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Human activity recognition (HAR) has recently become a popular research field in
the wearable sensor technology scene. By analyzing the human behavior data,
some disease risks or potential health issues can be detected, and patients’
rehabilitation progress can be evaluated. With the excellent performance of
Transformer in natural language processing and visual tasks, researchers have
begun to focus on its application in time series. The Transformer model models
long-term dependencies between sequences through self-attention
mechanisms, capturing contextual information over extended periods. In this
paper, we propose a hybridmodel based on the channel attentionmechanism and
Transformer model to improve the feature representation ability of sensor-based
HAR tasks. Extensive experiments were conducted on three public HAR datasets,
and the results show that our network achieved accuracies of 98.10%, 97.21%, and
98.82% on the HARTH, PAMAP2, and UCI-HAR datasets, respectively, The overall
performance is at the level of the most advanced methods.
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1 Introduction

With the continuous advancement of artificial intelligence and wearable technology,
research on human activity recognition (HAR) based on inertial measurement unit (IMU)
devices has become a trending field (Yadav et al., 2021). It has extensive practical applications
such as smart homes, health monitoring, exercise tracking, and game design (Rashidi and
Cook, 2009; Hong et al., 2010; Ke et al., 2013). Compared to visual-based HAR, sensor-based
HAR methods can better protect user privacy, especially with the development and
proliferation of wearable devices that embed sensors such as accelerometers, gyroscopes,
and magnetometers.

Deep learning has been widely applied in the HAR field in recent years (Zhang et al.,
2022). Deep learning models do not rely on prior knowledge and avoid manual feature
extraction, which can automatically learn more advanced or meaningful features.
Convolutional neural networks (CNNs) have completed various HAR tasks (Jiang and
Yin, 2015; Teng et al., 2020; K. Wang, He, and Zhang, 2019; Zeng et al., 2014). CNN models
can automatically extract multi-level feature representations from sensor signals (Jiang and
Yin, 2015), improving human activity recognition accuracy. However, CNNs usually need to
convert input data into image form, which is not the optimal representation for some signal
data types, such as time series or waveform signals. They may cause information loss or noise
increase. Standard deep neural networks, including CNNs and recurrent neural networks
(RNNs), have limitations in HAR tasks (Gao et al., 2021). As the number of sensors increases,
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the size of the convolutional layer may ignore features in specific
dimensions, affecting the algorithm’s accuracy (Szegedy et al., 2015).

The Transformer model (Vaswani et al., 2017) proposal
combines the advantages of CNNs and RNNs. The Transformer
model can learn more extended sequence contextual information
and has better parallel performance in computation. Transformer
models have been widely used in the image domain (Dosovitskiy
et al., 2021) and natural language processing (Devlin et al., 2019).
The Transformer model captures long-term dependencies between
sequences through self-attention mechanisms, allowing it to capture
contextual information over extended periods (Dai et al., 2019). The
signals collected by sensors are based on time-series data, and the
self-attention mechanism in the Transformer model can consider
information from all positions in the sequence simultaneously,
enabling parallel computation and improving efficiency (Reza
et al., 2022). Compared with complex CNNs and RNNs models,
Transformer models are more stable (Vaswani et al., 2017).

However, existing deep learning methods such as CNNs, RNNs,
and Transformers still have some limitations. Firstly, most existing
HAR classification models have many parameters for training,
leading to poor performance in natural environments. Secondly,
existing models need to consider the different importance levels of
data on different channels of sensor-collected data. Moreover,
existing Transformer-based algorithms have many parameters,
placing higher performance requirements on mobile and
wearable devices with low power consumption.

This paper proposes a lightweight Transformer model
incorporating channel attention mechanisms to address these issues.

1. For HAR scenarios, we propose an input structure based on
channel attention mechanisms for 1D CNNs, enhancing the
model’s ability to extract features from data on different channels.

2. Instead of the traditional Transformer model’s self-attention
mechanism. We propose HAR-Attention mechanism reduces
the FLOPs calculation of the model by using a sparse self-
attention matrix composed of Slide Attention and Random
Attention while ensuring the model’s local sensitivity and
global feature extraction capabilities.

3. We conducted extensive experiments on three public datasets,
demonstrating the robustness and practicality of the
proposed mode.

The rest of this paper is organized as follows. Section 2 reviews
the development of HAR algorithmmodels, Section 3 introduces the
details of the proposed model, Section 4 describes the experimental
setup, and results in detail.

2 Related works

This section reviews the current work related to HAR. Human
activity recognition (HAR) on mobile devices based on inertial
measurement units (IMUs) is the task of identifying daily human
activities (such as walking, running, and jumping) based on time-
series data readings. In this field, a combination of accelerometers
and gyroscopes is commonly used, where the accelerometer is a
sensor that provides a detailed description of acceleration, and the
gyroscope is a device that senses angular velocity.

2.1 HAR based on traditional deep learning

Research on deep learning-based feature extraction has received
wide attention in recent years. CNN and RNN are usually superior
in feature extraction ability to traditional feature selection and
machine learning techniques. CNN is very suitable for handling
time-series data used in HAR tasks (Gu et al., 2021). Gao et al. (2021)
found that compared with CNN, the feature representation ability of
RNN is weaker, and existing HAR attention mechanisms mainly
focus on temporal continuity and cannot balance the spatiotemporal
dependencies of multimodal sensing signals well.

The CNNmodel achieved significant results in HAR on sensors and
outperformed other state-of-the-art algorithms requiring advanced
preprocessing or tedious manual feature extraction. For example,
Zeng et al. (2014) first applied CNN to HAR and extracted the
acceleration time series’ local dependencies and scale-invariant
characteristics. Jiang and Yin (2015) converted raw sensor signals
into 2D image signals and then classified the signal images using two
layers of CNN to achieve the desired activity recognition. Teng et al.
(2020) combined local loss and hierarchical training mechanisms into a
deep HAR classifier. They proposed a hierarchical CNN that uses a local
loss function, improving the memory efficiency of HAR applications. K.
Wang, He, and Zhang (2019) proposed an attention-based CNN to
performweakly labeled HAR tasks, promoting the annotation process of
sensor data. The LSTM model (Hua et al., 2019) can learn the time
correlation between data. Bokhari et al. (2021) used a simplified
network-gated recurrent unit (GRU) of LSTM with fewer parameters
and faster convergence speed. However, the recognition effect is similar
to that of LSTM. Yin et al. (2022) used a hybrid of multiscale CNN and
Bi-LSTM to improve feature extraction and performance. Ordóñez and
Roggen (2016) proposed a general deep framework for activity
recognition composed of CNN and long short-term memory
(LSTM), which can further fuse multimodal sensors to improve the
classification accuracy of CNN.

2.2 HAR based on attention mechanism

CNN has become the dominant technology in computer vision,
and many researchers continue to study it to improve its performance.
The introduction of attention mechanisms into convolutional modules
has shown great potential in improving the performance of models,
attracting the attention of many researchers (Niu, Zhong, and Yu,
2021). Squeeze-and-Excitation Networks (SENet) (Hu, Shen, and Sun,
2018) is one of the usualmethods, which brings significant performance
gains to various CNN architectures by incorporating channel attention
into convolution blocks. The Transformer architecture is a deep neural
network initially developed for natural language processing. They were
designed to address the problems faced by RNN architectures and use
self-attention mechanisms and similarity feature scores (Rumelhart,
Hinton, and Williams, 1986), which are the core innovations of the
Transformer. The Transformer model shows that attention
mechanisms do not require recursive units to achieve equivalent
performance. In addition, Transformer models are more easily
parallelizable than CNN models. Mahmud et al. (2020) combined
sensor-modal attention, self-attention, and global temporal attention
to generating high-dimensional feature representations for
classification. Khan and Ahmad (2021) used a multi-head
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convolutional neural network with added SENet attention to solving the
wearable activity recognition problem. Tang et al. (2022) captured the
interrelationships between the three dimensions of sensors, time, and
channels by establishing triple attention. SHAVIT and KLEIN (Shavit
and Klein, 2021) first introduced the Transformer model into human
behavior recognition and proposed methods that showed better
prediction accuracy than CNN-based solutions and could be better
transferred between datasets. Iveta and Martin (Dirgová Luptáková,
Kubovčík, and Pospíchal, 2022) used Transformers to obtain time
correlations of feature sequences and added attention mechanisms to
highlight intrinsic features.

Based on reading and summarizing a large number of literature
studies in the field of human behavior recognition, we proposes a
hybrid model based on channel attention mechanism and sparse
attention mechanism transformer. The roles of channel attentional
mechanisms and sparse attentional mechanism transformer are also
discussed in the context of ablation experiments. The model is used
for the task of human activity recognition from wearable device
sensor data and effectively improves the accuracy of sensor-
based HAR.

3 Proposed framework

In this section, we aim to propose a hybrid model based on a
channel attention mechanism for 1D CNN and Transformer, to
improve the accuracy of human activity recognition based on
inertial sensors as much as possible while reducing the Flops

computation of the Transformer through sparse attention
mechanism. Some models in existing methods exhibit suboptimal
levels of accuracy, while certain other models fail to address the
issue of non-parallel processing for multi-sensor data. Furthermore,
the redundancy resulting from self-attention mechanisms has not been
adequately considered when deploying Transformer-based models. To
achieve this goal, this paper proposes the following model, as shown in
Figure 1, which uses multi-dimensional signal data collected by inertial
sensors to automatically recognize the wearer’s movements.

The proposed processing framework includes several components:
first, noise removal and motion window segmentation are performed,
and then initial feature extraction is performed through channel
attention of 1D CNN based on the channel attention mechanism,
which can better capture differences and correlations between different
channels. The extracted features are input to the backbone network
Transformer for further context feature extraction. The Flops
computation of the Transformer model is reduced through a sparse
attention mechanism as shown in the right of Figure 1. Finally,
classification is performed through fully connected layers. The
specific steps of each module will be discussed in the following sections.

3.1 Data segmentation

After preprocessing the data, it must be segmented before inputting
into themodel. The sliding window technique is widely used for sensor-
based HAR in the data segmentation process. The length and overlap
rate of the sliding window has some influence on the recognition

FIGURE 1
The overview of our network.
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accuracy. However, there has yet to be a consensus on the sliding
window’s optimal length and overlap rate. Long sliding windows
contain more sensor data, resulting in higher recognition accuracy
and more conducive to identifying some complex activities, but the
recognition speed will decrease. Smaller windows are suitable for
recognizing faster activities. Most literature sets the two sliding
window parameters consistent with previous research. In this paper,
for fairness, we also set the length and overlap rate of the slidingwindow
to be consistent with other literature.

3.2 Model details

The model proposed in this paper is based on the
Transformer architecture (Vaswani et al., 2017), a well-known
sequence-to-sequence model in the field of NLP, consisting of an
encoder and decoder part. Similarly, the model can be applied to
the field of sensor-based HAR. Different from the direct use of the
Transformer model in the field of human behavior recognition by
Dirgová Luptáková, Kubovčík, and Pospíchal (2022). We
modified the input embedding and self-attention mechanism
to use Transformer efficiently in our application. First, we
proposed an input structure based on channel attention
mechanism 1D CNN to enhance further the feature extraction
ability of HAR signals instead of the 1D CNN in the model
(Shavit and Klein, 2021). Secondly, to solve the problem of large-
scale Flops, we proposed a more precise and powerful attention
mechanism structure to replace the self-attention part in the
original model; namely, we embedded two-level attention
mechanisms in the model: local attention mechanism in Slide
Attention and global attention mechanism in Random Attention.
For a given sequence X = (x1, x2, . . ., xt), where t represents the
length of the given sequence, the Transformer outputs a vector
P = (p1, p2, p3 . . ., pi), where pi represents the probability that
the sequence is classified as class i. Figure 1 describes the
architecture of the proposed model.

3.2.1 Fusion of channel attention mechanism into
1D CNN

In the Transformer model, word embedding is an essential step
at the beginning of the model. To map each point at each position to
a number, a structure is proposed to replace the word embedding in
the Transformer model, which uses 1D CNN convolutional layers,
and the size of the input and output of this layer are the same (Shavit
and Klein, 2021). However, using only multiple convolutional layers
limits its ability to extract motion features. In the multi-dimensional
acceleration signal collected by inertial sensors, the importance of
each channel is different, and extracting key channels and
performing feature extraction can enhance the model’s learning
ability for signal features.

To solve this problem, we proposed an input structure based on
channel attention mechanism 1D CNN to enhance the ability to
extract motion features from acceleration signals collected by
inertial sensors. In the proposed model, the channel attention
mechanism is embedded into the 1D CNN model, which selects
channels with more vital representation ability from multiple
channels in the input and combines them with the 1D CNN

network to extract local morphological features. Figure 2 shows
the proposed attention architecture.

First, for the input to the model is the three-axis acceleration
data collected in the pre-processed inertial sensors, given a data
sampleX ∈ R1×n×t (where n is the data length and t is the number of
channels). The input channel feature space X � (x1, x2, ..., xt) is then
subjected to a global level pooling operation to obtain the
compressed feature information, where t denotes the number of
channels and the size of each channel is 1 × n.

S X( ) � 1
n
∑n
i�1
ln i( )

where n denotes the length of the feature vector. Subsequently, the
compressed feature information is used to perform the excitation
operation. The channel weights are generated, and the obtained
weights are adaptively calibrated by two nonlinear fully connected
(FC) layers and the Sigmoid function. The learned weights are
multiplied onto the corresponding channel feature vector X to
obtain the weighted information channels.

3.2.2 Position encoding
To effectively process inertial sensor signals, the proposed model in

this paper needs to encode position information and embed it into the
feature vectors obtained from the previous step. As the waveform of
HAR signals is periodic, even the same value has different meanings at
different positions over some time. We first use a lookup table for
position encoding, and the calculation process can be completed in
O(1). This processing time allows longer sequence lengths to be
processed during training. The specific formula is as follows:

PE pos,2i( ) � sin
pos

10000
( ) 2i

dmodel( )
PE pos,2i+1( ) � cos

pos

10000
( ) 2i

dmodel( )
Where pos is the position, and i is the dimension size. According

to the above formula, each dimension of position encoding
corresponds to a sine curve. The wavelength forms a geometric
series from 2π to 10000*2π. We chose this function because it allows
the model to learn features based on relative position.

3.2.3 Transformer encoder
In human behavior recognition, context information of temporal

sequences can reveal rich features. Therefore, the Transformer model,
which is good at capturing context information, is used as the backbone
network of the proposed model in this paper.

In the Transformer model, the self-attention mechanism is an
important part. When calculating multi-head self-attention, the
window information is first converted into three vectors Qh, Kh

and Vh through linear transformations shown in formula (),

Qh � QWQ
h ∈ Rt×d′

Kh � KWK
h ∈ Rt×d′

Vh � VWV
h ∈ Rt×d′

where d represents the dimension of the vectors, d′ � d
nh
and nh is the

number of heads. Matrices WQ
h , WK

h , WV
h ∈ Rt×d′ are linear

projections from d to d′. After obtaining the three linear
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transformations, the self-attention relationship matrix is calculated
using the following formula (),

h Q,K,V( ) � softmax
Qh KT

h( )��
d

√( )Vh ∈ Rt×d′

where the network output is h(Q,K,V), a weighted sum ofQh,Kh and
Vh. The dot product ofQh and Kh is calculated, and then the obtained
parameters are normalized by the softmax function and multiplied by
these valuesVh. The softmax function is a classifier used for prediction,
and its output value determines the probability of different classes.

3.3 HAR attention

The BigBird Model (Zaheer et al., 2021) is a new type of natural
language processing model that incorporates some unique attention
mechanisms. When designing the HAR-Attention, a combination of
Slide Attention and Random Attention was used to ensure the
model’s ability to extract local and global features while reducing
computational complexity, as Figure 3 shown. This paper designs an
attention mechanism suitable for the HAR field based on the sparse
attention mechanism in BigBird.

The Slide Attention mechanism is a strategy based on sliding
windows.When calculating attention weights, it only focuses on a small
area around the current position in the input sequence and ignores
other parts. In each sliding window of HAR data, places where

acceleration changes often contain essential features (Sousa Lima
et al., 2019). Therefore, using the Slide-Attention mechanism in
areas with large fluctuations can ensure the model’s local perception
ability. At the same time, this mechanism helps the model effectively
solve the performance degradation problem caused by the global
attention mechanism, thus improving the model’s computational
efficiency and prediction accuracy.

The Random Attention mechanism is based on random
sampling. The model’s computation process randomly selects
some positions to calculate attention weights for each time
step. Unlike traditional global attention mechanisms, the
randomly selected positions can be any position, allowing the
model to consider all relevant information without having to
compute all the information, significantly reducing computational
costs.

By combining the characteristics of these two attention
mechanisms, the Transformer model based on HAR Attention
has more robust modeling capabilities and can better perform
human behavior recognition tasks with higher computational
efficiency.

4 Experimentation and evaluation

This paper tested the proposed model using three large public
datasets commonly used in sensor-based human behavior domains:

FIGURE 2
SE-Block and CNN.

FIGURE 3
HAR attention.
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HARTH (Logacjov et al., 2021), PAMAP2 (Reiss and Stricker, 2012),
and UCI-HAR(Bulbul, Cetin, and Dogru, 2018).

4.1 Datasets

4.1.1 HARTH dataset
The HARTH dataset (Logacjov et al., 2021) contains records of

22 participants wearing two 3-axis accelerometers for approximately
2 h in a free-living environment. The sensors are attached to the
right thigh and lower back. The provided sampling rate is 50 Hz.
Activities were annotated frame by frame using video recordings
from a chest-mounted camera.

4.1.2 PAMAP2 dataset
The PAMAP2 Physical Activity Monitoring dataset (Reiss

and Stricker, 2012) is publicly available on the UCI repository
and contains 18 body activities (such as lying down, sitting,
walking up/down stairs, etc.). The dataset was collected from nine
subjects wearing three wireless inertial measurement units
(IMUs): one on the dominant arm wrist, one on the chest,
and one on the ankle of the dominant side. Each subject was
asked to perform 12 activities according to a protocol: standing,
sitting, walking up/down stairs, running, and walking. The
dataset has 52 dimensions, and acceleration, gyroscope,
magnetometer, and heart rate data were recorded from the
dominant IMU. Each subject also had a heart rate monitor

FIGURE 4
The Accuracy and Confusion matrix on the HARTH.

FIGURE 5
The Accuracy and Confusion matrix on the PAMAP2.
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with a sampling rate of 9 Hz. The IMU has a sampling rate of
100 Hz.

4.1.3 UCI-HAR dataset
The UCI-HAR dataset (Bulbul, Cetin, and Dogru, 2018) was

collected with a Samsung Galaxy SII, which was positioned on the
subject’s waist. The experiments have been carried out with a group
of 30 volunteers within an age bracket of 19–48 years. Each person
performed six activities (walking, walking-upstairs, walking-
downstairs, sitting, standing and laying). Using the phone’s
embedded accelerometer and gyroscope, we captured 3-axial

linear acceleration and 3-axial angular velocity at a constant rate
of 50 Hz.

4.2 Experimental environment and
parameter tuning

The training and testing of the proposed algorithm were
conducted on a machine with an RTX 3060 GPU and an AMD
Ryzen 7 5800H CPU with 32 GB of memory. Our code is based on
PyTorch implementation. We used the Adam optimizer with

FIGURE 6
The Accuracy and Confusion matrix on the UCI-HAR.

TABLE 1 Comparison with rival methods.

HARTH Method Acc F1-score

LSTM (Logacjov et al., 2021) 97.19 94.03

CNN-LSTM (Logacjov et al., 2021) 97.45 93.99

MR-CNN (Hnoohom et al., 2022) 97.59 94.76

Our network 98.10 95.29

PAMAP2 CNN +GRU (Dua, Singh, and Semwal, 2021) 95.27 95.24

LSTM+CNN (Xia, Huang, and Wang, 2020) 95.01 95.85

Attention + CNN (Li, Wang, and Liu, 2022) 97.35 97.03

Attention + Convolution (Huan et al., 2022) 96.01 95.52

MhaGNN (Y. Wang et al., 2023) 96.74 96.33

Our network 97.21 96.04

UCI-HAR ResNet + Attention (Tang et al., 2022) 98.61 -

1-D CNN + Attention (Khan and Ahmad, 2021) 98.18 97.72

CNN + BiLSTM (Nafea et al., 2021) 98.53 -

Our network 98.82 98.20
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decaying learning rates to speed up the model training process for
various datasets. Different initial learning rates were set according to
each dataset. As there are highly imbalanced classes in various
biological activity datasets, different class weights must be
considered based on their sample proportions. Three evaluation
metrics were used to comprehensively evaluate the proposed model:
accuracy and F1-score (Tang et al., 2022). For different datasets, the
sliding window length was set to 100 with a 50% overlap. The initial
learning rate was set to 0.0001, and cross-entropy was used as the
loss function to train the model with a batch size of 128 for
40 epochs. The percentage of the sparse attention mechanism
mask used was 70%.

4.3 Experimental results

4.3.1 Results on the HARTH dataset
In this experiment, we selected the six common types of

movements in human behavior recognition from the HARTH
dataset: walking downstairs, running, sitting, standing, walking,
and walking upstairs. We selected the 6-channel acceleration
signals collected by two different inertial sensors in the dataset.
As shown in Figure 4, the proposed model on the HARTH dataset
began to stabilize in accuracy after 20 training epochs and achieved
the highest training accuracy after 40 epochs. In this dataset, the
model achieved an accuracy of 98.10% and F1-score of 95.29.
Figure 4 shows the confusion matrix of the model on the
HARTH dataset.

4.3.2 Results on the PAMAP2 dataset
In this experiment, we selected the six common types of

movements in human behavior recognition from the
PAMAP2 dataset: lying down, sitting, standing, walking, running,
cycling, nordic walking, ascending, descending, vacuum cleaning
and ironing. We selected the 6-channel acceleration signals collected
by two different inertial sensors in the dataset. As shown in Figure 5,
the proposed model on the PAMAP2 dataset had tiny fluctuations in
its curve after 20 training epochs and achieved the highest training

accuracy after 40 epochs. In this dataset, the model achieved an
accuracy of 97.21% and F1-score of 96.04. Figure 5 shows the
confusion matrix of the model on the PAMAP2 dataset.

4.3.3 Results on the UCI-HAR dataset
In this experiment, we selected theactivitys in human behavior

recognition from the UCI-HAR dataset: walking, walking-upstairs,
walking-downstairs, sitting, standing, andlaying. We selected the 6-
channel acceleration signals collected by two different inertial
sensors in the dataset. As shown in Figure 6, the proposed model
on the UCI-HAR dataset had tiny fluctuations in its curve after
20 training epochs. In this dataset, the model achieved an accuracy
of 98.820 and F1-score of 98.22. Figure 6 shows the confusion matrix
of the model on the UCI-HAR dataset.

4.3.4 Comparison with related work
In order to evaluate the performance of the proposed method, we

compare the proposed method with similar previous research methods.
Table 1 summarizes the researchmethods and corresponding evaluation
metrics on the HARTH, PAMAP2, and UCI-HAR datasets in recent
related literature, including accuracy (Acc) and F1-score. (Table 1) shows
that the proposed model in this paper has the highest accuracy and
F1 score on theHARTHdataset. The accuracy of usingMulti-Resolution
CNN model (MR-CNN) (Hnoohom et al., 2022) is 97.59%, which is
0.51% lower than our method. On the PAMAP2 dataset, the F1 score of
our method on the same level asthe most advanced model, and the
accuracy using Attention + CNN(Li, Wang, and Liu, 2022) is 97.35%,
which is almost the same as themethod in this paper, while the accuracy
of other methods is lower than 97%.The accuracy of the Multi-branch
Neural Network based on Attention-based Convolution (Huan et al.,
2022) is 96.01%, which is 1.20% lower than our method. For the UCI-
HAR dataset, our method’s accuracy and F1-score are 0.21% and 048.%
higher than 1D CNN + Attention (Khan and Ahmad, 2021) and higher
than ResNet + Attention (Tang et al., 2022), respectively. In summary,
the proposed model in this paper has high accuracy and F1-score, and
our method also has fewer parameters and floating-point operations.
The Transformer-based human behavior recognition model with an
attention mechanism is suitable for complex scenarios, and adding the
attention mechanism enhances the effect of adversarial signal
interference.

4.4 Ablation experiment

We conducted the following ablation experiments on the
HARTH dataset to test the effectiveness of the channel attention
mechanism and sparse self-attention mechanism. We replaced the
channel attention mechanism with a continuous 1D CNN. We also
compared the use of the sparse self-attention mechanism with its
absence.

The experimental results showed that adding the channel attention
mechanism enhanced the model’s ability to extract features from data
collected by different sensors, enabling the Transformer module to
extract more robust contextual features and significantly improving the
model’s performance.When using the sparse self-attentionmechanism,
the model’s accuracy fluctuated slightly. However, the fluctuation was
slight, and adding the sparse self-attention mechanism reduced the
Flops computational complexity of the model.

FIGURE 7
5-fold cross validation results of the model.
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4.5 Model robustness evaluation

The robustness of the proposed model is evaluated by 5-fold
cross-validation method. The detailed experimental scheme is
shown below.

5-fold cross-validation method: We divide the entire data set into
5 parts by stratified sampling method. Stratified sampling is to make the
data distribution of each part roughly the same as that of the entire data
set. Then we select 4 parts of the data as the model training set and the
remaining 1 part as the validation set. The results of the 5-fold cross-
validation of the hybrid model based on the Channel Attention
Mechanism and Sparse Attention Mechanism Transformer are shown
in Figure 7, fromwhich it can be seen that each evaluation index is stable
within a reasonable range. The accuracy of the model is 98.52% ± 0.29%
(average ± standard deviation), the sensitivity is 90.48% ± 1.13%, and the
F1-score is 98.5% ± 0.29%. It is further shown that the model has strong
robustness and can achieve good performance.

5 Conclusion and future work

This study proposes a hybrid model based on the Channel
Attention Mechanism and Sparse Attention Mechanism
Transformer for human activity recognition tasks on sensor data
from wearable devices. The model performed initial feature
extraction on multi-dimensional signal data using the channel
attention mechanism and 1D CNN and used a sparse Transformer
model to extract features from sensor data. In the self-attention module
of the Transformer model, we introduced a dual attention mechanism
composed of Slide Attention and Random Attention to select the
essential features. By analyzing the confusion matrices of the
HARTH, PAMAP2, and UCI-HAR datasets, our proposed method
can reduce the adverse effects of activity similarity on activity
recognition and effectively improve the accuracy of sensor-based
HAR. Compared with existing research results, our method
outperforms the current state-of-the-art methods.

In the future, we will further investigate the following aspects: 1)
consider the transfer learning problem in sensor-based HAR; 2)
consider the class imbalance problem in sensor-based HAR.
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