methods for
early seizure detection, as well as expanding the understanding
of epilepsy in different lenses. Although the use of biosignals in
epilepsy is common, their contribution to different epilepsy types is
still yet to prove, thus motivating the collection of comprehensive
data to sustain and improve non-EEG based solutions. The rest
of this document is structured as follows: Section 2 provides the
current landscape of epilepsy-related data collection as well as
commercial wearables which serve that purpose; Section 3 describes
the experimental protocol employed in this project, along with
the characteristics of the wearable devices used, together with the
data quality assessment metrics; Section 4 details the main findings
extracted from the data collected so far, including the analysis
of the signal quality and patients’ metadata; Section 5 overviews
several challenges faced in the context of wearable data collection,
possible solutions, and presents a discussion of the results achieved.
Lastly, Section 6 summarises the main outcomes and conclusions,
followed by some future work directions for the PreEpiSeizures
project.

2 Background

2.1 Datasets in epilepsy

Throughout the years, the epilepsy research community has
been working in multi-centre collaborations. The joint efforts
of stakeholders from different backgrounds, such as industry,
healthcare and academia, as well as different countries, is essential
to provide better and faster solutions to epilepsy. Some of the
collaborations found were iEEG.org, SeizeIT, Epilepsy Ecosystem
and EPILEPSIAE. Additionally, other publicly available datasets
were found in the literature, which also comprise data from epileptic
patients. The description of these datasets is summarised in Table 1
alongside the one proposed in this project.This includes the number
of patients, their age, the modalities acquired, the number of
seizures, the seizure types, the total duration and the setting.

The iEEG.org online platform1, supported by the National
Institutes of Neurological Disorders and Stroke, provides access
to over 900 datasets on human and animal epilepsy, as well as
analytic and visualisation tools to aid data exploration. By inserting
the corresponding keywords, the datasets are filtered to a desired
EEG montage, population and seizure types, just to name a few.
Nonetheless, the source of the signal is always assumed to be EEG
and other physiological signals are not an option when filtering.

SeizeIT2 is another collaborative project within epilepsy,
which is supported by the European Institute of Innovation
and Technology (EIT Health). This consortium aims to tackle
the continuous ambulatory monitoring of epilepsy, in order to
accurately register seizures, thereby enabling the optimisation of
treatment plans.

The Epilepsy Ecosystem3 (Kuhlmann et al., 2018) is a crowd-
sourcing environment supported through the My Seizure Gauge
project, supported by the Epilepsy Foundation of America, the
Aikenhead Centre for Medical Discovery at St. Vincent’s Hospital
Melbourne, the University of Melbourne, Monash University
and Seer Medical. Its goal is to improve the performance of
seizure prediction algorithms with the purpose of making them
a viable option for PWE. They are responsible for gathering and
maintaining two public datasets: NeuroVista Trial (Cook et al.,
2013) and My Seizure Gauge Wearable4. Both datasets are
available in the Seer platform requiring only a login setup.
The NeuroVista trial (Cook et al., 2013) contains 15 patients
that were submitted to an ambulatory intracranial EEG (iEEG)
monitoring for more than 80 days. This dataset consists of a set
of carefully selected patients whom experienced 2 to 12 monthly
seizures, while still having a level of independence compatible
with using the device for daily management. Another dataset
made available in the Seer platform is the My Seizure Gauge
Wearable, which is a collection of wearable data using 3 wearable

1 https://www.ieeg.org/

2 https://eithealth.eu/spotlight-story/seizeit/

3 https://www.epilepsyecosystem.org/

4 https://www.epilepsyecosystem.org/my-seizure-gauge-1
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devices: Empatica E4, Epilog (Frankel et al., 2021) and Byteflies
(Swinnen et al., 2021). It comprises 27 patients that were monitored
for approximately 4.4± 2.4 days. Although this dataset provides
unprecedented wearable data in the context of epilepsy, it does not
provide any information regarding the positioning of the devices nor
some relevant clinical symptoms such as sleep/vigilance state and
loss of awareness during the seizure events. Since no information
was found regarding the acquisition conditions, we could not
assume whether this dataset was acquired during video-EEG or in
ambulatory.

The EPILEPSIAE database (Klatt et al., 2012) was created under
a joint European project between Epilepsy Center, University
Hospital of Freiburg; Center for Informatics and Systems, University
of Coimbra; and Epilepsy Unit, CHU Pitie-Salpetriere, Paris. This
database contains more than 275 patients that performed Video-
EEG monitoring, focusing on the EEG signal. Still, since the
ECG is also acquired by the hospital system, it is also present
in this database. Several works have used this database both for
EEG and ECG analysis (Truong et al., 2019; Gómez et al., 2020;
Leal et al., 2021). However, EPILEPSIAE only makes available 30
patients for external researchers, which is always the same subset,
without disclosing the type of seizures, or the clinical semiology.
Moreover, it does not provide wearable data, only hospital
data.

The Siena Scalp EEG Epilepsy Database (Detti et al., 2020)
contains the data of 14 patients that performed the video-EEG
monitoring in the Unit of Neurology and Neurophysiology of the
University of Siena. This dataset is curated to the seizure episodes,
hence for some patients, only the peri-ictal period is available to the
public. The signal sources present in this database include EEG and
ECG, both acquired by the hospital system.

Other epilepsy datasets also available in the literature were
included in Table 1 for dimensionality comparison, however, they
are out of the scope of this research, since they provide neither non-
EEG data or wearable data. For more information in EEG datasets
(Wong et al., 2023), provides a comprehensive review.

The majority of available datasets is focused on EEG analysis,
and only a few also include the ECG signal acquired by the hospital
system. Regarding the acquisition settings, four datasets contain
data from long-term or video-EEG monitorings, and four datasets
contain short-term EEG acquisitions. The EEG was intracranial in
three datasets (indicated with iEEG), and the NeuroVista Trial is
the only ambulatory dataset, to the best of our knowledge. The only
multimodal wearable dataset foundwasMy Seizure GaugeWearable
data, however it does not provide clear information on seizure
types, the acquisition conditions, or the clinical manifestations of
seizures. Most events annotated in this dataset have little seizure
information, and for some of them it is unclear if they are even
seizures or not. Larger datasets are needed to sustain the use of
non-EEG data as lens for epileptic activity. Recently, projects such
as My Seizure Gauge and Radar-CNS started to create multicenter
datasets with hundreds of patients acquired in ambulatory scenarios
(Böttcher et al., 2022). However, it was not yet proven the ability of
these devices to capture pathophysiological manifestations in non-
EEG modalities related to non-convulsive seizures. Hence more
evidence based on data collected in a semi-controlled scenario
(e.g. as the video-EEG monitoring), is essential towards the use of
non-EEG physiological modalities in the prediction and forecast of

epileptic seizures, and in the detection of non-convulsive epileptic
seizures.

2.2 Peripheral multimodal devices

Theever-decreasing size of deviceswith built-in sensors, internal
battery and powerful processors, allow continuous wearable long-
term monitoring of movement patterns and physiological variables.
A wearable device similar to a smartwatch can be decomposed
in four main layers: top cover, electronics board, lithium battery
and bottom cover5. The top cover serves as a protective shield
for the other components; the electronics board contains sensors,
communication antenna (Bluetooth or WiFi), memory, and MCU;
the lithium battery provides a power supply; finally the bottom
cover often contains the interface with the patient when necessary
(e.g., dry electrodes). This example of a wearable device unfolds
the physical constraint associated with each layer: on the one hand,
multiple embedded sensors lead to more information, and larger
battery sizes lead to longer continuous acquisitions; on the other
hand, devices should be small and unobtrusive. Thus, there is a
trade-off between the device’s size and its modus operandi.

The devices that can simultaneously record data from multiple
sensors are more interesting for epilepsy monitoring since they
can increase the chances of capturing manifestations from different
seizure types, thus enhancing the performance of detection or early
prediction algorithms (Verdru and Van Paesschen, 2020). Some
devices are commercially available for the purpose of physiological
signal acquisition, which could be used for research purposes. In
Table 2, relevant devices found in the literature are described, which
were validated and can record multimodal physiological signals.
In this table, the devices are compared based on their target use,
validation, modalities available, body location, battery duration,
sampling frequency (FS) and data accessibility. For comparison, the
bottom part of Table 2, contains the characteristics of the devices
used in this project.

Table 2 illustrates the characteristics that prove to be the most
relevant in wearable devices applied to epilepsy. However, it also
uncovers some limitations of current options: from restrictive form
factors, to short battery life, lack of validation, limited storage
options, or insufficient physiological information. In fact, this last
point accurately illustrates one pressing issue in epilepsy research:
the extent of the applicability of seizure detection devices is
inherently related to their location/signals they acquire, for example,
an ACC- or EMG-based device will not be able to detect non-
motor seizures. Even though the research community’s intention is
in detecting all seizure types, there is an imbalance, in both research
and evidence, towards an overrepresentation of convulsive motor
seizures (Bruno et al., 2020). Therefore, research efforts should be
endorsed for other seizure types. Moreover, additional research
is needed towards the applicability of multimodal wearables in
epilepsy in ambulatory scenarios, especially combined with seizure
risk forecasting.

The benchmark device for epilepsy research is the Empatica E4
smartwatch, since it is discreet, it captures four biosignals and its

5 https://www.empatica.com/en-eu/research/e4/
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battery lasts for 32 h.However, the datamanagement is performed in
a cloud-based platform, which compromises our privacy protection
clauses. Moreover, (Vandecasteele et al., 2017), have reported the
higher reliability of ECG, comparatively to PPG, to obtain the
heart rate and heart rate variability, which are considered significant
autonomic change predictors. These two factors motivated the
development of our own devices, designed to ensure the privacy
preservation and the recording of relevant physiological modalities,
such as the ECG, PZT, PPG, EDA and ACC (for chest motion).

3 Methodology

Data collection within the PreEpiSeizures project started as
a collaboration from Instituto Superior Técnico (IST) with the
EEG-Sleep Lab of Hospital de Santa Maria - Centro Hospitalar
Universitário Lisboa Norte (CHULN), that is responsible for
supervising video-EEG monitorings. This project was approved in
2015 by the ethics committee of CHULN. This collaboration was
later extended to Centro de Epilepsia Refratária of Hospital Egas
Moniz—Centro Hospitalar Lisboa Ocidental towards continuous
monitoring in the scope of the PreEpiSeizures project underwent
multiple iterations with the purpose of achieving a friendlier and
more autonomous solution for patients.The approach is divided into
the development of thewearable device and in the acquisition system
for data collection and storage.

3.1 Wearable devices

The devices developed in this scope are based on BITalino
(Da Silva et al., 2014), which allowed for the experimentation
around form-factors and sensors modalities. The BITalino device
consists of a core block with a microprocessor (MCU) and a
Bluetooth (BT) module for communication, sensors for each
physiological modality, and a lithium-ion polymer (LiPo) battery.
BITalino has the ability of recording simultaneously up to 6 analog
channels (with a FS up to 1000Hz). When all channels are being
acquired, the first four channels also allow for 10-bit resolution,
while the last two only record with 6-bit resolution.

The first prototypes developed within the PreEpiSeizures project
were ArmBIT and ForearmBIT (shown in Figure 1), both consisting
of one BITalino core block (with MCU and BT module), and
respective sensors, all enclosed within a 3D printed case with an
adjustable strap. The ArmBIT, which is displayed in left side of
Figure 1, collected the equivalent of lead I ECG and the triaxial
ACC of the upper arm. The ForearmBIT, represented in right side
of Figure 1, was design to record the bicep’s EMG, EDA on the palm
of the hand, fingertip’s PPG, and forearm’s triaxial ACC. Interface
with the patient was performed with the use of pre-gelled Ag/AgCl
electrodes. These two devices were used simultaneously and were
connected by a cable, to enable synchronisation (not shown in
Figure 1). Although this montage is acceptable for short-term data
acquisitions, it becomes impractical for longer sessions. This is due
to the prolonged use of pre-gelled electrodes and connection cables,
which can cause discomfort, associated with the fact that wearables
are secured to the arm, inhibiting patients from adopting certain
sleeping positions. Since these two devices are both on the arm and

physically connected by a cable, the remainder of this work uses
ArmBIT to refer to the ensemble with both devices.

Given the higher resolution in the first four channels, these were
usually used for the more relevant physiological signals (e.g., ECG,
EEG, EMG and PPG). Since the ACC possesses three axis, and the
human motion has frequencies lower than 5 Hz (Korohoda et al.,
2013), two of its axis were usually acquired in the channels with
lower resolution.

The second iteration of the PreEpiSeizures wearable devices,
consisted on rejecting gel electrodes and finding other ways to
collect the same signals.The ForearmBITwas replaced by a BITalino
assembled in a wristband (WristBIT), whereas the ArmBIT was
replaced by a BITalino mounted in a chestband (ChestBIT). The
WristBIT device (shown in Figure 2), is composed of an elastic
wristbandwith a pocket to enclose the BITalino core block, as well as
EDA and ACC sensors. The EDA signal was being recorded on the
wrist, using two metallic electrodes encapsulated in the strechable
fabric. Additionally, the finger strap enclosing the PPG sensor was
connected to the wristband.

TheChestBIT is shown in Figure 3, and it was previously applied
in other contexts within the research group (Manso et al., 2018).
The chestband used was a Polar chest strap6, with the ECG sensor
connected to the metal buttons of the chest strap. The BITalino
MCUwas glued to the chest strap, alongside the ACC, the Bluetooth
module, and a piezoelectric PZT sensor used to record the RESP
signal. The entire electronics was protected with a soft sponge and
covered with a synthetic leather textile, to improve endurance. The
battery remained outside, in a pocket, and a small opening allowed
the battery connector to reach the BITalino power module; this
enabled easier natter charging and replacement to ensure near-
continuous operation. The on/off button was accessible through the
side, since the left side of the textile was not fully closed.

To ensure greater battery life, the batteries used in ArmBIT and
ForearmBIT were LiPo with 750 mAh and lasted for 12 h, which
required a bi-diary battery exchange. However, the new wearables
ChestBIT andWristBIT reduce the physical constrain of battery size,
reason for which LiPo batteries of 1,600 mAh were used, requiring
a single daily battery change.

3.2 Data quality assessment

The quality of all data recorded was assessed both for the
hospital system and for the wearable devices, following the approach
found in (Böttcher et al., 2022) for data quality evaluation. In this
approach, the quality of the acquired data is assessed globally for
each dataset, through statistical metrics (mean, median, standard
deviation, minimum value and maximum value). These metrics
are applied to the patient data variables, namely: duration, data
completeness, and each biosignal quality.

The duration variable consists on the time span from the first
timestamp marking the beginning of the acquisition until the last
timestamp. It is presented in hours, minutes and seconds (H:M:S).
The percentage of usable data (i.e., not loss) is measured by the
data completeness. This variable is the ratio between the recorded

6 https://www.polar.com/us-en/products/accessories/polar-soft-strap
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FIGURE 1
Prototypes of ArmBIT (A) and ForearmBIT (B), the first wearable devices used to record multimodal data during video-EEG acquisitions.

FIGURE 2
WristBIT prototype used in the PreEpiSeizures project. In the (A), the WristBIT is being worn in the left hand, where the EDA and ACC are recorded in the
wrist and the PPG in the finger. The (B) shows the interior of the wristband, with the BITalino main unit attached to the Bluetooth module and sensors.

duration and aforementioned duration variable. The recorded
duration is given by all the timestamps associated to a data value
between the first and last data points.

The ECG quality was evaluated in segments of 10 s and in
three levels: low, medium and high. Low quality corresponds to an
unusable segment, whether due to the presence of an artifact, or
due to the loss of connection with the body. Medium quality (ECG
MQ) corresponds to a segment where it is possible to extract rhythm
information, in particular the heart rate and heart rate variability.
In this scenario, the R peak detection is reliable, but the rest of the
ECG waveform can be indistinguishable. Lastly, the high quality
(ECG HQ) corresponds to a reliable and consistent depiction of the
ECG wave throughout the segment. This qualitative stratification
was also described in previous works and gives a perception of
possible applications of the acquired data. To reach these levels, each
segment is processed according to the followingmethod: the R peaks
locations are found and the instantaneous heart rate is calculated. If
the heart rate is between 40 and 200 beats perminute, the low quality
level is discarded (the low quality is chosen otherwise). Then, the
ECG wave cycles are cross-correlated through Pearson correlation

(between 0 and 1). If the cross correlation is above 0.8, then the
segment is classified as high quality (and medium quality if below
the threshold).

For the ACC, (Nasseri et al., 2020), evaluated the quality of
Empatica E4 in the context of video EEG-monitoring, proposing
as SQI the ratio between human motion activity frequency and
the entire frequency range, as given by Eq. 1, where p refers to the
power’s spectrum in the indicated frequency band and FN is the
Nyquist frequency (half of the sampling frequency). In this paper,
the metric was calculated for 4-s non-overlapping segments and
averaged across 10-min intervals.

SQIACC =
P[0.5,8]
P[0.8,FN]

(1)

The signal quality analysis of the RESP signal was calculated
following the metric proposed by (Charlton et al., 2021) for a
respiratory signal acquired through impedance pneumography.This
metric consists on the analysis of valid breaths from segments with
32 s of length. For each segment, the peaks are extracted and used to
find breath cycles. The segment is valid if the breaths respect some
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FIGURE 3
Current prototype of ChestBIT in the PreEpiSeizures project. On the (A,B) the ChestBIT components are shown, namely, the BItalino mini, and the
mounted sensors ECG and ACC. On the (C) the connection between the battery and the BITalino Mini is shown, and in the (D), the components are
covered by a comfortable textile.

predefined conditions proposed by the authors. This metric results
in a binary separation between high quality and low quality.

The EDA quality was retrieved from (Böttcher et al., 2022),
where the binary decision high/low quality is based on two factors.
The first is the signal amplitude, which has to be above 0.05 μS; then,
the signal amplitude change rate is calculated as the ratio between
themin-max amplitude and the first of these two extremes to appear.
This rate should be below 0.2 in the assessment of EDA for windows
with 2 s.

The aforementioned work, evaluates the quality of the PPG also
in a binary low/high quality distinction, using the spectral entropy
in windows of 4 s. A spectral entropy value should be below 0.8 for
the segment to be considered high quality.

The decision to follow the quality assessment approaches
taken by (Nasseri et al., 2020; Böttcher et al., 2022) enabled the
comparison between our wearable devices and other datasets and
data acquired in similar conditions. Both these works acquired
wearable data using the Empatica E4.

3.3 Experimental protocol

When a patient is admitted to the hospital stay, they sign an
informed consent from the hospital so that their data can be analysed
and used for research purposes. After the hospital system setup, the
patient is approached to participate in the wearable data collection
as well. If accepted, a new informed consent is given for the use of
wearable devices during the hospital stay. The proposed acquisition
system collects data unobtrusively and only requires a daily short-
time interruption for battery replacement.This section describes the
process of accessing the wearable and the hospital data, the structure
of the dataset, aswell as the several formats inwhich each data source
was saved.

3.3.1 Hospital data extraction
The hospital data of the video-EEG monitoring consisted on the

patient’s reports and hospital admission notes, along with the data
recorded by the monitoring unit. The physiological data is always
reviewed by an EEG technician and a neurologist resulting in a
video-EEGmonitoring report with all the relevant events annotated.
This is usually saved as Word and PDF documents. The reports
were only consulted with the purpose of retrieving the seizures’
onsets and details, being dissociated from the biosignals’ records,
which are anonymised thus preserving patients’ and data privacy.
The physiological data is stored in the hospital servers and accessed
through a secure computer in the hospital’s facility. All physiological
data files are retrieved with all acquired channels, varying from 24
(22 EEG channels and 2 ECG channels) up to 77 (72 EEG channels,
2 ECG, 1 SpO2, 1 EMG, and 1 EOG). However, most of the time,
EOG and SpO2 are disconnected, and EMG is only connected in
some motor seizures, usually on the deltoid or tibia.

Concerning the data extraction, we came across different
systems in the two hospitals included in this study, which led to
different extraction processes and file formats. The HSM video-
EEG data is managed by the Nihon Kohden DMS system7; all HSM
files are extracted in the European Data Format (EDF), resulting
in files with 2 h of data, sampled at 1,000 Hz. Through the mne
python package, it is also possible to use the raw Nihon Kohden files
(.EEG format) (Gramfort et al., 2013). The HEM video-EEG data is
managed by Micromed software8. All HEM files are extracted in the
micromed raw file format (TRC), resulting in files with 2 h of data,
sampled at 256 Hz.

7 https://us.nihonkohden.com/

8 https://micromedgroup.com/
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In both hospital systems, two ECG channels are recorded,
corresponding to the positive and negative channels. The difference
between these channels results in the approximation of the Lead I
derivation, sometimes requiring inversion of the signal (i.e., when
the positive and negative electrodes are placed on the wrong side).

3.3.2 Wearable data extraction
The acquisition setup relied on a processing unit to receive

BITalino data in real-time and store it appropriately. This was
initially performed using a laptop and Python script, but was later
replaced by a more user-friendly acquisition system developed
within our research group, named EpiBOX (Carmo et al., 2022).
Nonetheless, both systems stored the data in the same structure.

The data collected by the wearables was saved every time the
system disconnected, or after 1 h in a stabilised connection. These
files are in the TXT format, comprising the data of one or two devices
(if they are acquired simultaneously), with a list-like header (with
one dictionary per device, where the key corresponds to the device
MAC address) on the first few rows and the values over the next
rows, in a table-like structure. All the header fields are detailed with
examples in the Supplementary Material. Besides the header, each
subsequent row corresponds to a new time instant (1/FS), where
FS corresponds to the sampling frequency of 1,000 Hz. Each TXT
file is named after its starting time (e.g., 2021-04-02 18-09-05.TXT).
The table produced with two devices is equal to one device with the
only difference being the addition of the second device’s columns.
The order of first and second is known by the order in which they
appear in the header.When retrieving data from the seconddevice, it
is necessary to recognise the presence of the first, and use its number
of columns as an offset. This structure is easily scalable to additional
devices.

4 Results

The results detailed in this section are divided into the signal
quality analysis and the characteristics of the dataset acquired so far.

4.1 PreEpiSeizures data quality

The quality of biosignals was studied for all data acquired by
the hospital system, the ChestBIT, the WristBIT and the ArmBIT
and these results are summarised in Table 3. The hospital data was
acquired for 59 patients totalling almost 6 k hours of ECG data. Data
completeness is fairly high with a median of 99.21%. The majority of
the signal was classified, on average, as high quality (around 70%),
however, on average, 15% of the data was of poor quality. Regarding
the ChestBIT, 37 patients used this device, with some sessions being
more successful than others (this is observable by the minimum and
maximum metrics). The data completeness is lower (in mean and
median) when compared to the hospital system, which is expected
since the system communicates through Bluetooth, hence being
more susceptible to connection losses. Nonetheless, the discrepancy
between the mean and the median indicates that the majority of
acquisitions was mostly successful in terms of data completeness. In
ChestBIT, more segments were discarded as poor quality, however,
the median of low quality segments is also around 15% (100 - (ECG

HQ + ECG MQ)). Interestingly, the median percentage of ECG HQ
is higher in the ChestBIT than in the hospital system, and very few
segments were classified as medium quality. The quality of RESP
signals is on average 60%, which is reasonable.

The WristBIT was only acquired in 9 patients, still, it comprises
500 h of data, with data completeness percentage comparable to
the ChestBIT. The quality of the EDA signal was significantly high,
however the PPG quality was significantly lower, since on average,
only half of the segments have high quality. This was expected, since
the PPG is highly susceptible to noise. Moreover, this is comparable
to the results reported by (Böttcher et al., 2022) with the Empatica
E4, where the mean and median quality of PPG data was in the
range [51.5, 63.3]% for the datasets acquired in hospital settings.The
SQIACC values of the WristBIT are in agreement with those reported
by the study of (Nasseri et al., 2020).

4.2 PreEpiSeizures dataset

The total number of patients in this dataset is 59. From this
cohort, 36 performed the video-EEG in Hospital de Santa Maria
(HSM), while 23 performed the video-EEG in Hospital Egas Moniz
(HEM). This dataset includes biosignals recorded by our wearable
devices, as well as records from the hospital. The classification of
seizure types follows the guidelines of the 2017 ILAE’s instruction
manual (Fisher et al., 2017a; b). Focal seizures were classified as
FUAS, whenever the awareness was not registered or tested.The ictal
semiology described in this dataset, follows the 2022 ILAE’s glossary
of terms (Beniczky et al., 2022).

4.2.1 Hospital de Santa Maria
Figure 4 provides a visual depiction of the wearable data

acquired so far in HSM. The horizontal axis represents the days of
the week, whereas the vertical axis represents the different patients
enrolled. The label of vertical axis contain the information of the
wearable device and the acquisition system. The blue lines represent
the wearable data, while the pink shade corresponds to the missing
data. The red and grey diamonds represent clinical and subclinical
seizures, respectively.

The first 4 patients enrolled in this study used the wearables
ArmBIT and ForearmBIT during their video-EEG monitoring:
in Figure 4, these are represented in the four bottom rows.
These acquisitions lasted for 5 days and 19 h, 13 h, and 1 h and
30 min for the remaining two, respectively. However, only one of
these acquisitions captured a seizure event (the patient with the
longest acquisition did not experienced any seizure during their
hospital stay, whilst the other patients’ seizures occurred outside the
wearables’ recorded time spans). There were 10 patients that used
the ChestBIT and WristBIT during their video-EEG monitoring,
recording over 102 seizures. Their distribution according to seizure
type is: subclinical = 63; FBTCS = 8; FAS = 5; FIAS = 17, and
unknown focus = 9. The percentage of recorded data by these
wearable devices was on average 53{%} ± 18{%} of the entire video-
EEG monitoring stay (4 full days = 96 h). The number of actual
recorded seizures by the wearable device is 19, from a total of 39
clinical seizures, which occurred during the monitorings.

The EpiBOX deployment as the acquisition system was mostly
successful, with only 4 out of 13 patients having less than a day

Frontiers in Physiology 09 frontiersin.org

https://doi.org/10.3389/fphys.2023.1248899
https://www.frontiersin.org/journals/physiology
https://www.frontiersin.org


Abreu et al. 10.3389/fphys.2023.1248899

TABLE 3 Signal quality analysis for the data acquired by the hospital system and the devices ChestBIT andWristBIT. The N indicates the number of patients and
the total duration is in H:M:S. The first column indicates the statistical metric, followed by the data completeness (in %), the quality of the biosignals, where the
ECG is divided in high andmedium quality (in %) and the acquisition duration (in H:M:S).

Hospital data, N = 59 Total duration: 5,838:19:12

p Data Completeness (%) ECG HQ (%) ECG MQ (%) Duration

Mean 92.33 68.58 17.15 98:57:16

Median 99.21 71.83 16.11 94:33:40

SD 15.09 20.29 11.33 33:51:50

Min 43.40 4.10 0.88 10:43

Max 100 96.60 52.23 165:47:15

WristBIT, N = 9 Total Duration: 510:04:07

p Data Completeness (%) EDA (%) BVP (%) ACC Duration

Mean 70.64 92.84 64.33 0.44 56:39:46

Median 69.95 98.23 71.72 0.39 60:33:25

SD 21.11 13.73 25.31 0.19 15:21:54

Min 31.82 57.55 20.39 0.22 26:31:28

Max 93.38 99.86 89.72 0.80 76:25:50

ChestBIT, N = 37 Total Duration: 2,211:53:29

p Data Completeness (%) ECG HQ (%) ECG MQ (%) PZT (%) ACC Duration

Mean 69.64 67.33 4.44 58.52 0.35 59:46:51

Median 85.98 82.03 3.02 61.63 0.34 61:20:44

SD 31.84 34.59 6.07 21.16 0.22 34:18:16

Min 1.15 0.0 0.0 1.81 0.0 10:20

Max 100 98.65 30.89 89.47 0.82 192:38:58

ArmBIT, N = 4 Total Duration: 156:14:54

p Data Completeness (%) ECG HQ (%) ECG MQ (%) EDA (%) BVP (%) Duration

Mean 60.09 8.18*10–3 0.84 15.50 58.52 39:03:43

Median 59.19 0.0 0.64 2.03*10–2 61.63 7:27:19

SD 28.56 1.64*10–2 0.97 30.97 21.16 67:27:35

Min 26.35 0.0 0.0 0.0 1.81 1:26

Max 95.65 3.27*10–2 2.05 61.95 89.47 139:54:13

recorded (their recorded duration was: 13 h; 3 h; 12 min and 9 min).
The ChestBIT enabled the recording of 30 out of 60 clinical seizures.
Besides the mentioned patients so far, there was the case of patients
who were enrolled in the study and only have hospital data. Since
the hospital monitoring equipment provides ECG recordings, they
were still included in the dataset, despite the lack of wearable data. 9
patients are included in this group with a total of 47 clinical seizures,
with a distribution in seizure types of FBTCS = 6; FAS = 19; FIAS =
16 and subclinical = 6.

4.2.2 Hospital Egas Moniz
The expansion of the data acquisition to another centre was

possible due to the reproducibility of EpiBOX. Figure 5 shows the
time domain analysis of wearable data recorded for all patients
enrolled in this hospital. This set is composed of 15 patients, who
performed the wearable acquisition with the EpiBOX setup, along

with the ChestBIT device. From this group, one patient did not
register any data during the acquisition, hence being excluded from
this plot. The time domain analysis of the remaining 14 patients
ranges from 10 min up to 3 days and 9 h. The average percentage of
actual recorded time domain is 64.2%, with a standard deviation of
34.0%. Nonetheless, the median recorded time percentage rises to
83.6% (the median of time loss is only 16.4%). The total of seizures
in this cohort is 45 clinical seizures (FIAS = 11, FAS = 34) and 20
subclinical seizures. As it is observed in Figures 5, 6 patients do
not have reports on clinical seizures: 2 only experienced subclinical
seizures; and 4 did not experienced any seizure during the exam.
Nonetheless, the wearable device was able to capture 15 clinical
seizures in this cohort.

Besides the data acquired in the scope of our project, the hospital
also provided additional retrospective data, from other patients with
temporal lobe epilepsy, who underwent the same monitoring exam.
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FIGURE 4
HSM Data Acquisition Temporal Overview. Patients with wearable and hospital data. The horizontal axis represents the temporal domain, from the
beginning of the video-EEG monitoring, until its end. Each row consists in a single patient.

FIGURE 5
HEM Data Acquisition Temporal Overview. Patients with wearable and hospital data. The X-axis represents the temporal domain, from the beginning of
the video-EEG monitoring, until its end. Each row consists in a single patient.
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FIGURE 6
Distribution of seizure types from the cohort. E: Subclinical; U:
Unknown; FIAS, Focal Impaired Awareness Seizure; FBTCS, Focal to
Bilateral Tonic-Clonic Seizure; FAS, Focal Aware Seizure; FUAS, Focal
Unknown Awareness Seizures.

This set consisted on 9 patients, who experienced 61 clinical seizures
(FBTCS = 1, FIAS = 36, FAS = 20 and FUAS = 4). This retrospective
data contains the hospital system’s measurements, which includes
the ECG.This cohort was used to initiate the ECGanalysis and assess
the validation of ECG-based seizure manifestations.

4.3 Overview

The patients collected in this database were performing the
video-EEG monitoring for presurgical assessment. This section will
detail the distribution of onset localisation and lateralisation, seizure
types and ictal semiology reported by the clinical team.

In this cohort (59 patients), 64.41% (N = 38) showed temporal
lobe activation during the onset of ictal period. The frontal lobe
ictal onset activation showed a prevalence of 25.42% (N = 15),
closely followed by the parietal lobe with 18.64% (N = 11). Lastly,
the occipital lobe ictal onset was reported in 6.78% (N = 4).
The ictal onset activation reported in more than one lobe region
(e.g., fronto-temporal) was included in both categories. Concerning
lateralisation, 38% had a left hemisphere onset seizure, whereas the
epileptogenic zone was in the right hemisphere for 44% of patients.
Bilateral ictal onsets were described in 4% of patients from the
cohort.

In Figure 6, the distribution of seizures per seizure types is
shown, regarding the seizure typeswhichwere reported in the video-
EEG reports. The total number of seizures in the PreEpiSeizures
dataset is 348, distributed a across six seizure types (FBTCS = 27,
FIAS = 95, FUAS = 35, FAS = 82, subclinical = 89 and unknown =
20). These values are illustrated as a percentage in Figure 6, where
the predominance of focal seizures is notable. The classification of

FIGURE 7
Overview of all ictal semiology phenomena reported in the video-EEG,
grouped according to the nature of the phenomena following the
2022 ILAE’s glossary (Beniczky et al., 2022).

seizures as Unknown was chosen when there was no information
regarding the type of seizure, whereas FUAS correspond to focal
seizures, in which only the awareness was not tested.

Besides the classification of seizure types, the video-EEG reports
also contained some details regarding the events occurring during
the seizure. In Figure 7, the reported ictal semiology from the
dataset is displayed in 6 categories.TheElementaryMotor Behaviour
was found in 120 seizures and includes Dystonic (N = 23), head
version or head orientation (N = 45), eye blinking (N = 12),
myoclonic/clonic (N = 14), tonic (N = 6) and tonic-clonic (N = 27).
TheComplexMotor Behaviour (N = 183) included automatisms and
hyperkinetic behaviour (N = 3). The most common automatisms
were distal (N = 67) followed by oroalimentary (N = 59) and
proximal (N = 16). Other reported automatisms were: verbal (N =
11); vocal (N = 6); mimic (N = 7); nose-wiping (N = 9) and Rinch
(N = 5). Sensory phenomena (N = 33) was mostly populated by
the somatosensory symptoms (N = 15), followed by cephalic aura
(N = 5). Other reported sensory phenomena was gustatory (N =
1) and olfactory (N = 2). The most reported autonomic semiology
was epigastric aura (N = 20), followed by hyperventilation (N = 12),
tachycardia (N = 11) and piloerection (N = 1). Few seizures reported
cognitive ictal phenomena (N = 27), where the most common
symptom was autoscopy (N = 12), followed by dejá vu (N = 9), ictal
aphasia (N = 3) and dysarthria (N = 3). Only 2 seizures reported
emotional phenomena and the symptom was fear.

InTable 3, the total duration ofArmBIT,ChestBIT andWristBIT
is shown separately. Figure 8 gives a visual depiction of the number
of recorded hours by each modality. The different colours represent
the device responsible for each measurement. The least represented
modality is EMG with 156 h, 14 min and 54 s of data. Since
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FIGURE 8
Number of hours acquired per modality. Each colour represents one form factor.

this measurement required gel electrodes, it was discarded in
the new devices. The EDA totals 666 h, 19 min and 2 s of data,
which is decomposed in 156 h of using pre-gelled electrodes (with
ForearmBIT) and 510 h, 4 min and 7 s of metallic electrodes in
the WristBIT. The chest-ACC corresponds to 2,211 h of data,
whereas the wrist-ACC totals 510 h. Additionally, the ArmBIT and
ForearmBIT add more 312 h to the ACC data. Regarding RESP,
2,211 h were recorded so far, using only the ChestBIT. The ECG
was captured using pre-gelled electrodes in 156 h (ArmBIT) and the
ChestBIT has so far recorded 2,211 h. The total number of recorded
hours by all wearables is 2,721 h, 57 min and 36 s. The broader use
of ChestBIT instead of WristBIT was based on three arguments: an
easier reproducibility; a higher reliability of ECG instead of PPG to
record cardiac activity; and being more discreet, since it is placed
under the clothes.This last point is aligned with previously surveyed
preferences of PWE (Simblett et al., 2020).

To conclude the overview of the PreEpiSeizures dataset, the
aforementioned Table 1 provides a side-by-side characterisation
of this dataset with those available within the state-of-the-art.
Three of the public databases (Bern-Barcelona (Andrzejak et al.,
2012), New Delhi EEG (Swami et al., 2016) and Epilepsy Seizure
Recognition (Andrzejak et al., 2001)) only presented segments of
a few seconds duration. Bonn-Barcelona micro- and macro-EEG
database (Martínez et al., 2020), comprises data from epileptic
patients without epileptic seizures.

The comparison of our dataset with EPILEPSIAE (Klatt et al.,
2012) and Siena Scalp EEG (Detti, 2020) is performed with regards
to the ECG recorded by the hospital system (this is the number in
the left side of columns patient and total hours). Our dataset size,
both in terms of patients, and in total recorded hours, surpasses its
peers.

Regarding wearable data, the only other dataset found with
wearable data was the My Seizure Gauge Wearable, which does
not contain ECG, PZT or Chest Motion data. Both datasets
duration is quite similar (our wearable duration is the right number
of column Total Hours in Table 1). Concerning the number of
seizures and the variety of seizure types, PreEpiSeizures is similar
to EPILEPSIAE and My Seizure Gauge Wearable. Regarding the

number of recorded hours, the proposed dataset also closely follows
those of the literature.

5 Discussion

The patients which are admitted for video-EEG monitoring are
usually patients that either have refractory epilepsy and require a
differential diagnosis, or are included in the presurgical evaluation
program. In HSM, a new patient comes every 2 weeks, with some
exceptions like vacations or other unforeseen events, which can
change this schedule. Then, the patient stays for a work week
(Monday to Friday) and sometimes also spends the weekend if the
hospital team finds it necessary, for example, if no seizure occurred
until Friday. Although this is a very good pace, allowing for up to 26
patients per year, not all these patients meet the eligibility criteria:
patients need to have at least 16 years old; the EEG monitoring
should be performed with scalp electrodes, instead of intracranial;
patients also require a high level of independence, compatible with
using an extra device continuously throughout the hospital stay. In
HEM, the EEG technicians are all day with the patients (from 8AM
to 11PM), hence the majority does not need accompaniment. The
cadence in this ward is of 1–2 patients per week, however only one is
asked to participate in the study.This is related also to the duration of
the monitoring, since one patients stays in the hospital for the work
week, whereas the other only stays for 48 h (the case of differential
diagnosis) or less (in the case of other exams).

Despite having a great number of seizures, the proposed dataset
suffers from one core issue also found in its peers: the great
variability of seizure types. In both hospitals, many types of seizures
are monitored (from tonic-clonic and myoclonic to subclinical
seizures), and often the epileptogenic zone is not even known prior
to the monitoring. As a result, it is difficult to predict what will be
the outcome of the data collection. So far, the majority of seizures
encountered have a focal onset, nevertheless they vary in duration,
awareness or semiology. Even the broader classifications of seizure
types (such as FAS and FIAS) enclose seizures that have motor
and non-motor manifestations. Although patients in video-EEG
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TABLE 4 Common concerns of wearable data acquisition.

Name Description Nature Solution

Forget battery exchange Uncontrolled scenarios can lead to forgetting battery exchanges Real-world acquisition Mobile app

User Compliance The acceptance to participate and the proper realisation of the experiment Real-world acquisition Reward system

Incorrect placement Uncontrolled scenarios can lead to incorrect device placement by non-experts Real-world acquisition Mobile app

Cohort’s variability Real-world settings might translate into an unexpected variability to the cohort Real-world acquisition Multi-centre

Battery size Battery shortage could cause more connection losses Wearable design Reduce FS

Design constraints The signals to record are restricted by the sensors’ requirements Wearable design Adaptative factor

Device resistance Resistance to sweat and to the continuous use over multiple acquisitions Wearable design Detachable electronics

Materials Hygienisation Materials properly clean before and after each new acquisition, cleanable materials Wearable design Resistant materials

Signal quality Uncontrolled scenarios can lead to noise presence in the signals of a variety of natures Processing Multimodal denoising

Temporal synchronisation Signals acquired in different sources may present a relative temporal shift Processing HR synchronisation

Big data High sampling frequencies and long hours leads to great amounts of data Processing Batch processing

Fragmented files File fragmentation can lead to contiguous files with different signal offsets or amplitudes,
sometimes time loss is unknown

Processing Discrete analysis

Device drift Devices can drift and originate signals with slightly different characteristics Processing Constant calibration

Motion artifacts The presence of motion artifacts affects the proper measurements of other signals Noise Interference ACC denoising

Sensor interference The continuous use of a device might degrade its sensors, and contamination can occur Noise interference Automatic check

Contact loss Contact with the body can be lost during acquisition Noise interference Automatic check

Network interference The surroundings can cause electrical disturbances in the physiological signal Noise interference Low-pass filtering

Baseline wander Fluctuations on the ECG signal are common and might result in incorrect measurements Noise interference Baseline removal techniques

monitoring have refractory epilepsy, their seizure occurrence is
often highly reduced in daily life by ASM. During the monitoring,
the ASM is slowly suspended to allow for resurgence of epileptic
activity. For some patients, the complete withdraw of ASM could
result in bilateral tonic-clonic seizures, which would hamper the
identification of seizure onset. The goal in video-EEG monitoring is
to achieve the balance that allows to clearly identify the ictal onset of
seizures, with the minimum number of seizures. However, for some
patients, no seizure occurs during the hospital admission, despite
their frequent seizure rate outside the hospital.

The wearable data acquisition itself was an eventful process,
filled with a great variety of challenges. Hereinafter, this section
is divided into an overview of the problems faced and proposed
solutions, followed by a discussion of the quality between the
wearable device and the hospital system, and finally the quality
assessment of the current acquisition setup and its comparison with
the previous setup.

In Table 4, the various issues faced during the wearable data
acquisition process are described, being divided into four categories
according to their nature: real-world acquisition; wearable design;
processing; and noise interference. Though this data collection was
specific to a singular disease and a strict protocol, the challenges
herein faced are general to wearable and even some non-wearable
data collection experiments.

Four challenges were identified in relation to real-world
acquisition: forget battery exchange (1.1); user compliance (1.2);
incorrect placement (1.3) and cohort’s variability (1.4). Although
all data was collected in the hospital ward, there was no constant

supervision by an expert, leading to several challenges, that can also
be expected in an ambulatory scenario (hence their “real-world”
nature). (1.1) Most wearable devices require a quasi-daily change
of battery, as seen in Table 2. Hence, it could be expected that
users forget to charge the device or to have a charged battery at-
hand. To help in this process, the proposed solution is a mobile
application with reminders to charge the device or change the
battery. (1.2) User compliance is important for any experiment,
especially those in which the patient plays a major role in the
acquisition control. Mental and emotional availability is required
to perform a rigorous experiment control; despite the relative good
rate of potential patients, not all will meet the inclusion criteria
to participate in the data collection. Moreover, this is amplified in
ambulatory data collection, and strategies should be established to
increase patient’s compliance. As a suggestion, a more immediate
reward system could be added to the protocol, such as their data
overview, or daily statistics. (1.3) Unsupervised experiments such
as this, could lead to incorrect placement of the devices, especially
if more than one device is used simultaneously. For example,
the ChestBIT could be inverted from its original orientation, or
shifted to one side or the other. Moreover, the ChestBIT could
fall during the night or even detach itself. In order to solve these
issues, the device should be reinforced especially in the attachment
area. Moreover, in an ambulatory setting, the mobile application
could aid the patient to properly adjust the device, for example,
via a signal quality assessment algorithm. (1.4) The variability of
the cohort is something to account for when dealing with such
specific diseases. Potential patients could have different ages, unique
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disease characteristics, or even specific comorbidities. In this case
it could be useful to design the protocol upfront as a multi-centre
data collection. The increase of potential patients could enable the
encounter of similar cases and better deal with the great cohort’s
variability.

The category of wearable design included four challenges:
battery size (2.1); design constraints (2.2); device’s resistance (2.3);
and materials hygienisation (2.4). The nature of these challenges
comprises issues which conditioned the wearable design, and should
be accounted for when proposing new designs for continuous
wearable data collection. (2.1) The battery size is a constraint
on wearable devices, especially in preliminary versions, based on
lithium ion polymer batteries, hence their energy consumption
should be reduced to the minimum, to ensure the maximum
operability. In the proposed devices, the FS is 1,000 Hz, which
corresponds to a battery drain rate of approximately 62 mAh (i.e.,
milliamp hour). As a result, 1,500 mAh are required for lasting
24 h. One solution could be to decrease the FS to 100 Hz for the
ChestBIT (or less in the case of the WristBIT), to enable a slower
rate of battery drain, while still capturing the major physiological
manifestations. (2.2) The design of a wearable device is conditioned
to its embedded sensors. For example, the ECG sensor requires at
least two contact points with the body, one in each side of the heart,
whereas the EDA has better quality in places with more eccrine
glands (Nagai et al., 2019). Thus, when designing a new wearable it
is necessary to understand which modalities are more relevant to
the task, since not all are possible to acquire with the same form
factor. (2.3) The device should be resistant to ensure long-term use
without quality loss.This could be achieved by choosing appropriate
materials, by attaching securely the electronics to the textiles, or even
by adopting bendable electronics. (2.4) The materials disinfection is
important to remove bacteria and fluids, especially during patient
exchange. The choice of materials could also play an important part,
not only comfort-wise but also for proper hygienisation.

The next category of challenges is processing, and it includes:
signal quality (3.1); temporal synchronisation (3.2); big data (3.3),
fragmented files (3.4); and device drift (3.5). Processing concerns
the first steps towards the extraction of meaningful information
from the acquired data. The challenges herein described could
be detrimental and lead to misinformation, thus they should be
carefully addressed, preferably during the actual data collection.
(3.1) As it was previouslymentioned, the device could be incorrectly
placed due to various reasons. Moreover, other factors (which
will be addressed in the next category) could contribute to poor
quality signals. Quality control should be assured automatically
through an algorithm, specific for each modality acquired. (3.2)
When acquiring data from more than one device simultaneously, or
when comparing two signals acquired simultaneously (such as the
hospital’s ECG against the device’s ECG), or even when using the
hospital’s annotations with the wearables, it is relevant to confirm
whether the temporal line is properly defined. It could be the case
that the wearable does not save data with the correct time. To solve
this issue, it should be implemented a temporal synchronisation.The
temporal synchronisation between the same modality time series
is possible using cross-correlation (e.g., in ECG/PPG, one can use
the instantaneous heart rate from both sources). This could be used
between the hospital’s signal and the device’s signal, and the devices
time should be adjusted according to this temporal offset. In our

case the EpiBOX smartphone’s application allows to save the device’s
time alongside the real time (fetched by the smartphone). This time
difference could also be used to adjust the time to a better estimation
prior to signal synchronisation.

(3.3) The FS of 1,000 Hz, associated to several days of
acquisition, originates several gigabytes of data per patient. This
poses a problem for opening such files during the processing phase.
One solution could be batch processing; through this technique,
the time is divided into intervals of a few hours (or even less than
1 h), and the signals are extracted from the TXT format to a more
compressed format, such as parquet (a columnar file optimized
for processing big data). This could allow to save space and time
in future operations. (3.4) There is always the case of ending one
file and starting another in the middle of the acquisition. This
also occurs for hospital files. While it is expected that the next
file will be in the same conditions as the previous, changes can
occur in both signal’s amplitude and/or offset. Moreover, battery
exchange can lead to a slight change in the devices position. During
processing, the timeseries should be considered discontiguous if
they come from fragmented files, and processing should occur
separately for each fragment. (3.5) As it was previously mentioned,
a drift in device position during the course of the acquisition is
inevitable, due to several reasons. The timeseries should be seen
as an evolving signal, and not static according to an initial defined
baseline. The normalisation or even signal shape correctedness
should be assessed with nearby points and not the entire signal.
This does not invalidate standard references of quality for the entire
signal, but simply whether signal changes are a result of drifts or they
contain meaningful information towards the final purpose.

Noise interference in timeseries is especially prominent in
wearable acquisitions, with amultitude of noise types (Vijayan et al.,
2021). Noises can be difficult to remove when they fall into
the frequency bands of the acquired signal. The following noises
found in the data acquisition were: motion artifacts (4.1); sensor
interference (4.2); contact loss (4.3); network interference (4.4);
and baseline wander (4.5). The proper identification of each noise
type, could be the first step for their automatic removal during
the processing phase. (4.1) Motion artifacts fall into most signals
frequencies of interest, thus their removal is not trivial. Since
acceleration is acquired in most wearable devices, one solution
could be to use the ACC signal to remove motion from the other
signal modalities. This would mostly work when the sensors are
placed in proximity. For example, the ACC from WristBIT could
have common motion with the EDA, however motion captured in
the PPG acquired at the finger might not have been captured by
the ACC. (4.2) The continuous long-term use of the device could
deteriorate the electronic board contacts and originate improper
signals, which should be tested regularly. (4.3) Loss of contact
between the device and the skin is something to account for, since
the connection is still maintained but the desired signal is no longer
there. This should also be assessed automatically by identifying the
types of signal shapes induced by such issue, and seeking them in
the original signal prior tomeaningful extraction. (4.4)The presence
of other electronic devices in the surrounding space can influence
the quantity of noise in the signal. The video-EEG room contains
a great amount of electrical devices acquiring simultaneously and
constantly, and one should be prepared for a small signal-to-noise
ratio. (4.5) The presence of baseline wander, especially in the ECG
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signal, is common in both the wearable device and the hospital’s
system. Similarly to motion artifacts, baseline wander can also fall
in the signal frequency range and affect meaningful information
extraction. There are several baseline wander techniques proposed
in the literature which could be implemented during the processing
step.

Given this last set of challenges, one potentially valuable
addition to the PreEpiSeizures dataset would be to provide the
quality assessment within the metadata of each file. The developed
approach should be based on the assessment of quality against the
physiological basis in an agnostic manner. This will be addressed in
the future work.

6 Conclusion

ThePreEpiSeizures project wasmotivated by the limited number
of available wearable data in epilepsy; this collaboration has enabled
the collection of data from 59 patients over the past few years (where
37 patients also wore a chest device, nine wore a wrist device, and
four wore an arm device). The data collection resulted in 5,838 h of
hospital data and 2,721 h of wearable data.

So far, three different form factors of wearable devices were worn
by the patients: ArmBIT, WristBIT and ChestBIT. The ChestBIT’s
ability to record the ECG signal using non-gelled conductive
materials, is an advantage compared with the ArmBIT. The quality
assessment of ChestBIT was at the level of the hospital system (in
the case of the ECG), and WristBIT quality was comparable to
the quality of Empatica E4 used in similar conditions, reported in
previous works. The advantage of using our own devices, allowed to
have the liberty to experiment with form-factors and physiological
modalities. Although not all patients have used thewearable devices,
the availability of the hospital’s ECG signal allows to draw similar
conclusions regarding the physiological manifestations of epilepsy
in cardiac activity, which is also aligned with the literature.

The video-EEG monitoring in the hospital significantly reduces
the variability of the real-world while allowing the access of ground
truth annotations. The ambulatory setting may reveal additional
challenges which are not being considered yet, nevertheless it was
possible to identify 18 challenges that impacted the wearable data
collection and may also appear in real-world scenarios. Further
research on these challenges should be a priority to avoid data and
time losses. Moreover, the concerns and challenges raised in the
discussion affect overall continuous health monitoring studies and
are not exclusively epilepsy monitoring.

The future of the PreEpiSeizures project will include the
maintenance of the data collection process, as well as the curation
of the dataset and the expansion to ambulatory monitoring is
also envisioned. Additionally, the project will address some of the
acquisition challenges mentioned, such as: the battery size, the real-
time signal quality assessment, and noise reduction.
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