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Introduction: Temperature affects organisms’ metabolism and ecological
performance. Owing to climate change, sea warming constituting a severe
source of environmental stress for marine organisms, since it increases at
alarming rates. Rapid warming can exceed resilience of marine organisms
leading to fitness loss and mortality. However, organisms can improve their
thermal tolerance when briefly exposed to sublethal thermal stress (heat
hardening), thus generating heat tolerant phenotypes.

Methods:We investigated the “stressmemory” effect caused by heat hardening on
M. galloprovincialis metabolite profile of in order to identify the underlying
biochemical mechanisms, which enhance mussels’ thermal tolerance.

Results: The heat hardening led to accumulation of amino acids (e.g., leucine,
isoleucine and valine), including osmolytes and cytoprotective agents with
antioxidant and anti-inflammatory properties that can contribute to thermal
protection of the mussels. Moreover, proteolysis was inhibited and protein
turnover regulated by the heat hardening. Heat stress alters the metabolic
profile of heat stressed mussels, benefiting the heat-hardened individuals in
increasing their heat tolerance compared to the non-heat-hardened ones.

Discussion: These findings provide new insights in themetabolicmechanisms that
may reinforce mussels’ tolerance against thermal stress providing both natural
protection and potential manipulative tools (e.g., in aquaculture) against the
devastating climate change effects on marine organisms.
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1 Introduction

Seawater temperature increase due to climate change is a source of
severe environmental stress affecting marine organism’s physiology
and fitness (Pörtner, 2012; 2021). Extreme and rapid warming can
exceed the physiological resilience and adaptive capacity of marine
organisms. The latter may undermine their potential to respond and
adapt to environmental changes (Doney et al., 2012; Pörtner, 2012;
2021). During exposure to moderate thermal stress, the metabolic
scope is reduced due to the increased cost for basal maintenance, while
extreme thermal stress causes limitation of uptake and delivery of
oxygen to tissues, insufficient aerobic production of ATP and onset of
the anaerobic metabolism to compensate for the increased energy
demands (Pörtner, 2012; Sokolova, 2013; Eymann et al., 2020; Pörtner,
2021). Furthermore, exposure of ectotherms to supraoptimal
temperatures leads to the disturbances in energy turnover,
decreased mitochondrial coupling and excess reactive oxygen
species (ROS) generation (Sokolova, 2023). Elevated temperatures
also increase protein denaturation necessitating energy investment
into the production and activity of molecular chaperones as well as
degradation and replacement of damaged cellular proteins (Hawkins,
1995). These cellular phenomena lead to increased oxidative and
proteotoxic stress and result in cellular and systemic damages that
eventually increase organisms’ morbidity and mortality (Sokolova,
2013; 2018).

Several studies revealed that repeated exposure of an organism to
sublethal thermal stimuli might modulate its response to future
environmental conditions. This can be achieved by the acquisition
of this experience’s memory, since it can result to phenotypic and
stimulus-dependent plasticity of response traits (Hilker et al., 2016),
which leads to the adjustment of physiological or developmental
phenotype to thermal stress (Agrawal, 2001; West-Eberhard, 2003).
The latter allows faster and more efficient response of the organism to
subsequent stress re-exposure (Ding et al., 2012). “Heat-hardening” is
used to describe this beneficial and rapid response that improves the
organism’s heat tolerance when briefly exposed to sublethal
temperatures and produces phenotypes which are more thermal
stress-resistant (Precht, 1973; Bowler, 2005; Bilyk, et al., 2012). The
pioneering work by Hutchison (1961) on the eastern newt
Notopthalmus viridescens was among the first to demonstrate the
organisms’ ability to increase their maximum critical temperature
after exposure to sublethal heat stress. Similar heat hardening effects
on heat resistance has been reported in various other species including
theMediterranean seagrass Posidonia oceanica (Pazzaglia et al., 2022),
frogs (Maness andHutchison, 1980), fish (Menke and Claussen, 1982;
Bilyk and DeVries, 2011; Bilyk, et al., 2012), insects (Huang et al.,
2007; Marais et al., 2009), and bivalves such as Perna canaliculus
(Dunphy et al., 2018), Perna viridis (Aleng et al., 2015) and Mytillus
galloprovincialis (Georgoulis et al., 2021; Georgoulis et al., 2022).

The cellular mechanisms behind the enhanced organisms’
thermotolerance after heat hardening are not well known. Several
studies reported that under stressful conditions (e.g., heat, cold or
salt stress), organisms accumulate low-molecular-mass compounds,
called organic osmolytes that help offset the potentially damaging
stress effects (Rishi et al., 1998; Rabbani and Choi, 2018; Somero,
2022). Organic osmolytes (including methylamines, polyols and
amino acids) can aid in thermal protection and stabilization of
proteins through interactions with the protein surfaces that lead to

regeneration of native protein forms from unfolded states (Hoffman
et al., 2009; Rabbani and Choi, 2018). Furthermore, taurine, one of
the most important organic osmolytes, contributes to the
amelioration of thermal stress by protecting mitochondria,
mitigating oxidative stress and ROS production and thereby
contributing to macromolecular stability (Yancey, 2005; Sokolov
and Sokolova, 2019). Studies on M. galloprovincialis have shown
higher taurine levels associated with higher antioxidant defense in
heat-hardened mussels, when comparing to the non-heat-hardened
ones under elevated temperatures (Georgoulis et al., 2021;
Georgoulis et al., 2022). The osmolyte pool’s modulation is
relevant in both short-term and long-term acclimatization and
therefore adaptive changes of osmolyte systems exhibit critical
importance for rapid survival in warming (Somero, 2022).

Recent studies revealed that heat-hardened M. galloprovincialis
displays improved cellular protection resulted from the metabolic
reorganization and enhanced antioxidant capacity (Georgoulis et al.,
2021; 2022). Specifically, heat-hardened mussels showed higher
tricarboxylic acid (TCA) cycle activity, and at the same time
diversification of upregulated metabolic pathways. The latter can
be hypothesized to act as a mechanism increasing ATP production,
in order to extend survival under heat stress (Sokolova, 2013).
Moreover, taurine was accumulated, which may provide an
antioxidant and cytoprotective role in mussels during hypoxia
and thermal stress (Georgoulis et al., 2022), indicating that
osmolytes might also be involved in cellular protection induced
by the heat hardening. To examine the potential role of osmolytes in
thermoprotection of the mussels, we examined the adaptive
adjustments of the osmolytes in the heat hardened M.
galloprovincialis compared to the non-heat-hardened individuals.
To assess the relative shifts in osmolytes compared to other
intermediary metabolic compounds, non-targeted metabolomic
analyses was conducted using 1H-NMR spectroscopy.

2 Materials and methods

The animals used in the present study originate from the same
exposures as described in earlier published studies (Georgoulis et al.,
2021; Georgoulis et al., 2022). A brief description is provided in the
following sections.

2.1 Animals

As described in Georgoulis et al. (2021), Georgoulis et al. (2022),M.
galloprovincialis mussels with total mass 25.82 ± 4.62 g, shell length
6.42 ± 0.47 cm and shell width 3.2 ± 0.15 cm (mean ± SD)were collected
in the endApril 2021 from amussel aquaculture farmwhich is located in
Thermaikos Gulf, Greece. At the time of collection, the ambient sea
water temperature was approximately 18°C. Thereafter, collected
mussels were transferred to the Laboratory of Animal Physiology,
Department of Zoology, School of Biology of the Aristotle University
of Thessaloniki. There, they were transferred and kept in tanks with
recirculating aerated natural sea water for 1 week. Temperature was kept
at 18°C ± 0.5, salinity at 34‰ ± 2.85 and pH at 8.12 ± 0.05.Mussels were
fed daily with cultured microalgae Tisochrysislutea (CCAP 927/14) at
0.5% dry mass of algae relative to the total mass of mussels.
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2.2 Experimental procedures

Mussels were sequentially exposed to heat-hardening and
acclimation phases as previously described in Georgoulis et al. (2021).

i Heat-hardening phase

The group ofmussels which is later referred as a heat-hardened (H),
was exposed to the heat-hardening conditions. The heat-hardening
experimental design was based on Hutchison’s “Repeated—critical
thermal maximum (CTM)” method (Hutchison, 1961). In brief,
~300 randomly selected mussels were conditioned in three replicate
aquaria. Each aquarium contained 100 L aerated sea water and the
temperature was kept at 18°C for 1 week. Thereafter, water temperature
was increased to 27°C and maintained at this level for 2.5 h. The rate of
temperature increase was set to 1.5°C/min. Then, water temperature
decreased again to the control temperature of 18°C (1.5°C/min).
Mussels were left to recover at this temperature for 24 h. This heat-
stress bout, both the thermal shock phase and the recovery phase, was
repeated four times.

ii Acclimation phase

After the heat-hardening treatment, both non-hardened (group
NH) and heat-hardened mussels (group H) were transferred to four
500 L tanks (50–60 individuals from each group per tank) with
recirculating aerated natural sea water at 18°C and left to recover for
4 days. Within each tank, both groups (NH and H) were placed in
separate baskets. Thereafter, water temperature of the three tanks was
increased by a rate of 1°C/h to 24°C, 26°C, and 28°C, respectively. The
choice of the aforementioned was based on the following: warming of
M. galloprovincialis beyond 24°C resulted to increased oxidative stress,
energy misbalance, metabolic depression and a shift to anaerobic
metabolism (Feidantsis et al., 2020). Moreover, acclimation beyond
26°C activates the heat shock response and the antioxidant defence in
the same species, while at the same time it leads to increased
mortalities (Anestis et al., 2007; Feidantsis et al., 2020; 2021;
Georgoulis et al., 2021). In general, previous studies have shown
that M. galloprovincialis is thermally stressed when exposed to
26°C–27°C (Anestis et al., 2007; Feidantsis et al., 2020). Although
the most extreme heat stress for intertidal species usually occurs
during emersion, it should be pointed out that ambient sea surface
water temperature recorded in Northern Greece during July–August
varies between 27 and 28.5°C (Feidantsis et al., 2018).

Mussels maintained at 18°C were used as controls to evaluate
possible temporal effects on the parameters of interest. All exposure
conditions were run in triplicates.

2.3 Tissue sampling and water quality
monitoring

Individuals (n = 8 at each time point) fromH andNHgroups were
collected from each tank after the desired temperature (24°C, 26°C or
28°C) has been reached, at the following time points: 12 h and 1, 5,
10 and 15 days At 24°C, bothH andNHmussels showed nomortality,
while at 26°C the mortality of NHmussels reached 50% and that of H
ones 40%. However, due to the 100% mortality of NH mussels by the

10th at 28°C, samplings on the 15th day were not performed. We have
to underline that contrary to the above, the Hmussels exhibited a 45%
mortality by the 15th day (Georgoulis et al., 2021; 2022). After mussels
dissection, mantle tissue was removed and immediately frozen in
liquid nitrogen. Then, it was stored at −80°C for later analyses. Mantle
was chosen for this study since it exhibits higher aerobic capacity and
more intense physiological stress response compared to other tissues.
Additionally, several previous studies in mussels examined this tissue
and thus it provided us feasible comparisons (e.g., Feidantsis et al.,
2020 and references therein). Physicochemical water parameters were
measured daily including salinity (g L−1), O2 (mg L−1) and pH by using
Consort C535, Multiparameter Analysis Systems (Consort, bvba,
Turnhout, Belgium), and concentrations of NH3 (μg L−1), NO2

−

(μg L−1) and NO3
− (μg L−1) using commercial kits (Tetra Werke,

Melle, Germany) (Table 1) (Georgoulis et al., 2021).

2.4 Tissue extraction

A methanol chloroform extraction protocol was used for the
mantle tissue (Rebelein et al., 2018; Georgoulis et al., 2022) Briefly,
homogenization of about 100 mg of the frozen mantle tissue was
performed in a solution containing 400 μL ice-cold methanol and
125 μL ice-cold Milli-Q water. The samples were centrifuged (20 s,
6,000 rpm) and thereafter the addition of 400 μL ice cold chloroform
and 400 μL ice-cold Milli-Q water followed. After mixing and
incubation on ice (10 min), samples were centrifuged (10 min,
3,000 g, 4°C) resulting in three phases: the upper methanol layer
with the polar metabolites (which was transferred to a new tube and
dried in a vacuum centrifuge at room temperature overnight), the
lower chloroform layer with the lipids (which was dried in a fume
hood at room temperature) and a thin layer of proteins in the middle.
The samples’ water-soluble fractions which contained the cytosolic
metabolites were transferred to the AWI in Bremerhaven. There, for
metabolomic studies, they were dried at room temperature using a
rotational vacuum concentrator (RVC 2–18 HCl, Christ GmbH,
Germany).

2.5 Metabolomic profiling based on1H-NMR
spectroscopy

For the untargeted metabolite profiling, 8 preparations from heat-
hardened (H) and non-heat-hardened (NH) groups of animals at each
time point were employed. This profiling was based on NMR
spectroscopy, and was performed according to previous studies
(Götze et al., 2020; Georgoulis et al., 2022). The NMR spectroscopy
measurements were carried out on a vertical 9.4T wide bore magnet
operating at 400.13 MHz with Avance III HD electronics (Bruker
GmbH, Germany). Deuterated water (D2O) containing 0.05%
thrymethylsilyl propionate (TSP, Sigma-Aldrich, USA) was
employed in order to dissolve the dried tissue extracts (internal
standard with a 1:1 ratio) which were thereafter transferred into
1.7 mm NMR tubes. Samples were then placed in a 1.7 mm
diameter triple tuned (1H-13C-15N) probe. Thereafter, measurement
with the employment of a classical Carl-Purcell-Meiboom-Gill (Bruker
protocol cpmgpr1d) sequence with water suppression at room
temperature followed. Measurement parameters were as follows:

Frontiers in Physiology frontiersin.org03

Georgoulis et al. 10.3389/fphys.2023.1244314

https://www.frontiersin.org/journals/physiology
https://www.frontiersin.org
https://doi.org/10.3389/fphys.2023.1244314


acquisition time (AQ) 4.01 s, sweep width (SW) 8802 Hz (22 ppm),
delay (D1) 4 s, dummy scan (DS) 4, number of scans (ns) 256.

Chenomx NMR suite 8.1 (ChenomxInc, Canada) was used to
determine metabolite profiles and concentrations. Therefore, the
1H-NMR spectra were phase and baseline corrected and set to the
chemical shift of the TSP standard (0.0 ppm). The TSP signal served
as line width and concentration standard (2.3 mM). Metabolites
were identified using their corresponding NMR signals from the
Chenomx database and profiled to the NMR spectrum of each
individual spectrum for quantification.

2.6 Statistics

Significant changes in metabolites’ levels between examined
groups were tested using one-way analysis of variance (ANOVA)
(GraphPadInstat 3.0) at the 5% level (p < 0.05). Two-way (GraphPad
Prism 5.0) ANOVA was employed for testing the effects of exposure
time and treatment (H and NHmussel groups) as fixed factors. Post-
hoc comparisons were performed using the Bonferroni test. Values
are presented as means ± S.D.

MetaboAnalyst 5.0 was employed to analyze the differences in
metabolite profiles and concentrations (Chong et al., 2019). Metabolite
concentrations were transformed and scaled in order to achieve
normalization. ANOVA and multi-variate statistics including
principal component analysis (PCA) implemented in MetaboAnalyst
were used to test for differences in normalized concentrations.
Heatmaps and dendograms were performed within Metaboanalyst
for an overview of metabolite patterns and hierarchical clusters.

3 Results

3.1 Branched-chain amino acids

The three examined BCAAs (valine, leucine and isoleucine)
showed a sharp increase in their levels in the mantle tissues during
1–5 days of warming. The BCAA accumulation occurred earlier and
reached higher levels in the H mussels compared to the NH ones.
The elevated BCAA levels tended to persist longer in the H mussels
compared to the NH ones, particularly at 24°C and 26°C (Figure 1).

3.2 Aromatic amino acids

Warming at 24°C led to an increase in the tissue levels of
phenylalanine, tyrosine and tryptophan in both NH and H
mussels. The increase of phenylalanine and tyrosine

concentrations was more pronounced in the H mussels, whereas
in the case of tryptophan levels, no consistent differences were found
between the experimental treatment groups (Figure 2Aa, Ba, Ca). At
26°C and 28°C, AAA levels transiently peaked after 1–5 days of
exposure and then gradually decreased to the baseline (control)
levels. We found no consistent differences in AAA concentrations
between the H and NH mussels at 26°C and 28°C (Figure 2Ab; 2Ac;
2Bb; 2Bc; 2Cb; 2Cc).

3.3 Glutamine family amino acid metabolism

Glutamate and glutamine levels exhibited a significant increase
within the first 5 days of warming (Figures 3A,B). The H mussels
showed greater accumulation of glutamate compared to the NH ones,
whereas increase in the glutamine levels was similar in both
experimental groups (Figure 3A). The only exception to the latter
pattern was a peak in glutamine concentration in the H mussels
after 1 day of exposure to 28°C that greatly exceeded levels found in
the NH counterparts (Figure 3B).

Furthermore, experimental warming led to an increase in the
concentrations of arginine, ornithine and proline in the mantle of
mussels (Figures 3C–E). Generally, the concentrations of these
amino acids reached peak values earlier with increasing
temperatures [by 10–15 days at 24°C, 5 days at 26°C (except
ornithine) and 1–5 days at 28°C]. Accumulation of ornithine was
higher in the NH mussels than in the H groups, particularly at
warmer temperatures and prolonged exposures (Figure 3D). In
contrast, arginine concentrations reached higher levels in the H
mussels than in their NH counterparts (Figure 3C). Proline
concentrations in the mantle peaked earlier and at a higher level
in the H mussels compared to the NH ones but were similar in the
two experimental groups at other time points (Figure 3D).

3.4 Choline and related metabolites

Warming induced elevated levels of betaine, choline and
homocysteine in the mussels’ mantle tissue peaking after 5 days
of warming (except homocysteine at 24°C reaching the highest levels
after 15 days). Levels of these metabolites were higher in the H
mussels compared with the NH ones at 24°C and 28°C (Figure 4). At
26°C, the pattern of differences in betaine, choline and homocysteine
concentrations between the H and NH mussels was less consistent
(Figure 4).

Mantle levels of N,N-dimethylglycine, O-acetylcholine and sn-
glycero-3-phosphocholine showed a significant increase during
warming. With a few exceptions, the levels of N-dimethylglycine,

TABLE 1 Mean values of seawater parameters.

(°C) TEMPERATURE (°C) Salinity (G−1) PH O2 (MG L-1) NH3 (MG L−1) NO2− (MG L−1) NO3 – (ΜG L−1)

18 18 ± 0.1 33.2 ± 0.03 8.04 ± 0.02 7.9 ± 0.06 0.2 ± 0.01 0.2 ± 0.01 <12.5

24 24 ± 0.3 33.4 ± 0.03 8.03 ± 0.02 7.8 ± 0.07 0.2 ± 0.01 0.3 ± 0.02 14 ± 0.6

26 26 ± 0.4 33.3 ± 0.01 8.02 ± 0.01 7.8 ± 0.05 0.2 ± 0.02 0.3 ± 0.01 14 ± 0.3

28 28 ± 0.3 33.2 ± 0.04 8.02 ± 0.01 7.8 ± 0.07 0.3 ± 0.02 0.2 ± 0.02 13 ± 0.5
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O-acetylcholine and sn-glycero-3-phosphocholine were higher in
the H mussels compared with their NH counterparts. The mantle
levels of these three metabolites reached the peak values earlier at the
high temperatures (26°C and 28°C) than at 24°C (Figure 4D; 4E; 4G).

Concentrations of O-phosphocholine decreased during
warming, particularly at the two higher exposure temperatures
(26°C and 28°C) (Figures 4Fb, Fc). No consistent differences in
the warming-induced shifts in O-phosphocholine concentrations
were found between the H and NH mussels (Figure 4F).

3.5 Organic osmolytes and cytoprotective
compounds

At 24°C, levels oftrimethylamine-N-oxide (TMAO), β-alanine,
n-acetylcysteine (NAC), hypotaurine increased throughout the
exposure in the mantle of NH and H mussels. The concentrations
of TMAO, β-alanine and hypotaurine were higher in the H mussels
compared to the NH ones, particularly at the later stages (10–15 days)
of exposure (Figures 5A–D). The levels of NAC did not consistently
differ between the NH and H groups (Figure 5C).

At 26°C and 28°C the concentrations of TMAO, β-alanine,
NAC and hypotaurine increased early on during warming and
gradually declined after 5–10 days of exposure. Levels of TMAO
were higher in the mantle of H mussels compared to the NH ones
at 26°C and 28°C (Figures 5Cb, Cc). The concentrations of β-
alanine and NAC tended were higher in the NHmussels compared
to the H ones after prolonged (10–15 days) of exposure, with little
difference between the groups observed at the earlier time points
(Figures 5B,C). Mantle levels of hypotaurine were similar in the
NH and H mussels throughout the exposure to 26°C and 28°C
(Figures 5Db, 5Dc).

Glycine concentrations increased during warming in the NH
mussels but remained near the baseline (control) levels in the H ones
(Figure 5E). The warming-induced changes in threonine and
homarine concentrations depended on the temperature with an
increase throughout the exposure at 24°C and a transient peak after
1–5 days followed by a gradual decline at 26°C and 28°C (Figures
5F,G). A similar pattern was found for lysine concentrations except
for the NH mussels at 28°C (Figure 5H). No consistent differences
between the NH and H mussels in the concentrations of threonine,
homarine and lysine were found.

FIGURE 1
Isoleucine (A), leucine (B) and valine levels in the mantle of heat-hardened (H) and non-heat-hardened (NH)Mytilus galloprovincialis mussels after
exposure to 24°C (a), 26°C (b) and 28°C (c) in comparison to acclimated at 18°C individuals (control). Values depict means ± SD of n = 8. Asterisk (*) depicts
statistically significant changes (p < 0.05) when compared to control mussels, while cross (+) depicts statistically significant changes (p < 0.05) when
compared to non-heat-hardened (NH) mussels.
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3.6 Other metabolites

Concentrations of UDP-glucose in the mantle tissues increased
during warming with higher levels observed in the H compared to
the NH mussels (Figure 6A). The UDP-glucose levels peaked after
1–5 days of exposure and remained stable (24°C) (Figure 6Aa) or
gradually decreased (26°C and 28°C) afterwards (Figures 6Ab, Ac).

Mantle levels of acetoacetate increased during the early
(1–5 days) stages of warming and generally declined after
10–15 days, without any consistent differences between the NH
and H groups (Figure 6B). Concentrations of 4-aminobutyrate
increased during warming, with higher levels attained in the NH
than in the H group after 10–15 days of exposure (Figure 6C). Tissue
levels of malonate transiently peaked during warming, reaching
higher peak levels in the NH than in the H mussels, and returned to
the baseline (control) levels at 24°C or even lower values at 26°C and
28°C after 10–15 days of exposure (Figure 6D).

Mantle levels of uracil decreased during warming below the
baseline (control) levels (Figure 6E). Concentrations of imidazole
levels transiently increased after 1–5 days of exposure and decreased
at the later time points reaching the baseline (control) levels after
10–15 days in most groups (Figure 6F).

3.7 Multivariate analyses of metabolite
profiles

The heatmaps in Figure 7 show the differences in the
metabolome shifts between the non-heat-hardened (group
NH) and heat-hardened (group H) mussels as well as between
the different exposure temperatures. At 24°C, three groups of
metabolites, showing correlated patterns of change, were
identified based on the corresponding dendrograms. The first
group included metabolites that increased towards mid-exposure
in the H mussels (acetoacetate, glutamate, malonate, O-acetylcholine,
choline, N,N-dimethylglycine, betaine, O-phosphocholine, β-alanine,
glycine and uracil). The second group included metabolites peaking
during the late exposure in both H and NH group (ornithine,
hypotaurine, N-acetylcysteine, lysine, homocysteine and proline).
The third group of metabolites increased during mid- and late
exposure exclusively in the H group (UDP-glucose, leucine,
phenylalanine, arginine, glutamine, tyrosine, 4-aminobutyrate,
isoleucine, threonine, valine, tryptophan, sn-glycero-phosphate,
trimethylamine, homarine and imidazole).

At 26°C, four groups of metabolites were identified. The first
group showed a concentration increase during the first days of

FIGURE 2
Phenylalanine (A), tyrosine (B) and tryptophane (C) levels in the mantle of heat-hardened (H) and non-heat-hardened (NH)Mytilus galloprovincialis
mussels after exposure to 24°C (a), 26°C (b) and 28°C (c) in comparison to acclimated at 18°C individuals (control). Values depict means ± SD of n = 8.
Asterisk (*) depicts statistically significant changes (p < 0.05) when compared to control mussels, while cross (+) depicts statistically significant changes
(p < 0.05) when compared to non-heat-hardened (NH) mussels.
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exposure in the Hmussels (arginine, O-acetylcholine, homocysteine,
isoleucine, leucine, phenylalanine, threonine), while those in the
second group increased in both H and NH mussels (sn-glycero-

phosphate, UDP-glucose, tyrosine, glutamate, tryptophan, N,N-
dimethylglycine, glutamine and thimethylamine). Additionally,
O-phosphocholine and uracil levels increased in the first days of

FIGURE 3
Glutamate (A), glutamine (B), arginine (C), ornithine (D) and proline (E) levels in the mantle of heat-hardened (H) and non-heat-hardened (NH)
Mytilus galloprovincialismussels after exposure to 24°C (a), 26°C (b) and 28°C (c) in comparison to acclimated at 18°C individuals (control). Values depict
means ± SD of n = 8. Asterisk (*) depicts statistically significant changes (p < 0.05) when compared to control mussels, while cross (+) depicts statistically
significant changes (p < 0.05) when compared to non-heat-hardened (NH) mussels.
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exposure in the mantle tissue of the H group. The fourth group
included metabolites peaking during the mid-exposure at both groups
(4-aminobutyrate, choline, proline, imidazole, homarine, hypotaurine,
acetoacetate, betaine, glycine, ornithine, n-acetylcysteine, b-alanine,
malonate, lysine and valine).

At 28°C, the comparison between differently treated mussels
revealed a group of metabolites (leucine, phosphocholine,
N-acetylcysteine, glutamate, tryptophan, imidazole, malonate,
hypotaurine, O-acetylcholine, sn-glycero-phosphate, isoleucine,
UDP-glucose, glutamine, homocysteine, proline, trimethylamine,

homarine, valine, betaine, threonine, N,N-dimethylglycine, choline,
tyrosine, arginine, phenylalanine) that were elevated during the first
day of exposure in the H group and during mid-exposure in the NH
mussels, and a second group (acetoacetate, lysine, β-alanine, 4-
aminobutyrate, uracile, glycine, ornithine) enriched at the mid- and
late exposure in the NH group mussels.

(c_18_1: 18°C 1stday, h_24_1: hardening 24°C 1st day, h_24_5:
hardening 24°C 5thday, h_24_10: hardening 24°C 10th day, h_24_
15: hardening 24°C 15th day, nh_24_1: non-hardening 24°C 1st day,

FIGURE 4
Betaine (A), choline (B), homocysteine (C), N,N-dimethylglycine (D), O-acetylcholine (E), O-phosphocholine (F) and sn-glycero-3-phosphocholine
(G) levels in the mantle of heat-hardened (H) and non-heat-hardened (NH)Mytilus galloprovincialismussels after exposure to 24°C (a), 26°C (b) and 28°C
(c) in comparison to acclimated at 18°C individuals (control). Values depict means ± SD of n = 8. Asterisk (*) depicts statistically significant changes (p <
0.05) when compared to control mussels, while cross (+) depicts statistically significant changes (p < 0.05) when compared to non-heat-hardened
(NH) mussels.
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nh_24_5: non-hardening 24°C 5th day, nh_24_10: non-hardening
24°C 10th day, nh_24_15: non-hardening 24°C 15th day).
(c_18_1: 18°C 1stday, h_26_1: hardening 26°C 1st day, h_26_5:
hardening 26°C 5thday, h_26_10: hardening 26°C 10th day, h_26_
15: hardening 26°C 15th day, nh_26_1: non-hardening 26°C 1st

day, nh_26_5: non-hardening 26°C 5thday, nh_26_10: non-

hardening 26°C 10th day, nh_26_15: non-hardening 26°C
15th day).
(c_18_1: 18°C 1stday, h_28_1: hardening 28°C 1st day, h_28_5:
hardening 28°C 5thday, h_28_10: hardening 28°C 10th day, nh_
28_1: non-hardening 24°C 1st day, nh_28_5: non-hardening 28°C
5th day, nh_28_10: non-hardening 28°C 10th day).

FIGURE 5
TMAO(A), β-alanine (B), n-acetylcysteine (C), hypotaurine (D), glycine (E), threonine (F), homarine (G) and lysine (H) levels in the mantle of heat-
hardened (H) and non-heat-hardened (NH)Mytilus galloprovincialismussels after exposure to 24°C (a), 26°C (b) and 28°C (c) in comparison to acclimated
at 18°C individuals (control). Values depict means ± SD of n = 8. Asterisk (*) depicts statistically significant changes (p < 0.05) when compared to control
mussels, while cross (+) depicts statistically significant changes (p < 0.05) when compared to non-heat-hardened (NH) mussels.
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PCA analysis was applied to statistically determine the
differences in metabolite responses examined herein. According
to the results for the different acclimation temperatures (24, 26,
and 28°C), it seems that group H individuals were diverted in
different clusters from both control and group NH individuals
(Figure 7 right), mainly at 24 and 28°C, as well as at the first
days (1-5) at 26°C. Specifically, at 24°C, PC1 explained 31.6% of the
variance, while PC2 explained 10% (Figure 7A). At 26°C,
PC1 explained 35.6% of the variance, while PC2 explained 8.2%
(Figure 7B). Finally, at 28°C, PC1 explained 36.6% of the variance,
while PC2 explained 12.4% (Figure 7C).

Finally, Figure 8 summarizes the trends of metabolite changes in
the naïve and heat hardened mussels during exposure to different
temperatures.

4 Discussion

4.1 Branched-chain amino acids

BCAAs, including leucine, isoleucine, and valine, are essential
amino acids in mollusks and other animals (Fitzgerald and

FIGURE 6
UDP-glucose(A), acetoacetate (B), 4-aminobutyrate (C), malonate (D), uracil (E) and imidazole (F) levels in themantle of heat-hardened (H) and non-
heat-hardened (NH) Mytilus galloprovincialis mussels after exposure to 24°C (a), 26°C (b) and 28°C (c) in comparison to acclimated at 18°C individuals
(control). Values depict means ± SD of n = 8. Asterisk (*) depicts statistically significant changes (p < 0.05) when compared to control mussels, while cross
(+) depicts statistically significant changes (p < 0.05) when compared to non-heat-hardened (NH) mussels.
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Szmant, 1997) and they play critical roles in cellular metabolism,
growth, and stress signaling (Lynch and Adams, 2014).
Moreover, BCAAs exert stimulatory effects on protein
synthesis and inhibitory effects on proteolysis aiding protein
deposition (Francesco and Enzo, 2017; Holeček, 2018). In
addition to regulating protein turnover, leucine and isoleucine

also play important roles in energy metabolism and redox
homeostasis (D’Antona et al., 2010). Leucine increases the
efficiency of mitochondrial ATP synthesis, which helps to
mitigate oxidative stress (Wu et al., 2022). It also activates the
mammalian target of rapamycin complex 1 (mTORC1), which
stimulates biosynthesis, cell survival, and proliferation (Lynch

FIGURE 7
Heatmap depicting fold change of metabolites in the mantle of heat-hardened (H) and non-heat-hardened (NH) Mytilus galloprovincialis mussels
after exposure to 24°C, 26°C and 28°C (dendrograms indicate the correlation between metabolites) and Correlations of metabolites with each of the first
two principal components (PCs) in the multivariate analysis. (c_18_1: 18°C 1st day, h_24_1: hardening 24°C 1st day, h_24_5: hardening 24°C 5th day, h_
24_10: hardening 24°C 10th day, h_24_15: hardening 24°C 15th day, nh_24_1: non-hardening 24°C 1st day, nh_24_5: non-hardening 24°C 5th day,
nh_24_10: non-hardening 24°C 10th day, nh_24_15: non-hardening 24°C 15th day). (c_18_1: 18°C 1st day, h_26_1: hardening 26°C 1st day, h_26_5:
hardening 26°C 5th day, h_26_10: hardening 26°C 10th day, h_26_15: hardening 26°C 15th day, nh_26_1: non-hardening 26°C 1st day, nh_26_5: non-
hardening 26°C 5th day, nh_26_10: non-hardening 26°C 10th day, nh_26_15: non-hardening 26°C 15th day). (c_18_1: 18°C 1st day, h_28_1: hardening
28°C 1st day, h_28_5: hardening 28°C 5th day, h_28_10: hardening 28°C 10th day, nh_28_1: non-hardening 24°C 1st day, nh_28_5: non-hardening 28°C
5th day, nh_28_10: non-hardening 28°C 10th day).
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and Adams, 2014). Isoleucine, on the other hand, protects against
oxidative stress by regulating the peroxisome pathway and
promoting acetyl-coenzyme A (acetyl-CoA) production (Wu
et al., 2022). Thus the rapid and robust accumulation of
BCAAs in H mussels during warming may have cytoprotective
and enhanced thermotolerance observed in H mussels by
improving ATP supply, protein synthesis (including heat
shock proteins), and redox balance. On the other hand, BCAA
accumulation was delayed in NH mussels and did not reach
similar high levels as in the H mussels. Given that the mollusks
cannot synthesize BCAAs (Fitzgerald and Szmant, 1997), the

warming-induced accumulation of BCAAs in the mussels must
reflect increased transport and retention of these amino acids
from the dietary or waterborne sources (Wright and Pajor, 1989),
or stimulation of BCAA production by associated microbiome
(Lin et al., 2017).

The H mussels’ ability to maintain high BCAA levels was found
to be dependent on the degree of thermal stress they were exposed
to. When exposed to mild thermal stress (24°C), the H mussels were
able to increase their BCAA levels throughout the 15 days of
exposure. However, under more severe warming (26°C and 28°C),
the capacity to retain high BCAA levels appeared compromised and

FIGURE 8
Trends and patterns of the accumulation of metabolites in non-heat-hardened (NH) and heat-hardened (H) Mytilus galloprovincialis mussels after
exposure to different temperatures (24°C, 26°C and 28°C).
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the levels decreased to near-baseline levels after 10 or 15 days of
exposure. The NH mussels showed a similar time course of BCAA
changes at 26°C and 28°C (indicating that same regulatory
mechanisms might be involved), albeit with lower absolute
BCAA concentrations in the mantle tissues compared to the H
group. The decline in the levels of BCAAs after prolonged and severe
warming can make the cells of mussels more susceptible to oxidative
stress and energetic imbalance (Flores et al., 1989; Nawabi et al.,
1990). This vulnerability seems more pronounced in NH mussels
that are less protected by BCAAs to begin with.

4.2 Aromatic amino acids

Aromatic amino acids (AAAs) like phenylalanine, tyrosine,
and tryptophan are essential for mollusks, which cannot
synthesize them and must acquire AAAs through their diet or
from symbiotic organisms (Fitzgerald and Szmant, 1997;
Parthasarathy et al., 2018). AAAs play a crucial role in stress
tolerance as they serve as precursors for the biosynthesis of
hormones and neurotransmitters (Han et al., 2019). Tyrosine
and phenylalanine are involved in the biosynthesis of
neurotransmitters and hormones such as dopamine,
norepinephrine, and adrenaline, while tryptophan is involved
in the biosynthesis of serotonin, melatonin, and kynurenic acid,
which protects neurons from overstimulation (Lieberman et al.,
2005; Zehra and Khan, 2014; Han et al., 2019). Heat hardening
induced earlier and stronger accumulation of AAAs during
warming in the mantle compared to findings in mantle tissue
of the NH mussels. Like BCAAs, accumulation of AAAs cannot
be due to the de novo synthesis and must reflect increased uptake
from external sources or acquisition through protein recycling.

Generally, under mild thermal stress (24°C), H mussels
showed earlier signs of AAAs accumulation and eventually
reached higher levels of AAAs in the mantle tissues than the
NH mussels. Under more severe thermal stress (26°C and 28°C),
the main difference between the H and NH mussels was in the
earlier onset of AAAs accumulation in the former group. After
prolonged exposures at 26°C and 28°C, the AAAs concentrations
converged on similar levels in both H and NH groups and declined
towards the end (10–15 days) of exposures. At the highest studied
temperature (28°C), the rate of this decline was faster in the H
mussels compared with the NH counterparts. These trends
indicate that the balance between the AAAs influx and their
conversion to the secondary compounds like neurotransmitters
and hormones is positive under the mild thermal stress allowing
for a gradual increase of the pool of these essential amino acids,
particularly in the H mussels. Given the important protective roles
of AAAs and their derived secondary metabolites in regulation of
redox balance, immunity and osmotic homeostasis (Lopez-Patino
et al., 2013; Maitra and Hasan, 2016), robust accumulation of
AAAs at 24°C might contribute to stress tolerance of H mussels.
However, the capacity of the mussel tissues to balance supply and
demand of AAAs appears to be exhausted after the prolonged
exposures to severe thermal stress (26°C and 28°C). High rates of
conversion of AAAs into the protective secondary metabolites
(Georgoulis et al., 2021) apparently exceed the AAAs influx from
diet and protein breakdown and indicates high cost of

thermoprotection in mussels as the severity and duration of the
thermal stress increases.

4.3 Glutamine family amino acid metabolism

The pathways involving amino acids of the glutamine family
(arginine, glutamate, glutamine and proline) and their derivatives
(like ornithine) play an important role in nitrogen metabolism,
amino acid biosynthesis and production of signaling molecules like
4-aminobutyric acid (GABA) and nitric oxide (NO) (Newsholme
et al., 2003; Zhang et al., 2017). Glutamine serves as a vital amino
acid precursor and a non-toxic carrier of circulating ammonia (Yoo
et al., 2020). In non-proliferating cells, glutamine is primarily used
for protein synthesis or converted to glutamate, which serves as a
precursor for α-ketoacids that fuel mitochondrial ATP production.
Additionally, glutamate plays a role in synthesizing glutathione as
well as non-essential amino acids like alanine, proline, aspartate,
asparagine, and arginine (Yoo et al., 2020). Highly proliferative cells
rely on glutamine for biosynthesis to generate precursors for amino
acids, nucleotides, and fatty acids (Zhang et al., 2017; Yoo et al.,
2020). The glutamine to glutamate ratio is a key indicator of cellular
metabolic activity, as it decreases with increased glutamine
consumption (as in highly proliferative cells), and increases with
suppressed glutamine metabolism.

During warming, the concentration of certain amino acids from
the glutamine family increased in the mantle of mussels of both
groups. Glutamate, glutamine, arginine, and proline were all
affected, but glutamate, compared to glutamine, saw a
particularly strong accumulation relative to the baseline especially
in H mussels. Strong glutamate accumulation in H mussels during
warming might be due to the elevated pool of glutamine and BCAAs
that can be converted in glutamate (Tamanna andMahmood, 2014).
High levels of glutamate accumulation indicates that warming-
induced metabolic reprogramming is shifted toward enhanced
ATP synthesis rather than proliferation (Zhang et al., 2017; Yoo
et al., 2020). Moreover, high levels of glutamate support protection
against oxidative stress by stimulating the synthesis of glutathione,
particularly when combined with elevated levels of NAC, another
GSH precursor, as found in our present study. This indicates
activation of glutathione system and is consistent with an earlier
report of upregulated glutathione reductase activity during thermal
stress in M. galloprovincialis, with a particularly strong response
shown by the H mussels (Georgoulis et al., 2021). Similar findings
were reported in a sea cucumber Apostichopus japonicus, where
elevated levels of glutamate were also observed during heat stress,
along with the upregulation of proteins involved in glutathione
metabolism (Xu et al., 2016).

The high glutamate pool in the warming-exposed mussels was
associated with the accumulation of an important glutamate-derived
metabolite, 4-aminobutyrate (GABA). GABA is a vital
neurotransmitter in the central nervous system of invertebrates,
including mollusks (Nguyen et al., 2021). Furthermore, the H group
of mussels had significantly higher levels of GABA compared to the
NH ones. This observation aligns with Dunphy et al.’s (2018) study,
which also found higher levels of GABA in H than NH green-lipped
mussels (Perna canaliculus). This increase in GABA levels suggests
that the GABAergic synapse pathway is enhanced during the heat-
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hardening process, thereby retaining neural function and providing
better endurance against thermal stress. Furthermore, the higher
levels of glutamate in H mussels could potentially supply additional
energy sources to the TCA cycle, thereby increasing GABA
production through the GABA shunt (Bouche and Fromm, 2004;
Singh and Roychoudhury, 2020).

The exposure of NH mussels at temperatures beyond 24°C
resulted in accumulation of arginine and its downstream
metabolites, ornithine and proline. The latter suggests that heat
stress promotes activity of the arginine—ornithine—proline
metabolic pathway, by increasing the activity of ornithine
aminotransferase to generate D1-l-pyrroline-5-carboxylate (P5C)
(O’Quinn et al., 2002). The increased levels of intracellular
ornithine promote production of P5C, which can be used for
proline biosynthesis (Ginguay et al., 2017). Irrespective of
temperature exposure, in H mussels, no accumulation of ornithine
was observed in the mantle tissue, despite accumulation of arginine
and proline. Since the flux from ornithine to P5C is not favored under
low intracellular concentrations of ornithine (Albaugh et al., 2017), it
appears more likely that glutamate rather than ornithine serve as a
source for proline synthesis in the H mussels. Proline accumulation
can contribute to cytoprotection during warming stress since this
amino acid can stabilize proteins and prevent their aggregation
(Csonka, 1989; Liang et al., 2013). High levels of proline can also
support the antioxidant defense of the H mussels during warming by
scavenging ROS and increasing GSH pool (Zablocki et al., 1991; Ling
et al., 2013). Accumulation of arginine in the H mussels, on the other
hand, may be due to activation of the urea cycle for ammonium
detoxification and as a source of fumarate it can fuel the TCA cycle
(Georgoulis et al., 2022).

4.4 Choline and related metabolites

Choline plays a crucial role in maintaining cell volume,
supporting nutrient metabolism, balancing osmotic conditions,
and enhancing antioxidant capacity, thereby potentially
mitigating the impacts of heat stress (Zablocki et al., 1991). In
animals, choline can be obtained from phosphatidylcholine (PC)
through phosphatidylethanolamine (PE) methylation (Reo et al.,
2002). Exposure of mussels to heat stress resulted in increased
choline levels. When faced with stressful conditions, the recycling
of choline from PC breakdown is enhanced, allowing the organism to
prevent complete choline deprivation (Li et al., 2005). Moreover, the
elevated levels of related metabolites during heat stress, such as
betaine, homocysteine, acetylcholine, and dimethylglycine, suggest
that choline undergoes acetylation to form acetylcholine, a crucial
neurotransmitter in animals (Wu and Hersh, 1994), and oxidation to
betaine (Pritchard and Vance, 1981), instead of phosphorylation to
PC, which leads to decreased PC concentrations. Betaine supports
cellular stability and is vital for maintaining cellular function in
stressed mussels (Sokolov and Sokolova, 2019). It also serves as a
methyl group donor, directing methionine toward protein synthesis,
and regulates gene expression through DNA or histones
methylation (Zeisel, 2017; Alagawany et al., 2022). Additionally,
betaine transfers a methyl group to homocysteine, resulting in the
production of dimethylglycine and methionine, thereby sustaining
the transmethylation cycle (Kidd et al., 1997).

The warming temperatures have led to an increase in
homocysteine and dimethylglycine levels, indicating an
upregulation of the transmethylation pathway that potentially
contributes to increased methylation during heat stress. Within the
transmethylation cycle, methionine produces S-adenosylmethionine
(SAM), which acts as a methyl donor for the conversion of
phosphatidylethanolamine (PE) to phosphatidylcholine (PC)
catalyzed by phosphatidylethanolamine N-methyltransferase
(PEMT) (Bremer and Greenberg, 1961; Li and Vance, 2008). This
process generates three molecules of S-adenosylhomocysteine
(AdoHcy) through the PEMT reaction, which are then hydrolyzed
to adenosine and subsequently converted back to homocysteine (Kidd
et al., 1997), while PC can be catabolized back to choline.

In the case of H mussels, exposure resulted in a faster
accumulation of choline, betaine, acetylcholine, dimethylglycine,
and homocysteine compared to NH. These metabolites reach
higher levels at 24°C and on the first day of exposure above 26°C.
The accelerated and stronger activation of these metabolic pathways
appears to benefit the H individuals by enhancing neurotransmitter
functions, improving cellular stability, maintaining osmotic balance,
providing thermoprotection, boosting antioxidant capacity, and
increasing methylation levels. Furthermore, during warming, H
mussels significantly accumulated glycero-3-phosphocholine,
whereas NH mussels showed no substantial increases in this
metabolite except at lower levels at 26°C. Glycero-3-
phosphocholine can be synthesized from PC and acts as an
organic osmolyte, protecting cells against high concentrations of
NaCl and urea (Gallazzini and Burg, 2009). This finding supports
the hypothesis of an enhanced urea cycle in H mussels during heat
stress. While the elevated levels of choline and its related metabolites
were sustained through the entire 15 days exposure at 24°C in both H
and NH mussels, exposure to higher temperatures (26°C and 28°C)
curtailed this response after 5 days.

4.5 Organic osmolytes and cytoprotective
compounds

Organic osmolytes, such as TMAO, NAC, hypotaurine, lysine,
and β-alanine, play a crucial role in protecting the cellular structures of
marine organisms, including mussels, from harsh environmental
conditions such as warming (Mello and Barrick, 2003; Yancey,
2005; Rahman et al., 2016; Somero, 2022). In particular, TMAO
and glycerylphosphorylcholine (GPC) act as effective protectants,
enhancing protein stabilization and reducing protein denaturation
caused by heat or chaotropic compounds like urea (Mello and Barrick,
2003; Yancey, 2005; Rahman et al., 2016; Somero, 2022). Likewise,
lysine contributes to protein stabilization by binding to denatured
proteins (Lin and Timasheff, 1996), while β-alanine supports redox
balance, further aiding in protein stabilization (Bishop et al., 1983).
The accumulation of hypotaurine and NAC enhances cellular
cytoprotection in mussels by acting as antioxidants. Hypotaurine
scavenges harmful radicals, such as HOCl and OH radicals,
thereby yielding taurine (Aruoma et al., 1988) that accumulates
during heat stress in M. galloprovincialis (Georgoulis et al., 2022).
NAC improves the activity of oxidative stress enzymes, bolstering
oxidative defense mechanisms under elevated temperatures
(Maksimchik et al., 2008) and helps prevent DNA damage and
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resists apoptosis (Zhao et al., 2021). NAC also serves as a precursor of
glutathione, enhancing detoxification mechanisms (Peña-Llopis et al.,
2014). Therefore, a faster and more pronounced accumulation of
these protective compounds in the H mussels could enhance their
ability to stabilize the proteome and reduce protein denaturation
caused by heat stress and urea accumulation. Furthermore,
preferential accumulation of these protein-stabilizing osmolytes at
the expense of the less compatible amino acids like glycine may
enhance this effect (Somero, 2022).

The continuous accumulation of organic osmolytes at 24°C until
the 15th day of exposure contributed to the cellular cytoprotection of
H mussels. However, prolonged exposure to higher temperatures,
26°C and 28°C, led to depletion of the osmolyte pool after the 5th and
1st day, respectively, resulting in a decrease in the mussels’
cytoprotective capacity. At these severe thermal stress levels, the
stabilizing effects on macromolecules and antioxidant mechanisms
were superseded by stronger mechanisms like heat shock proteins
(HSPs) and antioxidant enzymes, which remaind elevated
throughout the exposure to severe thermal stress (Georgoulis
et al., 2021).

4.6 Other metabolites

In both H and NH mussels, temperature increase has led to
increased levels of acetoacetate, a ketone body synthesized from
acetyl-CoA as the end product of fatty acid metabolism (Laffel,
1999). Heat-stressed mussels may stimulate lipid metabolism, which
can serve as an energy source when glucose availability is limited
(Laffel, 1999; Tian et al., 2015; Fan et al., 2019). In the present study,
acetoacetate levels increased without significant differences between
H and NH mussels at 24°C and 26°C. At 28°C, however, H mussels
exhibited a faster increase in ketone metabolism compared to NH
individuals suggesting a stronger stimulation of lipid metabolism in
mantle.

Heat stress also caused the accumulation of malonate in mussels.
Malonate acts as a competitive inhibitor of the enzyme succinate
dehydrogenase, a key molecule in the tricarboxylic acid (TCA) cycle
and electron transport chain (Kim, 2002). Increased malonate levels
can negatively impact energy production by reducing the activity of
the TCA cycle and limiting cellular respiration capacity (Zampiga
et al., 2021). The accumulation of malonate, particularly in NH
mussels at all elevated temperatures, indicates a restriction of energy
production during heat stress, contrasting with H mussels that
exhibited a significant increase in malonate only on the 5th day
at 24°C. This observation is closely related to the metabolic
depression observed in M. galloprovincialis when acclimated to
24°C, accompanied by extended periods of valve closure (Anestis
et al., 2007). Additionally, the increased concentrations of succinate
and fumarate in NH mussels support the hypothesis of anaerobic
succinate metabolism, as malonate inhibits the activity of succinate
dehydrogenase. In contrast, the lower concentrations of malonate in
H mussels at 26°C and 28°C, compared to NH ones, align with
previous findings that demonstrated no elevation of succinate and
fumarate, indicating a more robust aerobic pathway in the TCA
cycle and a delayed switch to anaerobiosis (Georgoulis et al., 2021).

UDP-glucose (UDP-Glc) exhibited increased concentrations at
temperatures beyond 24°C. UDP-Glc is produced through

glycogenesis and participates in the biosynthesis of glycogen,
glycoproteins, glycosaminoglycans, and glycosphingolipids
(Durrant et al., 2020). Under stressful conditions, bivalves
prioritize carbohydrates as their primary energy source, with fatty
acids serving as a secondary source (Erk et al., 2011). The
accumulation of UDP-Glc in thermally stressed mussels indicates
higher demands for glycogen production during warming, which
has been attributed as a metabolic adaptive strategy against heat
stress (Maazouzi et al., 2011). Specifically, this phenomenon was
particularly pronounced in H mussels compared to NH ones, with
significantly higher UDP-glucose levels at all elevated temperatures,
indicating enhanced glycogenesis rates and increased production of
energy sources like glycogen to withstand acute thermal stress.

5 Conclusion

Our study provides insights in the metabolic mechanisms that
may lead to increased tolerance of M. galloprovincialis against
increased seawater temperatures. Specifically, metabolic
rearrangement induced by heat hardening appears to enhance the
thermal protection via increase of particular metabolites. Most
notably, these metabolites included BCAAs, AAAs, and
compounds with protein stabilizing and antioxidant properties.
However, metabolites exhibited different patterns of accumulation
at different temperatures indicating the interplay of several metabolic
pathways during heat stress. As temperature rose, the distinction
between the responses of H and NH mussels decreased progressively.
This was demonstrated by hierarchical clustering analysis, which
revealed that at 24°C, 26 metabolites were preferentially enriched in
the Hmussels, while at 26°C, this number reduced to 9 only. At 28°C, a
sizable group of 24 metabolites increased in both treatment groups,
albeit with an earlier onset in the H mussels. These findings suggest
that with increasing thermal stress, similar protective metabolic
mechanisms are activated in both groups. However, the H mussels
exhibited an earlier and stronger activation of this conserved
protective response, contributing to enhanced thermal protection.
The latter is clearly depicted by the fact that the NH mussels
exhibit a 100% mortality at 28°C by the 10th day of exposure, in
comparison to the H individuals. Notably, the majority of metabolites
exhibited a biphasic response peaking within 5 days of warming in H
and NH mussels. We propose that the initial increase in metabolite
levels during the first 5 days serves as a preemptive defensemechanism
to safeguard the structure and functionality of proteins, prior to the
sufficient expression of molecular chaperones like HSPs that provide
protection during the later phase. This highlights the potential of heat
hardening as a highly promising approach in combating the impacts of
global warming on cultivated and economically valuable bivalves,
providing increased endurance to thermal stress. However, the energy
costs associated with this response and its potential benefit onmussels’
thermotolerance during prolonged exposure to elevated temperatures
remain uncertain.
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