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Type 2 diabetes mellitus (T2DM) is one of the most prevalent metabolic
disorders worldwide. However, T2DM still remains underdiagnosed and
undertreated resulting in poor quality of life and increased morbidity and
mortality. Given this ongoing burden, researchers have attempted to locate
new therapeutic targets as well as methodologies to identify the disease and its
associated complications at an earlier stage. Several studies over the last few
decades have identified exosomes, small extracellular vesicles that are
released by cells, as pivotal contributors to the pathogenesis of T2DM and
its complications. These discoveries suggest the possibility of novel detection
and treatment methods. This review provides a comprehensive presentation
of exosomes that hold potential as novel biomarkers and therapeutic targets.
Additional focus is given to characterizing the role of exosomes in T2DM
complications, including diabetic angiopathy, diabetic cardiomyopathy,
diabetic nephropathy, diabetic peripheral neuropathy, diabetic retinopathy,
and diabetic wound healing. This study reveals that the utilization of exosomes
as diagnostic markers and therapies is a realistic possibility for both T2DM and
its complications. However, the majority of the current research is limited to
animal models, warranting further investigation of exosomes in clinical trials.
This review represents the most extensive and up-to-date exploration of
exosomes in relation to T2DM and its complications.
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1 Introduction

Type 2 diabetes mellitus (T2DM) is one of the most common metabolic disorders in
adults, and its prevalence is increasing proportionally to the epidemic of obesity (Dunstan
et al., 2002). It is estimated that 527 million people worldwide have T2DM, and that it is the
ninth leading cause of death (Dunstan et al., 2002; Zheng et al., 2018; Sun et al., 2022). T2DM
has alarmingly increased in its incidence in the United States and other western countries,
placing a significant burden on families and caregivers. In addition, its growing costs for
treatment and management threaten healthcare systems at large (Ceriello et al., 2020). At the
cellular level, the pathophysiology of T2DM involves impaired insulin secretion and insulin
resistance. While this pathophysiology at large increases mortality, it also presents with
numerous chronic complications, including diabetic angiopathy (DA), diabetic
cardiomyopathy (DCM), diabetic nephropathy (DN), diabetic peripheral neuropathy
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(DPN), diabetic retinopathy (DR), and diabetic wound healing
(DWH). Given the significant burden, both to individuals and
healthcare systems, several efforts have been made to identify
novel biomarkers and therapeutics that would elucidate improved
diagnosis and treatment of T2DM. One such effort has been through
the discovery and study of exosomes, small vesicles that contain
soluble and membrane-bound proteins, lipids, messenger RNA
(mRNA), and DNA. Exosomes are involved in the autocrine,
paracrine, and endocrine communication between cells. Over the
past 10 years, these cellular communication packets have been
implicated in the pathogenesis of T2DM, suggesting their utility
in earlier recognition or novel diagnostic modality (i.e., via urine)
(Chang and Wang, 2019). Moreover, given that the exosomes have
been noted in various biochemical pathways implicated in T2DM,
they could further serve directly as therapeutics for the disease.
Furthermore, work in many animal studies have identified the role
of exosomes in the development of the previously listed diabetic
complications. As clinical trials are yet to make significant progress
in this field of study, this review serves to describe exosomes and
T2DM in detail and present a comprehensive assessment of
exosome-related studies in T2DM and its associated

complications. The findings in this review can be utilized to
holistically understand the landscape of exosomal T2DM as a
precursor to the development of novel studies in both animal
models and clinical trials.

2 Exosomes

Exosomes are extracellular vesicles (EVs) that are released by
cells when multivesicular bodies fuse with the plasma membrane.
This fusion liberates the contents within the multivesicular bodies
(MVBs), which are known as intraluminal vesicles (ILVs), into the
extracellular environment (Edgar, 2016). Exosomes (i.e., released
ILVs) have a diameter between 40 and 100 nm and a characteristic
cup-shaped morphology that can be observed via electron
microscopy (Conde-Vancells et al., 2008). Exosomes first start as
early endosomes, which then bud inward to generate ILVs and
become endosomes. Various contents (e.g., proteins, lipids, nucleic
acids) are packaged into these ILVs by machinery that may or may
not involve the endosomal sorting complex required for transport
(ESCRT). Through this process, endosomes mature into MVBs. The

FIGURE 1
Development of exosomes and their components. (A) Exosome composition, common components of exosomes and their membranes. CD,
cluster of differentiation; circRNA, circular RNA; Hsp, heat shock protein; lncRNA, long noncoding RNA; miRNA, microRNA (B) Cell, the developmental
process of exosomes. Exosomes start as early endosomes (EE) and are trafficked to become multivesicular bodies (MVBs) (i.e., late endosomes; LE)
containing intraluminal vesicles (ILVs). When these ILVs bud out of the plasma membrane (PM) outside of the cell, they are known as exosomes. (C)
ESCRT-dependent exosomal markers. ALIX, apoptosis-linked gene 2-interacting protein X; TSG101, tumor susceptibility gene 101 protein (D) ESCRT-
independent exosomal markers. nSmase2, neutral sphingomyelinase 2.
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ESCRT-dependent pathway targets MVBs to the plasma membrane
via mechanisms that are well understood (Williams and Urbé, 2007;
Hurley, 2008). Processes that do not involve the ESCRT (i.e., non-
ESCRT) are poorly characterized but are suggested to involve
ceramide and the subsequent generation of raft-lipids, which
motivate the MVBs to reach the plasma membrane rather than
to participate in lysosomal fusion (Trajkovic et al., 2008). Exosomes
have several specific cytoplasmic markers regardless of the cell in
which they are generated. For example, exosomes contain proteins
involved in membrane transport and fusion (e.g., Rab GTPases,
Annexins, flotillin), heat shock cognate proteins (e.g., hsc70, hsc90),
integrins, and tetraspanins (e.g., CD63, CD9, CD81, CD82). In
addition, exosomes generated through the ESCRT pathway
contain apoptosis-linked gene 2-interacting protein X (ALIX) and
tumor susceptibility gene 101 protein (TSG101) (Figure 1)
(Wubbolts et al., 2003; Simons and Raposo, 2009).

Exosomes were first described in 1983 by Harding et al. when the
group was attempting to understand the maturation of reticulocytes
to erythrocytes (Harding et al., 1983). Using pulse-chase
experiments and electron microscopy, the group was able to
identify late endosomes with MVBs that could fuse with the
plasma membrane, releasing contents extracellularly rather than
fusing with lysosomes (Harding et al., 1983). A few years later, the
term “exosomes” was coined (Johnstone et al., 1987). However, their
relevance was minimal for several decades until nearly the turn of
the century when it was discovered that exosomes harbor functional
major histocompatibility complex (MHC)-peptide complexes that
induced immune responses in-vivo (Zitvogel et al., 1998).
Subsequently, exosomal content was analyzed, suggesting that
exosomes contained proteins, lipids, mRNA, microRNA
(miRNA), long non-coding RNA (lncRNA), circular RNA
(circRNA), and DNA (Théry et al., 1999; Théry et al., 2001;
Valadi et al., 2007; Ronquist et al., 2012). miRNA is known to
primarily regulate mRNA, and both lncRNA and circRNA primarily
regulate miRNA (Morris and Mattick, 2014). At around the same
time as the discovery of exosomal components, it was noted that
exosomes are mediators of intercellular communication (Théry
et al., 2002). All of these findings together, along with a later
finding that most exosomes actually do not contain MHCs,
suggested to the scientific community that exosomes could play
an integral role in therapeutic medicine (Kim et al., 2016). The
concept of utilizing exosomes, especially those derived from stem
cells, without the original cells themselves as a form of therapy is
known as “cell-free” therapy (Phinney and Pittenger, 2017).

Although exosomes are defined specifically above, they cannot
always be studied in isolation. This is because exosomal purification
is done by ultrafiltration, which can, at best, separate vesicles
between 50 and 1,000 nm in diameter (Cheruvanky et al., 2007).
The inclusion of larger-than-exosomal products has been assigned
various terms (e.g., microsomes, ectosomes), which, together with
exosomes, form the umbrella term of extracellular vesicles (Stein and
Luzio, 1991; Théry, 2011). While this limitation is respected, the
findings in this review include work primarily from papers that
confirm exosomal markers (e.g., ALIX, TSG101, CD9, etc.).

Exosomes are known to be involved in several physiological and
pathological functions. To provide one physiological example, in the
central nervous system, exosomes are known to have an important
role in myelin sheath maturation, neuronal activity levels, and

axonal regeneration (Court and Alvarez, 2005; Bakhti et al., 2011;
Frühbeis et al., 2013). Pathologically, exosomes have been implicated
in cancer, heart disease, neurodegenerative disorders, and even
psychiatric conditions (Liu W. et al., 2019; Saeedi et al., 2019;
Zheng et al., 2020; Zhang et al., 2021; Zhou et al., 2021). Having
explored an introductory explanation of exosomes, the next section
explores the fundamentals of T2DM.

3 Type 2 diabetes mellitus: insulin
production and pathophysiology in
brief

3.1 Insulin production

The pancreatic β-cells are responsible for insulin production.
Insulin begins as pre-proinsulin and is subsequently modified and
cleaved in the endoplasmic reticulum and Golgi apparatus,
respectively, to yield insulin and C-peptide (Halban, 1994; Fu
et al., 2013; Bunney et al., 2017). Insulin is then stored in
intracellular granules until the β-cells receive a signal to release
insulin. This signal is commonly triggered by glucose entering the
cell via glucose transporter 2 (GLUT2); however, it can also be
triggered by amino acids, fatty acids, and hormones (Boland et al.,
2017). Once glucose enters the cells, the ATP to ADP ratio rises,
triggering the closure of ATP-dependent potassium channels,
membrane depolarization, and calcium intracellular influx, which
ultimately triggers insulin exocytosis (Seino et al., 2011; Boland et al.,
2017). This process can also be triggered by cyclic AMP and is
amplified through ryanodine receptor activation (Islam, 2002;
Cuíñas et al., 2016).

3.2 Pathogenesis of type 2 diabetes mellitus

T2DM is characterized by hyperglycemia resulting from
impaired insulin secretion, insulin resistance, or a combination of
both (Roden and Shulman, 2019). Insulin regulates glucose
metabolism and maintains normal blood sugar levels in the
human body by promoting glucose uptake and utilization in
peripheral tissues (Stout, 1979). Insulin levels must accurately
meet the metabolic demand to avoid hypoglycemia or
hyperglycemia. For this reason, the synthesis and release of
insulin and the ensuing insulin response in tissues are tightly
regulated (Roden and Shulman, 2019). Defects in this regulation
can lead to a metabolic imbalance that leads to the pathogenesis of
T2DM. Unlike the β-cells that are affected in type 1 diabetes mellitus
through autoimmunity, impairment of insulin secretion in T2DM
occurs in a multifactorial, non-autoimmune process (Halban et al.,
2014; Kawasaki, 2014).

3.2.1 Genetic influence in the pathogenesis of
insulin secretion

Of the over 60 genes that have been associated with T2DM, the
large majority are involved in the insulin pathway with β-cells
(Voight et al., 2010; Rosengren et al., 2012). Although some of
these variants are known to incur high risk, one’s genetic profile
generally does not significantly indicate diabetic risk (Manolio et al.,
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2009; Albrechtsen et al., 2013). Epigenetics, the modification of gene
expression, however, does play a more significant role in the
pathology’s development. For example, several in-vitro and in-
vivo studies have shown DNA methylation to be key in down-
regulating genes that are needed for insulin production (Volkmar
et al., 2012; Yang et al., 2012; Dayeh et al., 2013). Epigenetic
modification by histone deacetylases has also been shown to lead
to cytokine-mediated β-cell damage (Christensen et al., 2011). Of
most specific interest to this work is the upregulation and
downregulation of several miRNAs that have been linked to the
development of (and alternatively, the protection against) T2DM
(Poy et al., 2004; Poy et al., 2009; Guay and Regazzi, 2013).
Interestingly, miRNAs have been shown to also bind to mRNAs
coding for DNA methylation proteins, suggesting they have a
multifactorial epigenetic role (Breving and Esquela-Kerscher,
2010). Given that miRNAs are a key component within
exosomes, their effects are further detailed later in this paper.

3.2.2 Other regulators of insulin secretion
β-cell insulin secretion is affected by several sources of stress,

including inflammation, amyloid build-up, endoplasmic reticulum
overload, and reactive oxidative species formation. In regards to
inflammation, studies have revealed that elevated glucose and free
fatty acids impair insulin production through the ultimate
downregulation of the anti-inflammatory interleukin-1 (IL-1)
receptor antagonist and upregulation of pro-inflammatory IL-1β
and FAS (Donath and Shoelson, 2011). These proinflammatory
proteins lead to decreased insulin secretion and β-cell apoptosis,
respectively (Maedler et al., 2002; Schumann et al., 2007). Islet
amyloid polypeptide buildup is seen in nearly 90% of T2DM
cases on autopsy and is known to correlate with disease severity
(Westermark, 1994; Kahn et al., 1999). Although the mechanism of
amyloid buildup is debated, it is known that the buildup induces β-
cell apoptosis and further inflammation (Donath and Shoelson,
2011; Raleigh et al., 2017). Endoplasmic reticulum stress is generated
when high levels of insulin are required, such as due to
hyperglycemia, which causes the protein to become misfolded.
Although several mechanisms exist to mitigate this misfolding,
chronic endoplasmic reticulum stress leads to β-cell apoptosis
(Harding and Ron, 2002; Laybutt et al., 2007). Finally, reactive
oxygen species, which are known to form in β-cells as a result of both
acute and chronic hyperglycemia, function in a multifactorial way,
including furthering endoplasmic reticulum stress, inhibiting
calcium mobilization, and ultimately inducing apoptosis (Volpe
et al., 2018).

3.2.3 Insulin resistance
Insulin resistance broadly refers to a reduced metabolic response

to insulin, which, at a systemic level, leads to a diminished lowering
of blood glucose for the same amount of circulating insulin. Beyond
T2DM, insulin resistance is seen in most metabolic disorders, such
as obesity, dyslipidemia, and metabolic syndrome (Samuel and
Shulman, 2016). Studies of insulin resistance have shown that the
relationship between insulin sensitivity and insulin release is non-
linear, with a shape representative of the positive quadrant of the
cosecant hyperbolic curve. In other words, as the sensitivity
decreases below a certain threshold, the amount of insulin
needed grows exponentially (Kahn et al., 2006). Insulin

resistance, especially in relation to its effect on tissues, is known
to precede T2DM by 10–15 years (Freeman and Pennings, 2022).
Amongst these tissues, the three most critical to the development of
T2DM are skeletal muscle, adipose tissue, and liver (DeFronzo and
Tripathy, 2009; Galicia-Garcia et al., 2020). In physiological
conditions, skeletal muscle is known to absorb approximately
80% of glucose (Thiebaud et al., 1982). Although the precise
underpinnings of the development of skeletal muscle insulin
resistance are still under investigation, several proposed
mechanisms act by reducing GLUT4 translocation to the
membrane of the skeletal muscle cells (Petersen and Shulman,
2002). One consideration is the upregulation of protein-tyrosine
phosphatase 1B (PTP1B), an enzyme known to counteract the
phosphorylation of insulin receptor substrate-1 (IRS-1), which
otherwise signals membrane translocation of GLUT4 (Yip et al.,
2010). Inflammation, through the IKKβ/NF-κB and JNK pathways,
is also suggested to be involved in the development of insulin
resistance. Both of these pathways lead to disruption of IRS-1
function (de Luca and Olefsky, 2008). Several cytokines have
been associated with this process, but crucially, adiponectin is
known to be protective against insulin resistance (Fantuzzi,
2005). Beyond inflammation and PTP1B, other proposed
mechanisms include mitochondrial dysfunction, endoplasmic
reticulum stress, GLUT4 mutations, and reduction in IRS-1
binding capacity (Yaribeygi et al., 2019).

4 Exosomes in type 2 diabetes mellitus

Several exosomes have been shown to contribute to insulin
resistance. Adipocytes, for example, have been shown to release
exosomes carrying sonic hedgehog protein, which in turn induces
proinflammatory activation of monocytes, ultimately leading to
insulin resistance (Song et al., 2018). In another study, exosome-
like vesicles from murine adipose tissue were shown to similarly
induce insulin resistance by motivating the upregulation of tumor
necrosis factor alpha (TNF-α) and IL-6 (Deng et al., 2009).
Conversely, exosomes can also play a protective role, as in the
case of β-cells releasing exosomal neutral ceramidase to infer
paracrine protection against free fatty-acid-induced apoptosis
(Tang et al., 2017).

Although exosomal proteins have been described to be key
regulators of T2DM, the majority of the focus of exosomal effects
has been on their miRNA components. MiRNAs are small
noncoding RNAs, generally 19–22 nucleotides in length, that
function by binding mRNA to induce their decomposition or
inhibit their translation (Bartel, 2009). Several studies have
confirmed their role in the modulation of metabolic disorders,
including the regulation of lipid and glucose metabolism, insulin
secretion, and gluconeogenesis (Foley and O’Neill, 2012; Jiang et al.,
2013; Vickers et al., 2014; Brennan et al., 2017; Massart et al., 2017).
In T2DM specifically, the PI3K-Akt pathway, which is responsible
for the translocation of the GLUT4 transporter to the plasma
membrane, was initially shown to be regulated by exosomes in
an in vitro study using pancreatic cancer cells (Wang et al., 2017).
Human studies found the pathway was downregulated by exosomal
miR-20b-5p, which was shown to be significantly increased in
T2DM patients compared to healthy controls (Katayama et al.,
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2019). Studies of other pathways implicated in T2DM in diabetic
mice models found that exosomal miR-155 induced glucose through
the targeting of PPARγ and that healthy mice could develop T2DM
through the introduction of miR-122, miR-192, miR-27a-3p, and
miR-27b-3p; which collectively downregulated PPARα (Ying et al.,
2017; Castaño et al., 2018). Such findings suggest that exosomes
could be the underlying modulators that progress a healthy
individual to develop T2DM (Table 1).

Beyond implications in pathogenesis, several exosomal
miRNAs, in serum and urine, have been found to be
correlated, either inversely or directly, to the presence of
T2DM (Table 1). These findings suggest that exosomes,
particularly due to their miRNA components, could serve as
excellent biomarkers to determine the progression to T2DM pre-
clinically. Beyond the role of exosomes in T2DM at large, several
studies have identified exosomes as possible biomarkers and
therapeutics in the disease’s complications.

5 Exosomes in complications of type
2 diabetes mellitus

5.1 Diabetic angiopathy

DA is a common underlying pathology in diabetic patients. It is
subdivided into macroangiopathy, which affects larger arteries, and
microangiopathy, which includes endothelial damage to the vessels
between primary arterioles and venules and is largely associated with
chronic T2DM complications. The pathophysiology of DA is not
well understood; however, it is believed to involve several pathways
that are affected by reactive oxygen species (Hammes, 2003). Of
importance, is the involvement of angiogenesis in DA as its unequal
balance (i.e., of pro-angiogenic and anti-angiogenic factors) is
known to be pathogenic for several T2DM complications (Xu
et al., 2012).While the majority of exosomal studies focused on
organ-specific diabetic complications (e.g., DCM), a few focused on

TABLE 1 The role of exosomal components in Type 2 diabetes mellitus and relatedmodels in-vivo. ap2, Fatty acid-binding protein 4; lncRNA, long non-coding RNA;
miR, microRNA; NR, not reported; PEPCK, phosphoenolpyruvate carboxykinase; p-STAT3, phosphorylated signal transducer and activator of transcription 3; RBP4,
retinol binding protein 4.

Exosomal component Source Species Primary
purpose

Location Association with
T2DM

References

miR-16 Skeletal muscle Mouse Therapeutic Serum Increased Jalabert et al. (2016)

ap2 Adipocyte Mouse Therapeutic Serum Increased Ertunc et al. (2015)

miR-15a Pancreatic β-cells Human Diagnostic Serum Increased Kamalden et al.
(2017)

lncRNA-p3134 Pancreatic β-cells Human Diagnostic Serum Increased Ruan et al. (2018)

miR-20b-5p NR Human Pathologic Serum Increased Katayama et al.
(2019)

miR-122, miR-192, miR-27a-3p,
miR-27b-3p

NR Mouse Pathologic Serum Increased Castaño et al. (2018)

miR-155 Adipose tissue macrophages Mouse Pathologic NR Increased Ying et al. (2017)

miR-29b-3p Bone marrow mesenchymal
stem cells

Mouse Pathologic Serum Increased Su et al. (2019)

miR-375-3p Pancreatic β-cells Human Diagnostic Serum Increased Fu et al. (2018)

p-STAT3 Adipose-derived stem cells Mouse Therapeutic Serum Increased Zhao et al. (2018)

RBP4 Adipocytes Mouse Pathogenic NR Increased Deng et al. (2009)

miR-29a Adipose tissue macrophages Mouse Pathogenic Serum Increased Liu et al. (2019a)

miR-27a Adipocytes Mouse Pathogenic Serum Increased Yu et al. (2018)

miR-141-3p Adipocytes Mouse Pathogenic Serum Decreased Dang et al. (2019)

miR-130a-3p Hepatocytes Mouse Therapeutic Serum Decreased Wu et al. (2020b)

miR-26a β-cells Mouse Therapeutic Serum Decreased Xu et al. (2020)

PEPCK NR Human/
Rat

Diagnostic Urine Increased Sharma et al. (2020)

let-7b, miR-144-5p, miR-34a, and
miR-532-5p

NR Human Diagnostic Serum Increased Jones et al. (2017)

miR-20b-5p NR Human Diagnostic Serum Increased Katayama et al.
(2019)

miR-491-5p, miR-1307-3p,
miR-298

NR Human Diagnostic Serum Increased Sidorkiewicz et al.
(2020)
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DA itself. These studies specifically focused on the role of exosomes
in vascular smooth muscle cells (VSMCs). VSMCs surround the
endothelial cells of blood vessels and are known to contribute to
oxidative damage in T2DM (Hattori et al., 2000; Inoguchi et al.,
2000).

Wu et al. was able to identify that in-vitro VSMCs in high-
glucose conditions contained higher levels of carnitine
palmitoyltransferase 1 (CPT1A), and that this enzyme
contributed to inflammation in the blood vessels as measured by
levels of several proinflammatory markers (e.g., TNF-α, IL-6, etc.).
Furthermore, the group identified exosomal miR-324-5p to be an
inhibitor of CPT1A and then confirmed the findings by comparing
VSMCs harvested from patients with and without T2DM (Wu G.
et al., 2020). Using the same methodologies, another group was able
to identify another DA pathway that involved downregulation of
lncRNA UCA1 which led to upregulation of miR-582-5p and
ultimately pathogenesis (Yang and Han, 2020). Interestingly, the
findings from both these studies found levels of the studied RNAs
and enzymes to be modified both within serum exosomes and within
VSMCs themselves. This suggests that pathway modification due to
exosomal signaling may occur before, during, or after exosomal
transport (Wu G. et al., 2020; Yang and Han, 2020).

The studies above highlight exosomes in microangiopathic DA.
Similarly, the other complications from T2DM listed in the
remaining sections are associated with microangiopathic disease.
Complications related to macroangiopathy, such as stroke and
atherosclerosis, were omitted from this review because the
underlying contributors are generally considered not to be
isolated to T2DM alone (i.e., overlap with hypertension)
(Verhagen and Visseren, 2011; Frostegård, 2013; Murphy and
Werring, 2020). However, it should be noted that the role of
exosomes in these pathologies is an active area of research
(Venkat et al., 2018; Wang et al., 2018; Guo et al., 2022).

5.2 Diabetic cardiomyopathy

DCM is the occurrence of heart failure in diabetic patients that
cannot be attributed to hypertension or coronary artery disease
(Gilbert and Krum, 2015). Nearly 50% of T2DM patients with no
cardiac symptoms have been reported to have diastolic dysfunction,
suggesting that DCM may be severely underdiagnosed (Patil et al.,
2011). DCM pathology is multifactorial, with groups reporting the
involvement of factors such as oxidative stress, inflammation, the
lack of myocardial angiogenesis, lipid accumulation, and fibrosis
(Bugger and Abel, 2014). Despite this, the true pathophysiological
underpinnings of DCM are yet to be ascertained. For a while,
however, it has been known that exosomes play an important
role in the processes of myocardial repair and remodeling
(Ibrahim et al., 2014; Sahoo and Losordo, 2014; Waldenström
and Ronquist, 2014). And more recently, greater focus has since
been provided to their role, specifically in models of DCM.

Building on their group’s earlier findings that genetic deletion of
matrix metallopeptidase 9 (MMP9) improves cardiac contractility
and repair in diabetic patients, the Tyagi group aimed to assess
whether cardiac exosomes were regulating MMP9 (Moshal et al.,
2008; Mishra et al., 2012; Chaturvedi et al., 2015). Using a db/db
diabetic mice model (i.e., downregulation of the leptin receptor), the

group screened for four miRNAs that were sequentially similar to
the 3′ region of the MMP9. They hypothesized that exercise would
upregulate the production of miRNAs which would suggest
inhibitory regulation of MMP9 expression. They ultimately found
that one of those miRNAs, miR-455, was significantly upregulated in
exercise and that its presence significantly downregulated MMP9
(Chaturvedi et al., 2015). Taken together with the group’s earlier
findings, this provided the first evidence that the benefits of exercise
in DCM could be measured through miRNA biomarkers (Moshal
et al., 2008; Mishra et al., 2012; Chaturvedi et al., 2015).

Since then, other groups have discovered additional biomarkers
for this pathology. De Gonzalo-Calvo et al. tested a fewmiRNAs that
were known to previously have been signs of myocardial ischemia to
assess their correlation with DCM (Bostjancic et al., 2010; de
Gonzalo-Calvo et al., 2017). The group assessed miRNAs not
only in-vitro and in-vivo but also in humans with DCM without
other diabetic complications. Their findings suggest that serum
miR-1 and miR-133a are strongly correlated with the presence of
myocardial steatosis, as well as some functional heart indicators such
as E/Ea ratio. Furthermore, the group was able to create a
multivariable logistic regression model that used miR-1 and miR-
133a as well as five demographic and basic lab values to generate a
predictive c-statistic of 0.88 (95%CI: 0.79–0.97). This group was the
first to assess miRNA biomarkers in humans for DCM, and their
findings suggest realistic clinical applicability of this biomarker.
However, their findings are not without limitations, most notably
that 14 to 22 percent of the patients had serum levels that were below
the limit of detection, and that only male patients were studied (de
Gonzalo-Calvo et al., 2017). Veitch et al. also looked into miRNAs
that could serve as biomarkers. However, this group’s findings
looked at EVs as a whole and not just exosomes. Still, it was
notable that they isolated miR-30d-5p and miR-30e-5p as serum
markers in both mice and rats that correlated with cardiac
microvascular endothelial dysfunction and preceded diastolic
dysfunction. Interestingly, these miRNAs were noted only to be
upregulated in the left ventricle when compared with tissue from six
other organs. This finding suggests that highly specific miRNA
biomarkers for DCM may exist that precede symptomology.
Unsurprisingly, the group also discovered this miRNA family to
be involved in key in-vitro and in-vivo pathways that have been
suggested to be involved in the DCM pathogenesis (Veitch et al.,
2022).

Beyond the findings from these two in-depth studies,
miRNA families 1, 34, 143, 145, 150, 181, 214, 223, 320, 373,
374, 449, and 761 have been hypothesized to be involved in the
pathogenesis of DCM. Most of these families, however, either
have not had rigorous studies as to their potential as biomarkers
or have not been confirmed to be found in exosomes (Nandi and
Mishra, 2018). Several other exosomal components, however,
have also been noted to be generally cardio-toxic. For example,
miR-21 and miR-146a, which are released by cardiac fibroblasts;
miR-320, which are released by diabetic cardiomyocytes; and
NADPH, nitro oxid synthetases, and protein disulfide
isomerase, which are released by platelets have all been
shown to be toxic to cardiomyocytes and/or promote
cardiomyocyte hypertrophy (Janiszewski et al., 2004; Azevedo
et al., 2007; Halkein et al., 2013; Bang et al., 2014; Indolfi and
Curcio, 2014; Wang et al., 2014). This suggests a myriad of
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possible therapeutic targets for DCM (Ailawadi et al., 2015;
Nandi and Mishra, 2018).

One of the groups assessing these deleterious effects noticed that
diabetic cardiomyocytes produced exosomes with downregulated
heat shock protein 20 (Hsp-20) (Wang et al., 2014; Ailawadi et al.,
2015). The group subsequently hypothesized that upregulation of
exosomal Hsp-20 could mitigate the deterioration of cardiac
function in DCM. The group first confirmed that upregulation of
Hsp-20 conferred cardioprotective effects using a streptozotocin-
injected Hsp-20 transgenic mouse model. Importantly, the group
demonstrated colocalization of Hsp-20 with TSG101, suggesting
that Hsp-20 is housed in exosomes released from cardiomyocytes.
Further in-vivo and in-vitro analysis demonstrated that these
exosomes also included protective proteins (i.e., p-Akt,
superoxide dismutase 1, and survivin). That same analysis also
confirmed that upregulation of these exosomes leads to reduced
oxidative stress, decreased fibrosis, and increased angiogenesis, all of
which suggest mitigation of DCM (Wang et al., 2016). Another
group identified a separate cardioprotective exosomal heat shock
protein, Hsp-70 (Vicencio et al., 2015). Interestingly, the pathway
the group identified to be activated by Hsp-70 (i.e., ERK1/2) was no
longer activated in a diabetic rat model in spite of them containing
exosomal Hsp-70. However, when exosomes were isolated control
rats and injected into diabetic rats, cardioprotective pathways were
again activated. These findings suggest that exosomal Hsp-70 is
likely glycated during diabetic onset and loses its potential to activate
cardioprotective ERK1/2 (Davidson et al., 2018).

Beyond Wang et al., a few other groups have also made key
findings about exosomal therapeutic targets for DCM. Hu et al.,
having previously proposed mammalian sterile 20-like kinase 1
(Mst1) to be a key regulatory protein of autophagy and apoptosis

in DCM, attempted to characterize whether or not the protein was
involved in the pathology as an exosomal component (Lin et al.,
2016; Zhang et al., 2016; Zhang M. et al., 2017; Hu et al., 2018). In a
mouse model, the group was able to show that Mst1 is created in
cardiac endothelial cells and subsequently transported to
cardiomyocytes through exosomes. Further in-vitro work
suggested that endothelial Mst1 inhibits physiologic autophagy,
promotes apoptosis, and suppresses glucose metabolism in
cardiomyocytes (Hu et al., 2018). Zhang et al. attempted to assess
the therapeutic effects of exosomes as a whole by extracting them
from cultured human umbilical cord mesenchymal cells. Shockingly
and excitingly, injecting these exosomes into diabetic rats with
established DCM was able to reverse the pathology, as measured
by histology and functional heart metrics. The group further
demonstrated that the effects were mediated through the
upregulation of the AMPK-ULK1 signaling pathway, which in
turn inhibits pathological autophagy (Zhang et al., 2022).

Ultimately, the pathogenesis of DCM is complicated and not
fully understood. However, several groups have demonstrated that
its pathogenesis intimately involves a myriad of exosomes and
exosomal components (Table 2). Although much of the research
done thus far is limited to in vitro models and animal studies,
exosomes and exosomal components are appearing promising as
biomarkers and therapeutics for DCM.

5.3 Diabetic nephropathy

DN is a complex microvascular complication that generally
presents in patients ten to 20 years after diagnosis of T2DM
(Young et al., 2003). More than 40% of patients with T2DM

TABLE 2 The role of exosomal components in diabetic cardiomyopathy in-vivo. DCM, diabetic cardiomyopathy; ERK, extracellular signal-regulated kinase; GLUT4,
glucose transporter type 4; HSP, heat shock protein; MiR, miRNA, microRNA; MSC, mesenchymal stem cell; Mst1, mammalian sterile 20-like kinase 1; p-Akt,
phosphorylated protein kinase B; SOD1, superoxide dismutase 1.

Primary
purpose

Exosomal
component

Species Location Association with
T2DM

complication

Potential implications References

Diagnostic miR-1, miR-133a Mouse,
Human

Serum Increased Correlated with the progression and
presence of DCM

de Gonzalo-Calvo
et al. (2017)

Diagnostic miR-30d-5p, miR-
30e-5p

Mouse, Rat Serum Increased Correlated with microvascular changes in
DCM and precede diastolic dysfunction.
Hence, these may be the earliest miRNAs
increased in the development of DCM.

Veitch et al. (2022)

Therapeutic miR-455, miR-29b Mouse Serum Decreased Implicated in exercise-related protection of
the diabetic heart from developing DCM

Chaturvedi et al.
(2015)

Therapeutic Mst1 Mouse Cardiomyocytes
(paracrine)

Increased Exosomal Mst1 is increased in mice with
DCM and has been shown to disrupt
GLUT4 membrane translocation

Hu et al. (2018)

Therapeutic Hsp-20, p-Akt,
SOD1, survivin

Mouse Cardiomyocytes
(paracrine)

Decreased Hsp-20 transgenic model yielded
cardioprotection against DCM and was
noted to have exosomes with several
cardioprotective components (i.e., p-Akt,
SOD1, and survivin) and Hsp-20 itself

Wang et al. (2016)

Therapeutic Hsp-70 Rat Cardiomyocytes
(paracrine)

Decreased Hsp-70 activated cardioprotective ERK1/
2 pathway, however, its function is lost in
exosomes from diabetic rats.
Cardioprotection can be restored using non-
diabetic serum exosomes in-vitro

Davidson et al.
(2018)
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develop DN,making it the leading cause of end-stage renal disease in
the Western world (Gnudi and Gentile, no date). It is characterized
by glomerular basement membrane thickening, mesangial sclerosis,
and endothelial dysfunction (Haraldsson et al., 2008). In addition, it
is suggested that epithelial-mesenchymal transition may play a role
in the development of diabetic nephropathy through the
advancement of renal fibrosis (Yamaguchi et al., 2009). Although
diabetic nephropathy itself is not the most common cause of death
in T2DM, it increases the risk of cardiovascular complications,
which are the leading cause of death in T2DM (Gross et al.,
2005). Hence, early recognition and subsequent mitigation of
diabetic nephropathy are crucial, and exosomes offer that possibility.

Before studies specifically focused on exosomes, one study
focused on the potential of proteins within microvesicles. In this
observational study, the group found microvesicle-bound dipeptidyl
peptidase-4 (DPP-4) activity to be decreased in the serum.
Conversely, it was found to be increased in the urine of T2DM
patients with DN when compared to non-diabetic healthy controls
(Sun et al., 2012). This positive correlation further confirms previous
findings that suggested the direct relationship between DPP-4
activity and worsening DN (Ahrén, 2007; Sun et al., 2012).
Hence, microvesicular DPP-4 could serve as a biomarker for the
diagnosis and progression of DN.

After this, a few other studies identified exosomal proteins
associated with DN (Raimondo et al., 2013; Zubiri et al., 2014).
Raimondo et al. conducted a proteomic analysis of 286 proteins
found in urinary exosomes from Zucker diabetic fatty rats and
compared them to non-diabetic rats (Raimondo et al., 2013). The
levels of only two enzymes were found to be significantly different:
Xaa-Pro dipeptidase and major urinary protein-1 (MUP1). Xaa-Pro
dipeptidase, an enzyme involved in the metabolism of proline-
containing peptides and proteins, was increased, which could
indicate higher metabolic activity or elevated renal protein
turnover (i.e., the rate that proteins are synthesized, degraded,
and replaced). Conversely, MUP1, a protein mainly produced in
the liver and secreted into the urine, was decreased. This may suggest
impaired renal function or reduction in the synthesis and secretion
of MUP1 in DN. Another study by Zubiri et al. utilized the more
reliable ExoQuick reagent-based isolation technique to isolate
exosomes from urine (Zubiri et al., 2014). Here, three exosomal
proteins in urine were found to be possible biomarkers in DN
patients: upregulated ɑ-1-microglobulin/bikunin precursor
(AMBP), upregulated lysine-specific methyltransferase 2C
(MLL3) and downregulated voltage-dependent anion channel 1
(VDAC1) (Zubiri et al., 2014). AMBP is a glycoprotein involved
in inflammation by inhibiting proteases, exerting antioxidant effects,
modulating cytokine activity, and influencing immune cell function
(Grewal et al., 2005). AMBP has also been reported to be increased in
T2DM patients’ urine, in comparison to healthy individuals
(Pisitkun et al., 2004; Gonzales et al., 2009; Li et al., 2011).
MLL3 is a histone methyltransferase involved in gene regulation
and chromatin remodeling (Hosseini andMinucci, 2017). MLL3 has
also been linked to the activation of PPAR?, which in turn controls
glucose by degrading SOCS5, a negative regulator of JAK/STAT
pathway, consequently regulating glucose (Corrales et al., 2018).
Finally, VDAC1 is a protein that is primarily located in the outer
mitochondrial membrane, where it plays a critical role in regulating
the transport of ions and metabolites, particularly the exchange of

ATP and ADP. Since mitochondrial dysfunction has been observed
in DN, VDAC1 expression or activity could contribute to the onset
and progression of this pathology (Pinti et al., 2019). Zubiri et al.’s
findings of decreased urinary VDAC1 reinforce the association of
DN with increased rate of cell death and renal fibrosis (Zubiri et al.,
2014). More recent work by Wen et al. identified that mice with
diabetes had reduced expression of exosomes at large by the tubular
interstitial cells (Wen et al., 2020). More specifically, their in-vitro
Nephroseq analysis revealed a potential role for the enolase 1 protein
in the pathogenesis of the disease as it was differentially expressed in
various areas within the diabetic kidney and between non-high
glucose and high glucose treated renal cells (Martini et al., 2008;
Wen et al., 2020). Tao et al. also conducted similar genetic network
analysis but focused biomarker study in humans. The group’s work
identified adipocyte enhancer binding protein 1 to have a strong
ability to distinguish DN patients from healthy controls (AUC =
0.880) and from T2DM patients (AUC = 0.742) (Tao et al., 2021).

Other exosomal cargo, such as miRNA, have also shown
potential as biomarkers. Early work by Lv et al. identified
reduced exosomal miR-29 and miR-200 families as biomarkers
for chronic kidney disease. The group was able to create various
models that predicted the extent of renal fibrosis with high AUCs
(i.e., 0.9 and above) (Lv et al., 2013). More recent work focused on
DN, was able to create a multivariable model using urine exosomal
miR-126, miR-146, miR-155, as well as other paraclinical data, to
predict between patients with T2DM with and without DN while
maintaining high sensitivity (0.963) and specificity (0.935)
(González-Palomo et al., 2022). These findings, as well as those
of other studies that identified exosomal miRNA biomarkers for DN
are summarized in Table 3 and Figure 2 (Eissa et al., 2016a; Eissa
et al., 2016b; Delić et al., 2016; Mohan et al., 2016; Xie et al., 2017; Li
et al., 2018; Zang et al., 2019).

Beyond their role as biomarkers, exosomes could also be
therapeutic for diabetic nephropathy. At the time of the first
studies on exosomes as therapies in DN, it was already known
that mesenchymal stem cells (i.e., those present in the bone
marrow and in mesenchymal tissues; MSCs) function as
effective therapeutics for diabetic nephropathy in murine
models (Ezquer et al., 2009; Zhang et al., 2013; Abdel Aziz
et al., 2014; Ezquer et al., 2015). The mechanism was
unknown, however, a leading theory suggested that the
therapeutic mechanism of action was via paracrine effects of
trophic factors that were secreted by MSCs (Kuroda et al., 2011).
Nagaishi et al. attempted to build on this theory, as well as the
growing evidence of exosomes from MSCs showing therapeutic
potential in studies unrelated to DN, by assessing exosomal
effects on diabetic nephropathy (Katsuda et al., 2013; Yu
et al., 2014; Nagaishi et al., 2016). Using both streptozotocin-
injected mice and high-fat diet mice as diabetic animal models,
the group first confirmed the therapeutic effect of MSCs. It tested
the therapeutic effect of MSC-conditioned medium.
Interestingly, the MSC-conditioned medium mice performed
similarly or better than those treated with MSCs as measured
by albumin to creatinine ratio, histopathological analysis, and
blood glucose levels (Nagaishi et al., 2016). The group further
assessed these effects to show that both therapeutics inhibited the
infiltration of bone-marrow-derived cells into kidneys, a
mechanism that the group had previously shown to be
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TABLE 3 The role of exosomal components in diabetic nephropathy in-vivo. ADSC, adipose-derived mesenchymal stem cell; AEBP1, Adipocyte enhancer binding
protein 1; AMBP, ɑ-1-microglobulin/bikunin precursor; AUC, area under the curve; CKD, chronic kidney disease; DN, diabetic nephropathy; ECM, extracellular
matrix; Eno1, enolase-1; ER, endoplasmic reticulum; ET1, endothelin-1; HDAC1, histone deacetylase-1; MANF, mesencephalic astrocyte-derived neurotrophic
factor; MiR, microRNA; MLL3, upregulated lysine-specific methyltransferase 2C; mTOR, mammalian target of rapamycin; MUP1, major urinary protein 1; NR, not
reported; PTEC, proximal tubular epithelial cells; SMAD1, mothers against decapentaplegic homolog 1; TGF-β, transforming growth factor beta; TSP-1,
thrombospondin-1; VDAC1, downregulated voltage-dependent anion channel 1.

Primary
purpose

Exosomal component Species Location Association with
T2DM

complication

Potential implications References

Diagnostic Xaa-Pro Peptidase, MUP1 Rat Urine Increased, decreased Increase in Xaa-Pro peptidase levels
may indicate proteolytic activity
(i.e., breakdown of ECM
components), leading to renal
structural injury seen in DN.
Decreased MUP1 suggests a potential
dysregulation of this protein, leading
to altered renal function and
impaired antioxidant defense
mechanisms

Raimondo et al.
(2013)

Diagnostic AMBP, MLL3, VDAC1 Human Urine Increased, increased,
decreased

AMBP is indicative of ongoing renal
damage; increased MLL3 and
decreased VDAC1 suggest impaired
gene expression and mitochondrial
dysfunction

Zubiri et al.
(2014)

Diagnostic Eno1 Mouse Tubular cells
(paracrine)

Increased Exosomal Eno1 from tubular cells
may be implicated in the generational
of renal fibrosis

Wen et al.
(2020)

Diagnostic AEBP1 Mouse Serum Increased NR Tao et al. (2021)

Diagnostic miR-451-5p, miR-16 Rat Urine Increased NR (Mohan et al.,
2016)

Diagnostic miR-320c, miR-6068, miR-1234-5p,
miR-6133, miR-4270, miR-4739,
miR-371b-5p, miR-638, miR-572,
miR-1227-5p, miR-6126, miR-1915-
5pmiR-4778-5p, miR-2861, miR-
30d-5p, miR-30e-5p

Human Urine Increased (miR-30d-5p
and miR-30e-5p are
decreased)

miR-320c modifies the TGF-β
signaling pathway via TSP-1 targeting
and may be a therapeutic target.

Delić et al.
(2016)

Diagnostic miR-15b-5p miR-29c-5p let-7c-5p Human Urine Decreased, decreased,
increased

Can be used to predict DN with
AUCs of 0.818, 0.774, and 0.818,
respectively

Li et al. (2018)

Diagnostic miR-362-3p, miR-877-3p, miR-150-
5p, miR-15a-5p

Human Urine Increased, increased,
increased, decreased

NR Xie et al. (2017)

Diagnostic miR-133b, miR-342, miR-30 Human Urine Increased Potential as preclinical biomarkers as
evidenced by changes even in normo-
albuminuria patients

Eissa et al.
(2016a)

Diagnostic miR-15b, miR-34a, miR-636 Human Urine Increased NR Eissa et al.
(2016b)

Diagnostic miR-21-5p, miR-30b-5p Human Urine Increased, decreased The upregulation of miR-21-5p (and
downregulation of miR-30b-5p) was
able to distinguish DN from healthy
patients, but not from CKD,
suggesting that these markers are
generally associated with renal
impairment but not DN specifically

Zang et al.
(2019)

Therapeutic miR-486 Mouse Serum Decreased miR-486 from ADSC-derived
exosomes could protect against DN
by regulating podocyte homeostasis
via Smad1/mTOR downregulation

Jin et al. (2019)

Therapeutic miR-125a Rat Serum Decreased miR-125a from ADSC-derived
exosomes provides benefit through
downregulation of HDAC1 and
subsequently, ET1

Hao et al.
(2021)

(Continued on following page)
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nephrotoxic in the setting of diabetic nephropathy (Yamashita
et al., 2012; Nagaishi et al., 2016). Further experiments revealed
both MSCs and MSC-condition medium downregulated
expression of intercellular adhesion molecule-1, TNF-α, and
phosphorylated p38 mitogen-activated protein kinase, which,
taken together, suggest a reduction in inflammation. Finally,
the improvement of nephrological structural integrity was
confirmed by morphological assessment of the proximal
tubules, downregulation of transforming growth factor beta
(TGF-β) in tubular epithelial cells, indicating less epithelial to
mesenchymal transition, and upregulation of zona occludens
protein-1, a key marker of tight junction function

(Rajasekaran et al., 1996; Fragiadaki and Mason, 2011;
Nagaishi et al., 2016). Throughout these experiments, the
question remained as to whether the effects seen in the MSC-
conditioned medium group were due to exosomes in the medium.
Two experiments attempted to address that question. First, the
group purified exosomes from MSC-conditioned medium and
unilaterally administered them into the subcapsular space of
streptozotocin-induced rats. After sacrificing the rats, the two
kidneys were compared. The exosome-treated kidneys abated the
expansion of renal tubules, atrophy of tubular epithelial cells, and
infiltration of inflammatory cells. In addition, downregulation of
TGF-β in tubular epithelial cells and upregulation of zona

TABLE 3 (Continued) The role of exosomal components in diabetic nephropathy in-vivo. ADSC, adipose-derived mesenchymal stem cell; AEBP1, Adipocyte
enhancer binding protein 1; AMBP, ɑ-1-microglobulin/bikunin precursor; AUC, area under the curve; CKD, chronic kidney disease; DN, diabetic nephropathy; ECM,
extracellular matrix; Eno1, enolase-1; ER, endoplasmic reticulum; ET1, endothelin-1; HDAC1, histone deacetylase-1; MANF, mesencephalic astrocyte-derived
neurotrophic factor; MiR, microRNA; MLL3, upregulated lysine-specific methyltransferase 2C; mTOR, mammalian target of rapamycin; MUP1, major urinary
protein 1; NR, not reported; PTEC, proximal tubular epithelial cells; SMAD1, mothers against decapentaplegic homolog 1; TGF-β, transforming growth factor beta;
TSP-1, thrombospondin-1; VDAC1, downregulated voltage-dependent anion channel 1.

Primary
purpose

Exosomal component Species Location Association with
T2DM

complication

Potential implications References

Therapeutic miR-92a-1-5p Mouse PTECs Increased miR-92a-1-5p worsened DN by
inducing ER stress via
downregulation of calreticulin and
MANF.

Tsai et al.
(2023)

FIGURE 2
Exosomal components associated with diabetic complications. AEBP1, Adipocyte enhancer binding protein 1; AMBP, ɑ-1-microglobulin/bikunin
precursor; DMBT1, deleted in malignant brain tumors 1; Eno1, enolase-1; MiR, microRNA; HSP, heat shock protein; lncRNA, long noncoding RNA; MSC,
mesenchymal stem cell; MLL3, upregulated lysine-specificmethyltransferase 2C;Mst1, mammalian sterile 20-like kinase 1; MUP1, major urinary protein 1;
SOD1, superoxide dismutase 1; VDAC1, downregulated voltage-dependent anion channel 1.
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occludens protein-1 were once again noted (Nagaishi et al.,
2016). These findings suggest that exosomes are the likely
paracrine factor enabling MSC’s therapeutic potential in
diabetic nephropathy.

Building on this critical work, other groups identified
therapeutic possibilities in exosomes. For example, Jin et al.
furthered the therapeutic potential of MSCs (i.e., specifically
adipose-derived MSCs) by identifying miR-486 as a likely driver
of the benefit seen in in-vivo DN mice models. The group identified
that miR-486 downregulated renal Smad1 expression, which
inhibited mTOR activation, ultimately leading to the promotion
of autophagy and the reduction of podocyte apoptosis (Jin et al.,
2019). Hao et al. used similar methods to identify miR-125a as a
likely driver of the benefit of exosomal therapy from adipose-derived
MSCs seen in in-vivo DN rat models (Hao et al., 2021). The group
suggested that miR-125a bound to histone deacetylase 1 which
further downregulated endothelin-1 and provided rescue of
glomerular tissue integrity and renal function (Tung et al., 2018;
Hao et al., 2021). Tsai et al. harvested proximal tubular epithelial
cells and mesangial cells to see if exosomes from the former would
drive pathological changes in the latter. Their in-vitro exosomal
analysis identified miR-92a-1-5p uptake by glomerular mesangial
cells and further identified this miRNA to be the driver of
myofibroblast transdifferentiation. This suggests miR-92a-1-5p to
be involved in the pathogenesis of DN. The group engineered an
inhibitor of miR-92-1-5p and showed rescue of nephropathic
features both in-vitro and in a DN mice model (Tsai et al., 2023).

DN is a complex microvascular complication that significantly
impacts the lives of individuals with T2DM. Identifying and
characterizing exosomes in DN have contributed to our
understanding of the disease pathology and opened up new
possibilities for diagnosis and treatment. In particular, several
exosomal proteins and miRNAs have emerged as potential
biomarkers for DN. Additionally, exosomes derived from MSCs
have shown therapeutic potential in preclinical models. The
exploration of exosomes in DN represents a promising avenue
for the development of non-invasive diagnostic tools and targeted
therapeutic interventions. Continued research in this field will
further unravel the intricate interplay between exosomes and DN,
ultimately leading to improved patient outcomes and a deeper
understanding of this condition. A complete list of exosomal
involvement in in-vivo DN studies is presented in Table 3.

5.4 Diabetic peripheral neuropathy

DPN is a debilitating complication of T2DM that affects 50% of
individuals with T2DM and estimated to have a worldwide
prevalence of 425 million people (Nascimento et al., 2016). DPN
is most commonly a symmetric, length-dependent sensorimotor
polyneuropathy that manifests as sensory disturbances, neuropathic
pain, and impaired motor function (Tesfaye et al., 2010; Feldman
et al., 2019). The mechanism by which T2DM induces DPN is not
fully understood, but is said to involve microvascular disease,
neuroinflammation, and oxidative stress (Feldman et al., 2019).
Over the recent years, there has been a growing interest in
exploring the role of exosomes as a therapeutic intervention for
DPN. Jia et al. were amongst the first to explore the effects of

exosomes on DPN and focused on those that were derived from
high-glucose (v. non high glucose) stimulated Schwann cells. Their
findings identified levels of miR-28, miR-31a, and miR-130a to be
higher in exosomes derived from high glucose conditions. The group
hypothesized that these exosomes, and likely through the action of
these three miRNAs, would accelerate DPN (Jia et al., 2018). In-vitro
studies confirmed this hypothesis and identified that each of the
miRNAs modulate four proteins, an endocytic adaptor protein
(NUMB), synaptosome-associated protein 25 (SNAP25), DNA
methyltransferase 3a (DNMT3A), and growth-associated protein
43 (GAP43), which are collectively involved in neuroplasticity,
axonal growth, and nerve sprouting (Wakamatsu et al., 1999;
Johnson, 2003; Frassoni et al., 2005; Nguyen et al., 2007; Feng
et al., 2010; Jia et al., 2018). Specifically, miR-28 targeted NUMB,
miR-31a targeted SNAP25, and miR-130a targeted both DNMT3A
and GAP43; such targeting led to proteomic downregulation. The
group’s in-vivo work in diabetic mice confirmed an inverse
relationship between the three miRNAs and their target proteins
in the sciatic nerves. However, interestingly, this correlation was not
seen in the dorsal root ganglions, suggesting this exosomal
regulation may be focused to distal nerve fibers (Jia et al., 2018).

In an effort to study exosomes from another cell type, Fan et al.
conducted a study using MSC-derived exosomes to understand their
effects on DPN. The results of the study revealed that treatment with
MSC-exosomes significantly improved neurological outcomes in
diabetic mice with DPN. The treatment group had a decrease in
the threshold for thermal and mechanical stimuli and an increase in
the nerve conduction velocity. Histopathological analysis showed
enhanced density of blood vessels and increased numbers of
intraepidermal nerve fibers, myelin thickness, and axonal
diameters in the sciatic nerves. In addition, Western blot analysis
demonstrated a shift from proinflammatory M1 macrophage
phenotype markers to anti-inflammatory M2 markers. Notably,
although these results do suggest a significant improvement, the
rescue did not yield return of nerve function to baseline (i.e., non-
DPN group) (Fan et al., 2020). Network analysis identified miR-17,
miR-23a andmiR-125b as exosomal components that targeted genes
involved in the TLR4/NF-κB and receptor for advanced glycation
end product signaling, which are known to be crucial in DPN
pathogenesis (Toth et al., 2007; Lawrence and Fong, 2010; Fan
et al., 2020). Interestingly, the group’s subsequent work focused on
miR-146 enriched MSC-derived exosomes which showed
accelerated in-vivo therapy through downregulation of the TLR4/
NF-κB pathway (Fan et al., 2021). Identification of this pathway, and
the multitude of exosomal components that interact with it, suggest
a potential mechanism underlying the exosomes’ therapeutic effects
(Lawrence and Fong, 2010; Fan et al., 2020; Fan et al., 2021).

Rather than simply injecting the exosomes into the serum, Singh
et al. engineered a novel exosomal delivery mechanism using porous
nerve guidance channels that could be implanted at the site of injury.
The group also created unique DPN rat models as they introduced
crush and cut injuries to the sciatic nerve after a 2-month induction
with hyperglycemia. Although the results were collected separately,
the findings were largely similar across both injury models.
Exosomes derived from bone marrow mesenchymal stromal cells
(BMSCs) normalized nerve conduction velocity and compound
muscle action potential in DPN rats (i.e., returned function
similar to healthy control animals). The treatment also led to the
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recovery of gastrocnemius muscle mass and morphology.
Ultimately, for most of these findings, there was no significant
improvement whether the porous nerve guidance channels were
used or whether the exosomes were injected intramuscularly of note,
the study did not conduct a thorough pathway analysis nor
exosomal component analysis (Singh et al., 2021). Instead the
authors pointed to the mechanism of action of the exosomes
hypothetically, stating that previous studies had identified miR-
133b, miR-17/92 cluster, brain-derived neurotrophic growth factor,
nerve growth factor, insulin growth factor, and fibroblast growth
factor as exosomal components of BMSCs that exhibit positive
effects on neural regeneration (Xin et al., 2012; Zhang Y. et al.,
2017; Qing et al., 2018; Dong et al., 2019; Singh et al., 2021). As these
findings were not verified in the paper, they were omitted from
Table 2.

More recently, the work conducted by Kasimu et al. focused on
astrocyte-derived exosomes. In their study, the group identified the
therapeutic component of these exosomes to be miR-125a-5p
(Kasimu et al., 2022). Further pathway analysis found that miR-
125a-5p functions by downregulating TRAF6, a key signaling
molecule associated with inflammation (Cao et al., 1996; Kasimu
et al., 2022) TRAF6 is known to activate NF-lB, which leads to rise
of pro-inflammatory cytokines or pathogen-associated molecular
patterns, and induce neuropathic pain by activation of JNK/MCP-
1 pathway (Lu et al., 2014; Liu et al., 2018). The group’s in-vivo
diabetic mice model analysis yielded findings that suggested reduced
astrocytic activation and downregulation of several inflammatory
proteins in the treatment group (i.e., miR-125a-5p tail vein
injection) (Kasimu et al., 2022).

Interestingly, all the studies in this pathology have focused on
therapeutic interventions (Table 4). In doing so, the studies have
revealed important findings regarding the pathogenesis of DPN. As
each of the studies has derived their therapeutic exosomes from
different cell lines, this confirms previous studies that have
mentioned the multitudes of modalities through which DPN
develops (Feldman et al., 2019). Further investigation into the

cargo and pathways involved in exosomal signaling will enhance
our understanding of DPN pathophysiology and create new
possibilities for therapeutic interventions.

5.5 Diabetic retinopathy

DR is the most common complication of T2DM and is a leading
cause of visual impairment and blindness worldwide (Cao et al.,
2021). It is estimated that over 80% of patients with insulin-
dependent T2DM and 50% of insulin-independent diabetic
patients will develop DR (Stitt et al., 2016). The pathophysiology
of DR is characterized by abnormal angiogenesis, loss of retinal
pericytes, increased vascular permeability, and proliferation and
migration of retinal endothelial cells (Tarr et al., 2013).

Retinal endothelial cells are largely implicated in the
pathogenesis of DR as they are the first cells in the eye to sense
and respond to changes in circulating blood glucose (Xing et al.,
2017). High glucose conditions have been shown to induce
proliferation, migration, and tube formation of human retinal
endothelial cells secondary to hyperglycemia-induced retinal
inflammation (Cao et al., 2021). Aberrations in pericyte-
endothelial cell signaling contribute to abnormal angiogenesis,
beginning with disruption of the stable association between
pericytes and endothelial cells in normal vasculature. This
dissociation leads to increased vascular permeability and initiates
endothelial cell proliferation and migration into the surrounding
tissue. The subsequent dysfunction of the retinal vasculature causes
hypoxia and release of vascular endothelial growth factor (VEGF),
which further contributes to endothelial cell proliferation, their
dissociation from pericytes, vascular leakage, and
neovascularization (Raza et al., 2010). Inflammation of the retinal
microvasculature simultaneously accelerates the progression of DR.
Finally, aberrant activation of the complement system is thought to
be involved in the hyperglycemia-induced retinal inflammation and
breakdown of the blood-retina barrier. Plasma exosomes have been

TABLE 4 The role of exosomal components in diabetic peripheral neuropathy in-vivo. DPN, diabetic peripheral nephropathy; MiR, microRNA; MSC, mesenchymal
stem cell; NF-κB, nuclear factor kappa b; NR, not reported; RAGE, receptor for advanced glycation end product signaling; TLR4, toll-like receptor 4; TRAF6, TNF
Receptor Associated Factor 6.

Primary
purpose

Exosomal
component

Species Location Association with
T2DM complication

Potential implications References

Therapeutic miR-28 miR-31a
miR-130a

Mouse Serum Increased Derived from high glucose-stimulated Schwann
cells; found to modulate proteins involved
neuroplasticity, axonal growth, and nerve
sprouting, contributing to the progression of
neuropathic symptoms

Jia et al. (2018)

Therapeutic miR-17 miR-23a
miR-125b

Mouse Serum Decreased These miRNAs were derived from MSCs and
showed mutli-level regulation of the TLR4/NF-κB
and RAGE pathways

Fan et al. (2020)

Therapeutic miR-146a Mouse Serum Decreased An accelerated alleviation in neurovascular
dysfunction was observed upon loading of miR-
146a to MSC exosomes as measured by
improvements in nerve conduction velocity
thresholds for thermal and mechanical stimuli

Fan et al. (2021)

Therapeutic miR-125a-5p Mouse Serum Decreased miR-125a-5p downregulates TRAF6-mediated
inflammation, providing clinical benefit as
measured by mechanical allodynia and thermal
hyperalgesia

Kasimu et al.
(2022)
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implicated in this process and have been shown to increase
inflammatory markers in T2DM. Huang et al. demonstrated that
exosomes rich in IgG are able to activate the classical complement
pathway. T2DM increases the levels of IgG-laden exosomes,
resulting in a greater degree of exosome-induced complement
activation and downstream retinal vascular damage in diabetic
patients. Inhibition of exosome-induced complement activation
may offer a potential therapeutic approach to prevent or slow the
progression of DR (Huang et al., 2018).

Early work by Beltramo et al. identified the role of EVs in the
disruption of pericyte-endothelial cell associations. The group’s
seminal in-vitro work demonstrated that EVs derived from MSCs
are able to enter pericytes, leading to subsequent detachment from
endothelial cells, vessel destabilization, increased vascular
permeability, and angiogenesis. By culturing MSCs in physiologic
and diabetic-like conditions, the group demonstrated that high
glucose worsened the retinopathic effects of MSC-derived EVs.
Their findings suggested that diabetic-like conditions may
contribute to DR pathogenesis through paracrine signaling of
EVs (Beltramo et al., 2014). Further work was subsequently
conducted by the same group to characterize the relative
expression of miRNAs in circulating EVs in T2DM patients with
and without retinopathy compared to healthy controls. After
confirming that serum EVs isolated from both diabetic groups
induced features of DR in vitro, the researchers assessed the
expression of 754 miRNAs using qRT-PCR and found 3 that
were differentially expressed in the DR group compared to the
non-DR T2DM and healthy groups (Table 2). Although this early
work focused on EVs, their findings identified a role for
microvesicles, and specifically miRNA cargo, in the pathogenesis
of DR (Mazzeo et al., 2018).

Other studies have similarly focused on miRNA. For example,
Kamalden et al. demonstrated that exosomal miR-15a is secreted by
pancreatic β-cells via exosomes in response to high-glucose conditions.
Levels of exosomal miR-15a in the serum and retina of diabetic patients
were significantly elevated, and the degree of elevation was found to
correlate withDR severity. The group further conducted in-vitro analysis
that demonstrated circulating exosomal miR-15a is taken up by retinal
cells, inducing oxidative stress and contributing to retinal injury by
activating apoptosis (Kamalden et al., 2017). Subsequently, Sangalli et al.
aimed to see if exosomal miR-15a could be used as a biomarker to be
utilized for screening ahead of the DR’s clinical presentation. The group
measured ganglionic cell complex thickness as an indicator for early
retinal injury in three groups of human subjects (T2DM, impaired
glucose tolerance, and healthy controls). This study was the first to
demonstrate that ganglionic cell complex thickness reduction preceded
the onset of overt retinopathy or T2DM. Furthermore, this reduction
was negatively correlated with the concentration of serum exosomal
miR-15a in plasma (Sangalli et al., 2020). Taken together, these
experiments suggest that exosomal miR-15a is not only a pathogenic
contributor of DR, but it can also be used as an early and correlative
marker for DR development and progress, even in patients with
preclinical T2DM (Kamalden et al., 2017; Sangalli et al., 2020).

Rather than focus on the utilization of exosomal miRNA as a
biomarker, Zhang et al. specifically looked at the therapeutic potential of
exosomalmiR-126. In a previous study, the group identifiedmiR-126 as
a factor that may improve DR by enhancing vascular repair and
inhibiting hyperglycemia-induced retinal inflammation (Wang and

Yan, 2016). In the present study, the group isolated MSC-derived
exosomes from human umbilical cord-derived MSCs and cultured
them with high levels of miR-126, leading to overexpression of the
miRNA in the exosomes. These exosomes were then either injected
intravitreally into diabetic rats or co-cultured with high glucose-treated
human retinal endothelial cells. They demonstrated that high glucose
levels in both the in-vitro and in-vivo models increased retinal
inflammation (via upregulation of IL-1β, IL-8, and caspase-1) and
induced expression of high-mobility group box 1 (HMGB1), a protein
that regulates the inflammatory response. The administration of
exosomes overexpressing miR-126 was effectively able to reverse the
levels of inflammatory markers and inhibit the HMGB1 signaling
pathway (Zhang et al., 2019).

Beyond miRNAs, several exosomal lncRNAs have also been
implicated in DR. Ye et al. were the first to study the relative
expression levels of various plasma exosomal lncRNAs between
T2DM patients with and without DR. Using a logistic regression
model to analyze the relationships between DR and lncRNAs, the
group identified upregulation of lncRNA DLX6-AS1 in the DR
group, suggesting it is likely a risk factor for the pathology.
Opposingly, the relative expression of lncRNA PRINS and
lncRNA FAM190A-3 was lower in the DR group, suggestive of
a role as possible protective factors. After running a univariate
analysis, the group identified a multivariate model that includes
lncRNA DLX6-AS1 and lncRNA PRINS levels to be a significant
predictor for DR with an area under the curve of 0.813 (95%CI:
0.740–0.886) (Ye et al., 2022). Furthermore, Cao et al. identified
the possible role of exosomal lncRNA SNHG7 in the
pathogenesis of DR by isolating them from MSCs. The group
first cultured human retinal microvascular endothelial cells
(HRMECs) under high glucose conditions and showed that
endothelial damage from high glucose exposure is associated
with endothelial-mesenchymal transition, downregulation of
lncRNA SNHG7, and upregulation of miR-34a-5p. They then
cultured HRMECs with lncRNA SNHG7-overexpressing
exosomes, which led to a significant reduction in endothelial-
mesenchymal transition and tube formation in HRMECs by
downregulating miR-34a-5p expression. These findings
suggest that exosomal lncRNA SNHG7 may be therapeutic for
DR (Cao et al., 2021).

While the pathophysiology of DR is well understood, exosomes
are an emerging field of study in the characterization of DR. They
have been shown to have utility in predicting the onset and
progression of DR and were recently implicated in the
pathogenic mechanisms leading to DR. In-vivo studies have
confirmed their potential application in changing the trajectory
of DR by improving or worsening retinal damage depending on
their miRNA or lncRNA content (Table 5). Targeting the exosomal
contents to modify their downstream effects may serve as a
therapeutic intervention to prevent the development or slow the
progression of DR.

5.6 Diabetic wound healing

DWH is a well-characterized process that involves cell
migration, proliferation, fibrogenesis, angiogenesis, and
reepithelialization (Falanga, 2005). In T2DM, this process is
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significantly impaired, which leads to chronic non-healing ulcers
and lower extremity amputation (Rosenberg, 1990). In conjunction
with the impaired immune response in T2DM patients, diabetic
wounds are a source of potentially life-threatening infections (Brem
and Tomic-Canic, 2007). Despite the serious nature of diabetic
wounds, treatment options consist primarily of conservative
practices, such as dressings, pressure offloading, surgical
debridement and revascularization, infection management, and
glycemic control, which are supportive rather than curative and
often ineffective (Everett and Mathioudakis, 2018). Exosomes offer
the opportunity to address the limitations of current practice for
DWH management.

The majority of studies on exosomal effects in DWH involve the
utilization of MSCs. Zhao et al. investigated such a therapy using
exosomes from human adipose-derived MSCs in a diabetic mouse
model. The wound healing rate was significantly increased in the
exosome-treated group. Further functional assays revealed that these
exosomes enhanced diabetic wound healing via a multitude of
mechanisms (e.g., reepithelialization, cell proliferation, collagen
synthesis, tissue remodeling, skin barrier repair, angiogenesis, and
inhibition of apoptosis and inflammation). Finally, the group
conducted biochemical pathway analysis that revealed that the
exosomes stimulated fibroblast proliferation and migration by
negatively regulating MMP1 and MMP3 expression (Zhao et al.,
2021).

Li et al. took a different approach to address DWH by first
analyzing patient tissue from diabetic foot ulcers (DFUs). After
identifying overexpression of miR-152-3p in these tissues, the group
was able to subsequently show that exosomes from bone marrow
derived MSCs contained lncRNA H19, which was the key inhibitor
of miR-152-3p. Further in-vitro pathway analysis identified that
miR-152-3p mediated its effects by downregulating PTEN, which is
vital for preventing apoptosis and inflammation. Finally, the group
confirmed exosomal effects by injecting exosomes with
overexpression of lncRNA H19 into a DFU mouse model and
demonstrating rescue of DFUs. Taken as a whole, this study
suggests that MSC-derived exosomal lncRNA H19 stimulates
repair of DFUs by promoting fibroblast proliferation and
migration and suppressing apoptosis and inflammation via

regulation of the lncRNA H19/miR-152-3p/PTEN axis (Li et al.,
2020).

Two other groups studied DWHby focusing on the role ofMSCs
on senescent cells (Bian et al., 2020; Xiao et al., 2021). Bian et al.
initially demonstrated that prolonged stimulation with high glucose
accelerated senescence of in-vitro human dermal fibroblasts (HDFs)
while simultaneously suppressing HDF proliferation and migration
rates. However, when the group introduced exosomes from decidua-
derived MSCs effectively, the effects of high glucose were rescued.
Further analysis revealed these exosomes inhibited the generation of
reactive oxygen species and protected against HDF senescence by
suppressing the expression of advanced glycation end-product
receptors. Local application of these exosomes in the wounds of
diabetic mice enhanced wound healing suggesting that exosomes
from decidua-derived MSCs may be a promising candidate for
DWH (Bian et al., 2020). The second group, Xiao et al., focused
on the effects of exosomes from adipose tissue derived MSCs and
demonstrated that these exosomes were able to rescue senescence of
in-vitro human umbilical vein endothelial cells induced by both
hydrogen peroxide and high glucose. Introduction of these
exosomes to a DWH mouse model demonstrated improved
wound healing as quantified by scar width and percentage of re-
epithelialization. The group went on further to conduct an in-depth
genomic analysis of over 1,000 mature miRNAs that ultimately
demonstrated the effects of the MSC-exosomes were driven by their
miR-146a cargo (Xiao et al., 2021).

Two groups also showed that MSC-derived exosomes improve
DWH via their circRNA cargo (Shi et al., 2020; Wang et al., 2023).
Leveraging a previous finding that circRNA mmu_circ_
0000250 expression is abnormally low in diabetic mice, Shi et al.
conducted further in-vitro analysis. Their findings revealed that
exosomes secreted by mmu_circ_0000250-overexpressing adipose-
derived MSCs decreased high glucose-induced endothelial cell
apoptosis and increased angiogenesis by promoting autophagy.
mmu_circ_0000250 was found to activate autophagy through
inhibition of miR-128-3p and subsequent upregulation of sirtuin
1 (SIRT1) (Shi et al., 2020), a protein known to be involved in
regulating inflammation, cell migration, and wound healing (Qiang
et al., 2017). In-vivo application of these exosomes into wounds of

TABLE 5 The role of exosomal components in diabetic retinopathy in-vivo. DR, diabetic retinopathy; lncRNA, long noncoding RNA; MiR, microRNA; MSC,
mesenchymal stem cell.

Primary
purpose

Exosomal
component

Species Location Association with
T2DM

complication

Potential implications References

Diagnostic miR-15a Human Serum Increased Exosomal miR-15a negatively correlates with
ganglion cell complex thickness and may be
used to monitor pre-clinical retinal damage

Sangalli et al.
(2020)

Diagnostic miR-150-5p, miR-21-3p,
miR-30b-5p

Human Serum Decreased, increased,
increased

Associated with both onset and progression
of DR.

Mazzeo et al.
(2018)

Therapeutic miR-126 Rat Vitreous Decreased Administration of MSC-derived exosomes
overexpressing miR-126 can reduce
hyperglycemia-induced retinal inflammation

Zhang, Wang and
Kong (2019)

Diagnostic lncRNA DLX6-AS1,
lncRNA PRINS, lncRNA
FAM190A-3

Human Serum Increased, decreased,
decreased

lncRNA DLX6-AS1 was identified as a risk
factor for DR, and lncRNA PRINS and
lncRNA FAM190A-3 were identified as
protective factors for DR.

Ye et al. (2022)
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diabetic mice improved DWH, confirming the in-vitro therapeutic
findings (Shi et al., 2020). Wang et al. applied similar methodologies
and discovered a similar role for exosomal circRNA astrotactin 1
(circ-Astn1) from adipose-derived MSCs. Circ-Astn1 was found to
inhibit miR-138-5p and subsequently upregulate SIRT1. Higher
concentrations of circ-Astn1 accelerated full-thickness cutaneous
wound healing in diabetic mice (Wang et al., 2023). Interestingly,
both studies identified a common end-pathway protein for the
effects of exosomal circRNA. These findings suggest even more
potential therapeutic options (Shi et al., 2020; Wang et al., 2023).

Another therapeutic option that allows for the forgoing of the
invasive biopsy required to generate adipose-derived MSCs is urine-
derived stem cells (USCs). Chen et al. explored the therapeutic
potential of exosomes from human USCs to address DWH. After
demonstrating that these exosomes have therapeutic benefit in-vitro
and in-vivo, the group identified that the major mechanism of DWH
improvement was through an increase in the rates of
reepithelialization, collagen deposition, and vessel formation.
Proteomic analysis revealed that a pro-angiogenic protein, deleted
in malignant brain tumors 1 (DMBT1), was highly expressed in
exosomes from USCs. The group subsequently analyzed the effects
of knocking out DMBT1, which yielded return of poor wound
healing in both in-vitro and in-vivo studies. Findings from this study
demonstrate that local transplantation of exosomes from USCs is
able to accelerate diabetic wound healing in mice and suggests a
promising therapeutic strategy in humans (Chen et al., 2018).

Rather than use stem cells, Huang et al. bioengineered exosomes
to address wound healing. The group first used patient samples to
identify miRNA expression levels in diabetic chronic wounds. After
identifying miR-31-5p to be significantly underexpressed in such
tissue, they showed that in-vitro expression of miR-31-5p promoted
angiogenesis, fibrogenesis, and epithelialization. The group
subsequently engineered exosomes with miR-31-5p and

introduced them to a streptozotocin-induced diabetic rat model.
These rats demonstrated a significantly faster rate of wound healing
compared to two control groups—those that received non-
engineered exosomes and those that received no exosomes. This
finding suggests a novel technique towards exosomal therapeutic
delivery that bypasses the utilization of stem cells to generate a “cell-
free” therapy (Huang et al., 2021).

Taken together, the findings from these studies suggest that the
effect of exosomes in DWH is complex and involves a multitude of
both RNA and protein cargo. As a result, there are various
therapeutic targets that are now available to explore in order to
improve DWHmanagement (Table 6). Given that current treatment
protocols are largely supportive, implementation of these findings in
humans may radically change the future management of this
pathology.

6 Current clinical trials

As evidenced in Section 5.0, many of the current studies focus on
animal models. In order to identify current and past clinical trials, a
search on clinicaltrials.gov for studies containing keywords
“exosome OR miRNA OR vesicle” in the condition “Type
2 Diabetes” was done in May 2023 and yielded 38 studies. The
38 studies were subdivided into 15 observational studies and 23 were
interventional studies. Of the 23 interventional studies, only 15 were
truly measuring an exosome or exosomal component. The majority
of these studies were using exosomes as an opportunity to quantify
the effect of a common diabetic medication or exercise therapy. Of
note, only two of these studies were started in 2022 (Trial
Registration Numbers: NCT05259449 and NCT05139914), and
none were started in 2023. No study was found that was utilizing
exosomes as an interventional therapy. A review of the gray

TABLE 6 The role of exosomal components in diabetic wound healing in-vivo. ADSC, adipose-derived mesenchymal stem cell; DMBT1, deleted in malignant brain
tumors 1; lncRNA, long noncoding RNA; MiR, microRNA; PTEN, phosphatase and tensin homolog; SIRT1, sirtuin 1; USC, urine-derived stem cell.

Primary
purpose

Exosomal
component

Species Location Association with
T2DM

complication

Potential implications References

Therapeutic miR-31-5p Rat Subcutaneous at
wound site

Decreased Engineered miR-31-5p exosomes promote
diabetic wound healing by enhancing
angiogenesis, fibrogenesis, and
reepithelialization

Huang et al.
(2021)

Therapeutic DMBT1 Mouse Subcutaneous at
wound site

Decreased USC-derived exosomes enriched in
DMBT1 promoted angiogenesis and improved
wound healing

Chen et al.
(2018)

Therapeutic lncRNA H19 Mouse Skin at wound
site

Decreased MSC-derived exosomes overexpressing lncRNA
H19 stimulate wound healing by suppressing
fibroblast apoptosis via impairing miR-152-3p-
mediated PTEN inhibition

Li et al. (2020)

Therapeutic miR-146a Mouse Subcutaneous at
wound site

Decreased ADSC-derived exosomes rescued senescence of
endothelial cells by downregulating p-Src

Xiao et al.
(2021)

Therapeutic mmu_circ_0000250 Mouse Subcutaneous at
wound site

Decreased mmu_circ_0000250 in ADSC-derived exosomes
enhanced wound healing by miR-128-3p
adsorption and subsequent SIRT1 upregulation

Shi et al. (2020)

Therapeutic circ-Astn1 Mouse Subcutaneous at
wound site

Decreased circ-Astn1 in ADSC exosomes promoted wound
healing via miR-138-5p adsorption and
subsequent SIRT1 upregulation

Wang et al.
(2023)
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literature, however, did identify one open-label phase I/II study that
co-cultured mononuclear cells with cord blood-derived multipotent
stem cells and was successful in reducing HbA1C levels at 12 weeks
and 1 year post-treatment (Zhao et al., 2013). While this study did
not directly utilize exosomes as a therapeutic, it has been shown that
the therapeutic potential of co-culture with cord blood-derived
multipotent stem cells is due to their exosomes (Hu et al., 2020a).

The overall findings reported here suggest that in spite of the
overwhelming evidence that exists in mice, rats, and humans about
the potential for exosomes as therapeutic opportunities for T2DM,
there are currently limited efforts supporting their transition to
pharmaceuticals. While it is possible that this could be due to the
costs and challenges of exosomal isolation, it is also possible that
more time is needed for industry support of these trials given the
recency of several of the findings reported in this review
(Cheruvanky et al., 2007). As more observational studies are
conducted and new, cost-effective, isolation strategies develop,
novel therapeutic exosomal trials for T2DM are anticipated (Li
et al., 2017).

7 Conclusion

Over the last several years, it has become clear that exosomes
play an important role in the pathophysiology of T2DM and its
complications. The findings presented in this review shed light on
the numerous potential diagnostic and therapeutic options that exist
within exosomes. As of this review, the large majority of findings are
limited to in-vitro, in-vivo, and observational human studies. In
clinical settings (i.e., those that have the capacity to isolate
exosomes), serum and urine exosomes can be readily utilized as
biomarkers for T2DM and several of its complications. Many of the
limitations of exosomes are due to the challenges of their large-scale
production and clinical-grade storage (Hu et al., 2020b). As these
concerns are resolved, the implementation of randomized control

trials will be needed to fully assess the safety and therapeutic
potential of exosomes.
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