AUTHOR=Wang Yifei , Dong Delong
TITLE=Effects of muscle strength in different parts of adolescent standing long jump on distance based on surface electromyography
JOURNAL=Frontiers in Physiology
VOLUME=14
YEAR=2023
URL=https://www.frontiersin.org/journals/physiology/articles/10.3389/fphys.2023.1246776
DOI=10.3389/fphys.2023.1246776
ISSN=1664-042X
ABSTRACT=
Objective: To reveal the influence of muscle strength in different parts of the body on the distance of standing jump, to establish the key force phases of muscle strength in different parts, and to improve the recognition of movement norms.
Methods: VICON infrared three-dimensional motion capture acquisition and analysis system and Noraxon Ultium surface electromyography acquisition and analysis system were used to complete the surface electromyography signal acquisition of 18 randomly selected subjects performing standing long jump.
Results: 1) Triceps brachii, anterior deltoid, latissimus dorsi, semitendinosus, rectus femoris, upper trapezius, pectoralis major, and biceps femoris had significant effects on standing jump distance. 2) From the point of view of the key exertion phase of the standing jump mainly affecting the muscle group; the main exertion phase of the semitendinosus occurs from the rising stage to the descending stage; the rectus femoris, triceps, and latissimus dorsi occur during the ascending phase of the flight; the anterior deltoid muscle occurs in the transition stage from rising to falling in the air; the trapezius muscle occurs in the transition stage from pre-swing to kick-off.
Conclusion: 1) From the regression analysis of the measured muscles on the distance of each stage of standing long jump, deltoid muscle strength is conducive to the improvement of standing long jump distance, which further indicates the importance of upper limb deltoid muscle strength. 2) Through time series analysis, it is found that the force performance of the rectus femoris muscle at this stage can be used as the main identification parameter of standing long jump, and can effectively distinguish different types of movements.