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Objective: The objective of this research is to construct a method to alleviate
the problem of sample imbalance in classification, especially for arrhythmia
classification. This approach can improve the performance of the model without
using data enhancement.

Methods: In this study, we have developed a new Multi-layer Perceptron
(MLP) block and have used a Weight Capsule (WCapsule) network with
MLP combined with sequence-to-sequence (Seq2Seq) network to classify
arrhythmias. Our work is based on the MIT-BIH arrhythmia database, the
original electrocardiogram (ECG) data is classified according to the criteria
recommended by the American Association for Medical Instrumentation (AAMI).
Also, our method’s performance is further evaluated.

Results: The proposed model is evaluated using the inter-patient paradigm. Our
proposed method shows an accuracy (ACC) of 99.88% under sample imbalance.
For Class N, sensitivity (SEN) is 99.79%, positive predictive value (PPV) is 99.90%,
and specificity (SPEC) is 99.19%. For Class S, SEN is 97.66%, PPV is 96.14%,
and SPEC is 99.85%. For Class V, SEN is 99.97%, PPV is 99.07%, and SPEC is
99.94%. For Class F, SEN is 97.94%, PPV is 98.70%, and SPEC is 99.99%. When
using only half of the training sample, our method shows that the SEN of
Class N and V is 0.97% and 5.27% higher than the traditional machine learning
algorithm.

Conclusion: The proposed method combines MLP, weight capsule
network with Seq2seq network, effectively addresses the problem of
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sample imbalance in arrhythmia classification, and produces good performance.
Our method also shows promising potential in less samples.
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1 Introduction

Electrocardiogram plays an important role in the clinical
diagnosis and treatment of cardiovascular diseases, but traditional
methods only rely on professional physicians to analyze the
electrocardiogram, which is not only time-consuming, but also
requires high professional knowledge of doctors. Therefore, many
researchers have been working on computer-aided diagnosis
to improve the efficiency of ECG analysis (Luz et al., 2016;
Ebrahimi et al., 2020).

Traditional machine learning arrhythmia classification methods
rely on well-designed feature extraction methods and classification
models to show acceptable arrhythmia classification performance.
Compared with traditional machine learning algorithms, which
require complex feature extraction, deep learning end-to-end ECG
classification has attractedmore andmore attention (Parvaneh et al.,
2019; Murat et al., 2020). Among them, convolutional neural
network (CNN) and recursive neural network (Hochreiter and
Schmidhuber, 1997; Sathasivam, 2008; Wu et al., 2016; Kim et al.,
2017; Song et al., 2017) have been widely used in ECG classification
(Oh et al., 2018; Petmezas et al., 2021). A hybrid solution has been
found that combines representational learning with continuous
learning to create powerful input data and thereby improve the
performance of the model, which makes the combined approach
of CNN and recurrent neural networks available for arrhythmia
detection (Tan et al., 2018; Yildirim et al., 2019).

Although the combined method of convolutional network and
cyclic neural network has improved the classification performance
of arrhythmia, it is susceptible to the influence of sample imbalance,
so its performance in the class with a small sample size is not
ideal. At present, sampling and weighting are the main methods
used by deep learning to solve the problem of sample imbalance
in beat classification (Mousavi and Afghah, 2019; He et al.,
2020; Jiang et al., 2020). Mousavi and Afghah (2019) combined
convolutional neural networks with the Sequence to Sequence
(Seq2Seq) model and integrated several classes of oversampling
techniques to achieve excellent results in arrhythmia classification.
Many studies have also adopted data enhancement methods such as
Synthetic Minority Oversampling Technique (SMOTE). However,
the SMOTE method may be skewed when producing a few types of
samples.

To this end, in the past we used themethod of combining weight
capsules (Li et al., 2022) with Seq2Seq to solve the sample imbalance
problem. The weight capsule network is an optimization of the
capsule network, which alleviates the saturation of the compression
function of the capsule network and the problem of considering the
probability of the output vector in the dynamic routing. Capsule
network is a new choice proposed by Sabour et al. (2017) to solve the
problems of translation invariance and information loss in pooling

operations of deep convolutional networks. Based on this promising
work, Butun et al. (2020) proposed a one-dimensional capsule
network. The method is used to diagnose coronary artery disease
from the original ECG, and the best performance is achieved in the
2s ECG segment. Neela andNamburu (2021) converted ECG signals
into spectral signals, and then used capsule network to classify
ECG, and realized accurate classification of ECG. Jayasekara et al.
(2019) built a time capsule to learn from the sequence data, and the
model was able to classify ECG rare beats with only a few training
samples. However, the weight capsule network only relies on the
input to obtain the heartbeat characteristics, the weight capsule belt
information is limited, and the model performance has room for
improvement.

Multi-layer Perceptron (MLP) is a forward structured artificial
neural network ANN. MLP is mainly used as classifier or feature
extraction in arrhythmia classification, and has achieved good
performance (Hsiao et al., 2022; Sivapalan et al., 2022). Recently,
due to the success of deep learning, MLP has gained attention
again (Lian et al., 2021; Liu et al., 2021; Zhao et al., 2021; Tang et al.,
2022; Tang et al., 2022; Hou et al., 2022; Valanarasu and Patel, 2022;
Yu et al., 2022). Existing studies have found that (Tolstikhin et al.,
2021), compared with using convolutional neural networks for
feature extraction, MLP can not only combine the information
between different channels, but also the information of different
spatial locations.

Capsule network has great potential for feature extraction and
classification of time series data. But at the same time, the common
capsule network still has some problems. Some scholars have
put forward the capsule variable model successively and achieved
good results (Wang and Liu, 2018; Choi et al., 2019), but their
model fails to alleviate the saturation of compression function and
consider the probability of the existence of output vector in dynamic
routing. To alleviate these problems, we proposed Sigmoid-squash
(S-S) compression function and weight capsule (WCapsule) model
(Li et al., 2022). The weight capsule can better extract the features
of time series data for classification. In addition, in order to adapt
to variable-length sequences and better improve the performance of
the model, it can be combined with Seq2seq.

This paper aims to alleviate the problem of sample imbalance
in arrhythmia classification and construct an accurate and effective
cardiac beat classification method without SMOTE. Inspired
by the existing work (Li et al., 2022), we propose a new and
effective arrhythmia classification method named MWCapsuleNet,
which uses a weight capsule network with MLP to extract the
characteristics of heartbeat beats. Our contributions are as follows:

(1) We propose an arrhythmia classification method combining
MWCapsuleNet and Seq2seq, which not only improves
the performance of the algorithm model in arrhythmia
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FIGURE 1
Study design. I, Construct MLP block; II, Applied to the classification of arrhythmia and less sample experiment.

classification, but also provides a new scheme for alleviating
sample imbalance.

(2) In order to better exploit the potential of weight capsules, we
propose an improved MLP block structure and construct a
weight capsule network with MLP. As far as we know, this is
the first time that MLP and weight capsule network have been
combined and have been applied to arrhythmia classification,
which adds a new idea for further exploring the potential of
weight capsules.

The design process of this study is shown in Figure 1.

2 Material and methods

2.1 Dataset

In this work, we use the publicly accessible MIT-Beth Israel
Hospital (MIT-BIH) arrhythmia database (Moody and Mark,
2001) to evaluate the performance of our proposed approach.
The MIT-BIH dataset contains 48 ECG records, each containing
a two-channel record of about 30 min. Two cardiologists annotated
each note. In most recordings, one channel is the Modified Limb
Lead II (MLII), obtained by placing electrodes on the chest,

which is standard practice for hologram recordings, and the
other is usually V1 (sometimes V2, V4, or V5, depending on the
subject). Usually, the lead II is used to detect heartbeats in the
literature (Mousavi and Afghah, 2019; Li et al., 2022; Wu et al.,
2022; Xu et al., 2022; Zhu et al., 2022). Similarly, here in all
experiments, we have applied ECG lead II. The raw ECG data
were classified according to the AAMI recommended standard
(Association for the Advancement of Medical Instrumentation et al.,
1998), and the classification and description are shown in
Supplementary Table S1.

Based on the recommendations of existing studies
(De Chazal et al., 2004), we evaluate the proposed model using an
interpatient model. The training and test sets are constructed from
different patient sample data. By using this classification method,
the inclusion of heartbeat records from the same patient in both the
training and test sets is avoided, allowing the classification model to
be fairly compared with other existing studies.

The interpatient assessment model divides the MIT-BIH
database into two groups of records: DS1 = {101,106,108,109, 112,
114, 115, 116, 118, 119, 122, 124, 201, 203, 205, 207, 208, 209,
215,220,223,230} and DS2 = {100,103,105,111,113,117, 121,
123, 200, 202, 210, 212, 213, 214, 219, 221, 222, 228, 231, 232, 233,
234}. In addition, in order to explore the potential of this work, we
divide DS1 (training set) into DS1_2 = {101,106,108,109,112,
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FIGURE 2
Structure of MLP block.

114,115,116,118,119,122}, DS1_3 = {124,201,203,205,207,208,
209,215,220,223,230}. Detailed data sample distribution is shown
in Supplementary Table S2. We use DS1, DS1_2 and DS1-3 to train
classification models, and use DS2 to evaluate the training models.

2.2 Methods

Figure 1 shows the overall flow chart of the combined MLP
and WCapsule applied to arrhythmia classification, including: (1)
The improved MLP structure, (2) The arrhythmia classification
experiment based on the MWCapsuleNet + seq2seq model and the
low-sample arrhythmia classification experiment.

2.2.1 MLP block
The MLP block structure designed in this work is shown in

Figure 2, which mainly consists of two parts: MLP layer and skip
layer connection. In the MLP layer, it has a fully connected layer
after feature extraction of the fully connected layer. Secondly, we
add the dropout layer to prevent overfitting. Finally, we extract the
global feature vector of the heartbeat data and thenmerge it with the
original input data as the output of MLP block.

In Figure 2, the input data of MLP is divided into chunks
(patches), and the size of each patch is p× p, which can be divided
into S = HW

p2 patches in total. Flatten each patch with the size of p× p,
that is, expand into a one-dimensional vector, and obtain a vector
with length p2. S of these vectors are put together to form a tensor
of dimension (S,p2), and the tensor is mapped linearly to the size of
the second dimension C, which is called hidden dimension. Then
we have a tensor with dimensions of (S,C) = patches× channels. It’s
made up of S 1×C vectors. This tensor X ∈ R(S×C) is the real input
for subsequent MLP models. In this work, 10× 28 after reshaping
can be viewed as patches× channels. The MLP model of this work
can be expressed as:

Uij = Dropout(FC1 (Inputi,j)) for i = 1…S; j = 1…C (1)

Output = concat(Uij, Input) (2)

here FC1 means the first fully connected layer. Here Dropout means
dropout layer.

Therefore, in the MLP block of the final model, the number
of neuron units in the fully connected layer was set as 10. After
several experiments, we finally found that the model achieves the
best performance when the dropout rate is set to 0.8. Some of
the experimental results are shown in Supplementary Material
Supplementary Table S7.

2.2.2 Arrhythmia classification method based on
MLP+WCapsule+Seq2seq

MLP, weight capsule network and Seq2seq model constitute the
model proposed in this work. The weight capsule network is the
inheritance and development of the capsule network, and has shown
satisfactory potential in alleviating the problem of sample imbalance
in arrhythmia classification (Li et al., 2022). The Seq2Seq model is
an important model in neural machine translation, and has shown
close to human level in the application of (Johnson et al., 2017).
Here, we use Recurrent Neural Network (RNN) Seq2Seq model
and weight capsule network with MLP for arrhythmia classification
task.

Figure 3 shows the proposed framework for arrhythmia
classification. The weight capsule network with MLP is composed
of a layer of MLP block layer, a one-dimensional convolution layer
and a weight capsule layer. The original data is a 280× 1 time series
signal after simple preprocessing. After being reshaped into 10× 28,
it is output as a 20× 28 feature map through MLP block. This feature
map first passes through the convolutional weight capsule layer, with
single-channel one-dimensional convolution 28D weight capsules
(i.e., each sovereign weight capsule contains 28 one-dimensional
convolution units with 3× 1 cores and step spacing of 1), and then
activates the corrected linear unit (ReLU). The second layer (ECG
Weight Caps) has 128weight capsules with size of 3× 1. Each capsule
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FIGURE 3
Construction of the algorithmic for arrhythmia classification.

FIGURE 4
Flowchart of the proposed method.

receives input from the weight capsule directly connected to it in
the next layer. As a result, the initial weighted capsule output ( ̇ui)
are passed into ( ̇vj) with equal probability ( ̇cij). After extracting the
features of the maximum time dimension, ECG Weight Caps Layer
performs the correction of k× 1 vector and outputs (e.g., here we
set the output dimension to 128). Finally, the input sequence for
each beat is associated with the vector C ∈ Rd. Figure 4 depicts the
detailed network.

When the length of the capsule module is large, it will lead to the
saturation problem of the compression function. In order to alleviate
this problem, we proposed a new variant compression function S-S
(Sigmoid-squash) (Li et al., 2022), as shown in Eq 3:

̇vj =
g(h(‖ ̇sj‖

2)) + α‖ ̇sj‖

1+ α‖ ̇sj‖ + g(h(‖ ̇sj‖
2))

(3)

α is a hyperparameter, ̇vj is the output vector, ̇sj is the input vector.

Set α = 0.1.
The low-level weight capsule ̇ui is multiplied with the weight

matrix Ẇij to obtain the prediction vector ̂u̇j|i.

̂̇uj|i = Ẇij ̇ui (4)

The weighted capsule model is to multiply the weighted sum of
the prediction vector ̂u̇j|i and theweight coefficient ̇cij with theweight
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kj (Formula S4 in Supplementary Material). The results with weight
selection are then output after S-S compression function. Therefore,
except for the first layer, the input to the weight capsule ̇sj can be
expressed as:

̇sj = kj∑i
̇ciĵ̇uj|i (5)

Here, ̇cij is the coupling coefficient determined by the iterative
process of dynamic routing.

̇cij =
exp(ḃij* fij)

∑
k
exp(ḃij* fij)

(6)

Where ḃij is the connection coefficient of two weight capsules.
The weight fij (Formula S8 in Supplementary Material) can reduce
the correlation between the predicted weight capsule mold length
and the two weight capsules.

Based on the weighted capsule model, we updated the dynamic
routing between the capsules. The main process of dynamic routing
algorithm and pseudo-code for dynamic routing between weight
capsules are shown in Supplementary Material Section 2.

The Seq2seq model in this work is the same as that used in the
past work, where the encoder encodes the input sequence and the
decoder calculates the category of each beat of the input sequence.
The encoder is actually composed of long-and-short-term memory
(LSTM) units, which are also known as many-to-one LSTM. As
shown in Figure 3. Instead of the standard LSTM (i.e., RNN), we
use bidirectional recursive neural network (BiRNN) units in the
network architecture. Standard RNNS are unidirectional; they are
limited to using previous input states. BiRNN, which can process
data forward and backward, and the current state can access both
previous and future input information. BiRNN consists of a forward
network and a backward network. The input sequence is fed in
normal time order, the forward network is fed t = 1,…,T, and the
backward network is fed in reverse time order t = T,…,1. Finally,
the weighted sum of the two network outputs is calculated as the
output of the BiRNN. The mechanism can be expressed as follows:

h⃗t = tanh(W⃗xt + V⃗h⃗t−1 + b⃗) (7)

h⃖t = tanh(W⃖xt + V⃖h⃖t+1 + b⃖) (8)

yt = (U[h⃗t; h⃖t] + by) (9)

Here, (h⃗t, b⃗) is the hidden state and deviation of the forward network,
and (h⃖t, b⃖) is the hidden state and deviation of the backward network.
xt and yt are the input and output of BiRNN, respectively. The
decoder is used to generate the target sequence beat by beat. Like
an encoder, the building block of a decoder is an LSTM, but it is
a many-to-many LSTM. The decoder gets a new representation of
the input sequence generated by the encoder to initialize its hidden
state. It also shifts the same given target by one and takes a special
feature vector <GO > as input. It is important to note that the input
(the shifted target) is only used during the training phase, not the test
phase. Then, using softmax on the output of the LSTM, convert it to
a probability p ∈ RC, where C represents the number of categories
(that is, the heartbeat type) and each element of p represents the
probability of each class in the category.

2.2.3 Comparative experimental model
In order to better evaluate our approach, we compared

different heartbeat feature extraction models under the same

equipment and environment and the same Seq2seq classification
model as in this work. These model structures are all different
combinations of MLP blocks, convolutional layers, ordinary
capsules and weight capsules. It mainly includes: Baseline (Mousavi
and Afghah, 2019), MLP block, McNets(MLP block + conv), M-
Baseline(MLP block + Baseline), CapsuleNets(conv + Capsule),
MCapsuleNets(MLP block + Capsule), WCapsuleNets(conv +
WCapsule), and CWCapsuleNets(conv block + WCapsule).

The structure diagram for each specific model is shown in
Supplementary Material S3.

3 Experiment and result

3.1 Data preprocessing

The input of the model in this work is a series of heart beats.
In order to extract heart beats from a given ECG signal, according
to the recommendations of existing studies (Mousavi and Afghah,
2019), we use the same method to preprocess the original data,
which includes the following simple steps:

(1) Normalize the given ECG signal to be between 0 and 1;
(2) Search the R-wave set of ECG by the corresponding annotation

file in MIT-BIH arrhythmia database;
(3) Segment the continuous ECG signal into a series of heartbeats

according to the extracted R-wave, and assign a label to each
heartbeat according to the annotation file;

(4) Resize each heartbeat to a predefined fixed length (280
samples).

These preprocessing steps for beat extraction are very simple and
do not involve any form of filtering or noise removal methods. The
source data preprocessing code used in this work is available here.

3.2 Experimental parameter

We build the model based on TensorFlow 2.4, using Adam
optimizer and cross entropy loss function, with a learning rate of
0.001 and a maximum training period of 500. The initial LSTM
hiding and cell state of the Seq2Seq model are set to 0. The drop
rate of MLP is set to 0.8.

In order to compare with existing studies, four indexes are
mainly used in the evaluation: sensitivity (SEN), specificity (SPEC),
positive predictive value (PPV) and accuracy (ACC).

SEN = TP
TP+ FN

(10)

PPV = TP
TP+ FP

(11)

SPEC = TN
TN+ FP

(12)

ACC = TP+TN
TP+TN+ FN+ FP

(13)

Here, TP (true positive), TN (true negative), FP (false positive),
and FN (false negative) represent the number of heartbeats correctly
labeled, correctly identified as non-corresponding heartbeats,
incorrectly labeled, and not identified as expected heartbeats,
respectively.
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3.3 Result

Because the sample size of class Q is too small, and the reference
methods did not take it into account. Therefore, we do not list it in
the comparison results table. When comparing with a wide range
of earlier publications, we use the results published in their original
papers as a reference. The differences calculated in this work are all
differences in percentage points.

In order to evaluate the effectiveness of our innovative elements,
we evaluate themodel performance usingDS1 as the training set and
DS2 as the test set. It is worth noting that the number of parameters
of the model proposed in this work is less than that of the baseline
model (252980<357154).

3.3.1 Sample imbalance
Three-classification task: As shown in Table 1, our method

obtains the best results in 8 out of 10 evaluation indicators,
the overall indicator performance is higher than 94.5%, and the
maximum difference between other indicators and the optimal
index is 0.12%. In class S, where the training samples are less
than the test samples, after MLP block module is added to the
weight capsule network, SEN = 98.75%, PPV = 94.82%, SEN and
PPV are increased by 5.21% and 2.6% respectively. After adding
MLP block to the capsule network, 80% of the indicators have
been improved. Using only the MLP block, although the PPV of

the S class is only 83.01%, its overall performance is close to that
of the baseline. In addition, CWCapsuleNets using convolution
block performs poorly in class S (SEN = 80.01%, PPV = 74.27%).
Compared with the research using DS1 training model, as shown in
Table 3, in the three-classification task, Jiang et al. (2020) obtained
the best performance with SMOTE. Compared with that, our model
obtains 98.75% SEN in class S without SMOTE, 2.06% higher than
them.

Five-classification task: In order to further evaluate our method,
we increase the difficulty of classification. As shown in Table 2, our
model obtains most of the highest indicators, accounting for almost
70% of all indicators, and the overall performance is higher than
97%. We can see from Table 2 that only the three models that adopt
weight capsules can make the indexes of class S and class F reach
more than 90%. Among the three models that also adopt weight
capsules, our model can obtain the best performance. Similar to the
performance improvement of capsule network after adding MLP
block in the three-classification task in Table 1, the performance
of 11 indicators in the five-classification task is also improved.
While only using MLP block, although it surprisingly obtains the
optimal values of five indicators, and the overall performance ranks
fourth among the seven comparison models, the SEN of S class
is only 82.30%, while the SEN of our method is 97.66%. In the
five-classification task, as shown in Table 4, although Li et al. (2022)
obtains the best performance of the existing literature, the PPV in

TABLE 1 Inter-patient paradigm: The performance of the proposed heartbeat classifier compared with other comparisonmodels, considering DS2 as test
dataset based on theMIT-BIH arrhythmia database for the considered groups: N, S, V. SMOTE is not used in this experiment.

Model ACC N S V

SEN SPEC PPV SEN SPEC PPV SEN SPEC PPV

Baseline 99.37 99.69 93.89 99.31 82.03 99.78 93.54 100 99.88 98.34

MLP + Seq2seq 99.39 99.06 99.34 99.92 97.96 99.23 83.01 100 99.88 98.31

McNets + Seq2seq 99.52 99.57 97.06 99.66 91.94 99.65 91.05 99.50 99.91 98.76

M-Baseline 99.41 99.75 93.91 99.31 83.19 99.74 92.40 99.50 100 100

CapsuleNets + Seq2seq 99.40 99.32 98.55 99.83 96.02 99.22 82.61 99.00 100 100

MCapsuleNets + Seq2seq 99.71 99.63 99.35 99.93 97.44 99.72 93.13 100 99.90 98.59

CWCapsuleNets + Seq2seq 98.78 98.81 92.93 99.19 80.01 98.93 74.27 99.81 99.93 98.98

WCapsuleNets + Seq2seq 99.64 99.67 97.74 99.74 93.54 99.70 92.22 100 99.99 99.88

MWCapsuleNets + Seq2seq 99.83 99.78 99.62 99.96 98.75 99.79 94.82 100 99.99 99.88

Baseline* 98.54 98.88 91.47 99.02 68.41 99.46 83.12 100 99.15 89.18

MLP + Seq2seq* 97.12 95.69 98.26 99.79 95.37 95.89 47.35 95.77 99.80 97.16

McNets + Seq2seq* 97.96 96.75 99.23 99.91 96.77 97.10 56.22 99.60 99.80 97.15

M-Baseline* 97.76 96.89 96.12 99.54 87.96 98.39 67.91 98.13 98.49 81.95

CapsuleNets + Seq2seq* 98.30 97.64 96.32 99.57 89.11 97.96 62.85 99.69 99.78 96.95

MCapsuleNets + Seq2seq* 96.67 94.64 98.61 99.83 96.19 95.30 44.25 99.50 99.65 95.25

CWCapsuleNets + Seq2seq* 99.09 98.60 99.11 99.90 97.33 98.70 74.37 99.75 99.97 99.57

WCapsuleNets + Seq2seq* 98.48 99.01 87.10 98.54 62.85 99.12 73.50 100 99.88 98.34

MWCapsuleNets + Seq2seq* 99.60 99.81 96.59 99.61 90.63 99.75 93.27 98.91 100 100

* indicates that DS1_3 is used as the training set, and the values in bold are the highest value in this metric.
Without * means that DS1 is used as the training set, and the values in bold and underlined are the highest value in this metric.
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TABLE 2 Inter-patient paradigm: The performance of the proposed heartbeat classifier compared with other comparisonmodels, considering DS2 as test
dataset based on theMIT-BIH arrhythmia database for the considered groups: N, S, V, F. SMOTE is not used in this experiment.

Model ACC N S V F

SEN SPEC PPV SEN SPEC PPV SEN SPEC PPV SEN SPEC PPV

Baseline 98.92 99.06 83.28 97.97 54.74 99.18 71.89 99.97 99.96 66.27 77.58 99.96 93.77

MLP + Seq2seq 99.59 99.69 93.53 99.21 82.30 99.70 91.24 99.97 99.98 99.69 90.21 100 100

McNets + Seq2seq 99.57 99.22 98.05 99.76 91.45 99.37 84.80 99.97 99.88 98.29 93.92 99.86 83.92

M-Baseline 99.52 99.69 91.86 99.00 76.74 99.90 96.71 99.97 99.89 98.44 94.07 99.89 87.11

CapsuleNets + Seq2seq 98.87 98.72 86.64 98.36 64.87 98.75 66.69 99.56 99.94 99.07 55.67 99.90 81.20

MCapsuleNets + Seq2seq 99.74 99.60 98.00 99.75 93.85 99.81 94.88 99.66 99.96 99.47 95.62 99.78 77.78

CWCapsuleNets + Seq2seq 99.76 99.62 98.16 99.77 93.79 99.67 91.64 99.97 99.94 99.10 96.65 99.97 95.66

WCapsuleNets + Seq2seq 99.81 99.76 98.47 99.81 95.26 99.77 94.03 99.63 99.96 99.38 94.07 99.96 94.81

MWCapsuleNets + Seq2seq 99.88 99.79 99.19 99.90 97.66 99.85 96.14 99.97 99.94 99.07 97.94 99.99 98.70

Baseline* 99.27 99.13 92.63 99.09 79.41 99.01 75.54 97.82 99.95 99.30 84.28 99.99 97.90

MLP + Seq2seq* 97.19 89.69 99.12 44.62 92.50 97.63 99.69 93.26 95.40 43.64 99.97 98.44 81.62

McNets + Seq2seq* 97.70 95.43 87.32 98.39 57.73 97.14 43.73 99.66 99.23 90.01 90.21 99.10 44.19

M-Baseline* 98.91 97.72 95.72 99.46 87.47 98.21 65.28 97.94 99.85 97.88 89.69 99.61 64.21

CapsuleNets + Seq2seq* 98.33 96.80 89.71 98.71 68.36 97.65 52.80 100 99.19 89.94 83.51 99.98 97.59

MCapsuleNets + Seq2seq* 97.80 94.33 97.22 99.64 91.29 94.99 41.18 98.72 99.78 96.84 97.16 99.84 83.04

CWCapsuleNets + Seq2seq* 99.53 99.47 94.91 99.37 83.39 99.51 86.79 99.94 99.88 98.35 91.94 99.96 94.92

WCapsuleNets + Seq2seq* 99.33 98.94 94.34 99.30 84.10 99.14 78.94 99.66 99.91 98.77 84.79 99.84 81.03

MWCapsuleNets + Seq2seq* 99.75 99.95 95.55 99.45 86.87 99.91 97.37 99.97 99.94 99.07 88.14 100 100

* indicates that DS1_3 is used as the training set, and the values in bold are the highest value in this metric.
Without * means that DS1 is used as the training set, and the values in bold and underlined are the highest value in this metric.

class S is 92.23%, and the PPV of our method in class S is 3.91%
higher than theirs.

3.3.2 Sample balance
To better evaluate the performance of MLP block and

MWCapsuleNets in our innovative work, we augment the data
with SMOTE method, as shown in Supplementary Material S4. In
five-classification task, our method overall index is higher than
95%, and only three indicators do not achieve the highest. As
can be seen in Supplementary Table S5, the top metrics are all
from the model employing the weight capsule network, and the
performance is further enhanced by adding the MLP block to the
weight capsule model. As shown in Supplementary Table S4, in
the three-classification task, the performance of models using the
weight capsule network is above 94.5%. Our model has increased
the SEN and PPV of Class S by 9.43% and 3.56%, respectively,
compared with the baseline. However, in the three-classification
task, performance of the models with MLP block or conv block
decreases.

3.4 Model exploration

In order to better tap the potential of our method, we
conduct less-sample exploration on the model. Because DS1_2

has a worse sample distribution than DS1 (as shown in
Supplementary Table S2), the model does not work on DS1_2 (as
shown in Supplementary Table S6).Wemainly observe the results of
using DS1_3 as the training set and DS2 as the test set. As shown in
Table 2, our model has achieved the most balanced and excellent
performance among the five-classification task, and half of the
indexes have achieved the highest. Although MLP + Seq2seq has
obtained the 4 highest indexes, its PPVof Class V is only 43.64%. It is
55.43% lower than ourmethod (99.07%). It can be seen fromTable 2
that the top three models with the highest overall performance all
use weight capsules, with an overall performance higher than 78%.
Meanwhile, the performance of MWCapsuleNets with MLP block
is further improved compared with the weight capsule network.
As shown in Table 1, compared with other model structures, in
the three-classification task, all evaluation indicators of our model
are higher than 90%, and we obtain 60% of the best indicators. As
shown in Table 3, compared with the existing research, the overall
performance of our method ranks third in the existing literature,
and two indicators obtain the best level of the existing literature. As
shown in Table 4, among the five-classification task, compared with
existing literature, the overall performance of our method (training
with DS1_3) is lower than Li et al. (2022) (training with DS1), but
our method achieves the best level of existing literature in PPV of
class S (97.37%), SEN of class N (99.95%), SEN of class V (99.97%),
PPV and SPEC of F (100% & 100%).
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TABLE 3 Inter-patient paradigm: Comparison of performance of the proposed heartbeat classifier against the state-of-the-art algorithms, considering DS1 as
training dataset and DS2 as test dataset based on theMIT-BIH arrhythmia database for the considered groups: N, S, V.

Model ACC N S V

SEN PPV SPEC SEN PPV SPEC SEN PPV SPEC

Ours 99.83 99.78 99.96 99.62 98.75 94.82 99.79 100 99.88 99.99

Ours* 99.60 99.81 99.61 96.59 90.63 93.27 99.75 98.91 100 100

(Li et al., 2022)DL 99.67 99.59 99.91 99.25 96.62 91.16 99.64 100 98.90 99.60

(Kim et al., 2023)DL 89.10 91.40 97.70 - 49.30 26.60 - 91.40 65.70

(Dias et al., 2021)ML 96.00 94.50 99.40 95.30 92.50 39.90 94.60 88.60 94.80 99.70

(Jiang et al., 2020)DL 99.89 99.87 99.84 98.56 95.69 97.06 99.89 99.98 99.89 99.97

(He et al., 2020)DL 95.10 97.50 97.60 - 83.80 59.40 - 80.40 90.20 -

(Niu et al., 2019)DL 96.40 98.90 97.40 - 76.50 76.60 - 85.70 94.10 -

(Mousavi and Afghah, 2019)DL 99.53 99.68 96.05 99.55 88.94 99.72 92.57 99.94 99.97 99.50

The values in bold and underlined are the highest value in this metric.
ML: using machine learning methods.
DL: using deep learning methods.

TABLE 4 Inter-patient paradigm: Comparison of performance of the proposed heartbeat classifier against the state-of-the-art algorithms, considering DS1 as
training dataset and DS2 as test dataset based on theMIT-BIH arrhythmia database for the considered groups: N, S, V, F.

Model ACC N S V F

SEN PPV SPEC SEN PPV SPEC SEN PPV SPEC SEN PPV SPEC

Ours 99.88 99.79 99.90 99.19 97.66 96.14 99.85 99.97 99.07 99.94 97.94 98.70 99.99

Ours* 99.75 99.95 99.45 95.55 86.87 97.37 99.91 99.97 99.07 99.94 88.14 100 100

(Li et al., 2022)DL 99.85 99.66 99.97 99.72 99.56 92.23 99.68 99.97 99.38 99.96 93.81 100 100

(Zhu et al., 2022)DL — 98.42 98.10 — 67.17 70.11 — 94.66 97.35 — 50.06 47.64 47.75

(Xu et al., 2022)DL 98.73 98.87 98.64 88.87 83.06 82.40 99.32 93.46 90.04 99.29 37.89 99.32 100

(Wang et al., 2022)ML 95.60 91.70 99.10 — 89.90 36.70 — 87.80 96.60 — 55.40 16.30 —

(Wu et al., 2022)DL 96.76 93.15 98.18 86.00 80.23 49.40 96.85 90.99 83.09 98.72 12.63 4.05 97.65

(Dias et al., 2021)ML 90.29 79.64 99.51 96.80 91.32 40.34 94.81 87,26 93.15 99.55 81.14 4.50 86.24

(Essa and Xie, 2021)DL 97.90 98.03 97.48 80.27 65.51 66.19 98.56 93.91 94.55 99.62 19.33 41.67 99.79

(Shi et al., 2020)DL 97.10 95.26 98.92 91.57 90.74 47.85 96.20 92.92 84.49 98.82 0.26 1.72 99.88

(Chen et al., 2020)DL 98.41 99.15 97.81 81.96 63.90 76.10 99.23 88.84 96.78 99.80 47.68 54.25 99.68

(Mondéjar-Guerra et al., 2019)ML 94.50 95.90 98.20 — 78.10 49.70 — 94.70 93.90 — 12.40 23.60 —

(Li and Zhou, 2016)ML 94.61 94.67 99.73 — 27.27 0.16 - 93.74 90.18 — 20.00 0.26 -

(Zhang et al., 2014)ML 88.94 98.98 98.98 — 79.06 35.98 - 85.48 92.75 — 93.81 13.73 —

(Ye et al., 2012)ML 94.57 88.51 97.54 82.33 60.80 52.34 97.72 81.49 61.38 96.46 19.59 2.50 94.00

(De Chazal et al., 2004)DL 86.20 87.10 99.20 — 76.00 38.50 — 80.30 86.60 — 89.40 8.60 —

The values in bold and underlined are the highest value in this metric.
* indicates that DS1_3 is used as the training set.
ML: using machine learning methods.
DL: using deep learning methods.

4 Discussion

In order to alleviate the problem of unbalanced distribution
of heartbeat class samples in arrhythmia classification, this work

innovatively proposes MWCapsuleNets + Seq2seq, which combines
the improved MLP and weight capsule network. It not only
has excellent performance on classes with a large sample size,
but also obtains satisfactory performance on classes with a
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small sample size. The performance on less-samples is also
expected.

Traditional machine learning arrhythmia classification
methods achieve acceptable performance through preprocessing,
segmentation, feature extraction and classification steps
(De Chazal et al., 2004; Ye et al., 2012; Zhang et al., 2014; Li and
Zhou, 2016; Mondéjar-Guerra et al., 2019; Wang et al., 2022).
However, traditional machine learning arrhythmia classification
methods need to rely on novel feature extraction methods and
well-selected classifiers to improve the performance. However, our
method is end-to-end, using MWCapsuleNets to automatically
extract features and put the extracted features into the Seq2Seq
model for classification. As shown inTable 4, comparedwith the best
performance obtained by traditionalmachine learningmethods, our
method improves the PPV by 43.8% and 75.1% respectively in the S
and F classes where it performs poorly, and the overall performance
is more stable.

Compared with traditional machine learning algorithms, which
require complex feature extraction, deep learning end-to-end
ECG classification has attracted more and more attention from
scholars (Hochreiter and Schmidhuber, 1997; LeCun et al., 1998;
Sathasivam, 2008;Wu et al., 2016; Kim et al., 2017; Krizhevsky et al.,
2017; Song et al., 2017; Oh et al., 2018; Tan et al., 2018; Attia et al.,
2019; Hannun et al., 2019; Parvaneh et al., 2019; Yildirim et al.,
2019; Murat et al., 2020; Ribeiro et al., 2020; Petmezas et al., 2021).
As shown in Table 3 and Table 4, arrhythmia classification using
deep learning methods such as convolutional network, U-Net,
attentionmechanism and LSTMhas shown acceptable performance.
However, due to the influence of sample imbalance, the expected
performance has not been achieved. At present, sampling and
weighting are themainmethods used to solve the problem of sample
imbalance in the classification of heartbeats (Mousavi and Afghah,
2019; He et al., 2020; Jiang et al., 2020). Capsule network has great
potential for feature extraction and classification of time series
data. As shown in Table 4, the method of weight capsule network
combined with Seq2Seq (Li et al., 2022), effectively alleviates the
sample imbalance problem by using the advantages of model
structure. In the five-classification task, the best performance of the
existing literature was obtained. Although the method of Li et al.
was successful, it performed poorly in categories with small sample
size. Their model did not fully meet expectations in S category’s
PPV (92.23%) and F category’s SEN (93.81%). In order to further
improve the performance of arrhythmia classification model, we
proposed a novel weight capsule network with MLP combined with
Seq2seq for arrhythmia classification on the basis of Li et al., and
further enhanced the feature extraction capability of weight capsule
network through MLP. Compared with the results before (Li et al.,
2022), as shown in Table 3, our method achieved improvement in
10 evaluation indexes of the three-classification task, especially the
SEN and PPV of class S increased by 2.13% and 2.66%, respectively.
As shown in Table 4, in the five-classification task with increasing
classification difficulty, the PPV of S and the SEN of F are improved
by 3.91% and 4.31%, respectively while the SEN of S (97.66%)
is 1.9% lower than the performance obtained before (Li et al.,
2022). However, the overall performance index of our method
(>96%) is better than that of Li et al. (2022) (>92%). As shown in
Table 3, although some studies have achieved good performance
using SMOTE method (Mousavi and Afghah, 2019; He et al., 2020;

Jiang et al., 2020). But SMOTE method may have bias. Our method
only relies on weight capsule network with MLP to enhance the
acquisition of features without using oversampling (SMOTE, etc.)
and weighted enhancement data, and achieve close or above the
best (Jiang et al., 2020) of using the SMOTE method in this simple
way. Moreover, our model has a smaller number of parameters than
previous work (Mousavi and Afghah, 2019) (252980<357154). This
shows that the combination of weight capsule network with MLP
and Seq2Seq to alleviate sample imbalance is promising. At the same
time, the clever combination of MLP and weight capsule network
provides a new case for the progress of weight capsule network.

Previous studies have shown that capsules can classify rare
ECG beats (Jayasekara et al., 2019), which has the potential to learn
multiple sample sizes from a small sample size. Also, inspired by the
good performance of our method on class S (training samples less
than test samples), we designed less-sample experiments (sample
size distribution is shown in Supplementary Material S1). As shown
in Supplementary Table S2 the number of training samples of
class S is less than the number of test samples (941<1836). In
the less-sample experiments, we use DS1_2 and DS1_3 as the
training set. Since the sample distribution of DS1_2 is more
extreme, we mainly observe the results of training with DS1_3.
(The results of training with DS1_2 are shown in Supplementary
Material Supplementary Table S6.) As shown inTable 3, in the three-
classification task, compared with the performance of our method
training with full samples, there are three indicators better than that
of full samples, and there are four indicators decreases less than
1%. However, SPEC of class N decreased by 3.03%, SEN of class S
and V decreased by 8.12% and 1.09%, respectively. Compared with
the existing studies, the overall performance index of our method
ranked third in the existing literature (Jiang et al. (Jiang et al.,
2020) obtained the optimal overall performance index by using
SMOTE, and our previous work (Li et al., 2022) obtained the overall
performance index by using full sample ranked second). As shown
in Table 4, in the five-classification task, there are eight indicators
the same as or better than that of full samples. Compared with the
existing studies, the performance of our method ranked second in
the existing literature, second only to the performance of (Li et al.,
2022) with all samples. Considering that we use only half of the
training samples, DS1_3 has less training sample than test sample
for each category, such a result is acceptable. This also demonstrates
the excellent feature extraction capability of our model.

In order to better alleviate the problem of sample imbalance
in arrhythmia classification, we also consider other innovative
elements. The results are shown in Table 1 and Table 2;
Supplementary Table S4, S5. When training with the full sample,
MLP is close to baseline. However, MLP needs to be combined
with other networks to further exert the advantages of feature
extraction when training with less sample. When combined with
MLP block, MWCapsuleNets performs better than MCapsuleNets.
Also, in combination with the same weight capsule network, the
performance of MLP block (MWCapsuleNets) is better than that
of conv block (CWCapsuleNets). In the three-class classification
task, our reference baseline Mousavi and Afghah (2019) only used
a combination of convolutional network and seq2seq, and used
SMOTE to balance the data, which can make the sensitivity of
class V reach 100%. Therefore, it is reasonable that our model
can make sensitivity of class V achieve 100%. Transformer-based
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models use a self-attention mechanism for context awareness and
has very successful performance in processing sequences.There have
been studies to enhance and detect ECG signals (Hu et al., 2022;
Meng et al., 2022; Xia et al., 2023). However, transformer does not
have any inductive bias and often requires a large amount of data
to train to perform better. The purpose of this paper is to resolve the
classification of single-lead arrhythmias under sample imbalance, so
transformer is not considered for the time being.

Although the MLP + WCapsule + Seq2seq model shows
excellent performance, it fails to achieve the expected performance
in the classification of class S. Especially in less-sample experiments,
as shown in Table 4, there is still a gap between its sensitivity and
existing work’s. This may be because when optimizing MLP, the
overfitting performance is inhibited by reducing the number of
stacked layers. So, the learning performance of MLP fails to reach
the optimal effect.

Although our model has achieved good results in arrhythmia
classification, it also has the limitations of small sample size and
single lead data set. We will further evaluate the dependence of
the model on leads. Furthermore, we will also consider combining
with the other leads or a random lead. In the future, we will verify
our model on a larger 12-lead data set. We will also consider the
combination of transformer in tasks with more data or more leads.

5 Conclusion

The MLP + WCapsule + Seq2seq method proposed in this
work can effectively alleviate the problem of sample imbalance in
arrhythmia classification, and obtain good performance. At the same
time, this method also shows a potential performance with less
sample, which also provides a new reference for ECG classification
to solve the problem of sample imbalance.
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