
Mysterious sphingolipids:
metabolic interrelationships at the
center of pathophysiology

Rama Jamjoum1†, Saurav Majumder2†, Batoul Issleny1† and
Johnny Stiban3*
1Department of Pharmacy, Birzeit University, West Bank, Palestine, 2National Institute of Allergy and
Infectious Diseases (NIAID), National Institutes of Health, Rockville, MD, United States, 3Department of
Biology and Biochemistry, Birzeit University, West Bank, Palestine

Metabolic pathways are complex and intertwined. Deficiencies in one or more
enzymes in a given pathway are directly linkedwith genetic diseases, most of them
having devastating manifestations. The metabolic pathways undertaken by
sphingolipids are diverse and elaborate with ceramide species serving as the
hubs of sphingolipid intermediary metabolism and function. Sphingolipids are
bioactive lipids that serve a multitude of cellular functions. Being pleiotropic in
function, deficiency or overproduction of certain sphingolipids is associated with
many genetic and chronic diseases. In this up-to-date review article, we strive to
gather recent scientific evidence about sphingolipid metabolism, its enzymes, and
regulation. We shed light on the importance of sphingolipid metabolism in a
variety of genetic diseases and in nervous and immune system ailments. This is a
comprehensive review of the state of the field of sphingolipid biochemistry.
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1 Introduction

Sphingolipids represent a group of structurally diverse lipid molecules (Futerman and
Hannun, 2004) (Figure 1). These amphipathic lipids are one of the major components of
almost all eukaryotic membranes (Quinville et al., 2021). In addition to their structural roles,
some sphingolipid metabolic intermediates act as critical signaling molecules involved in a
wide range of biological processes (Abou-Ghali and Stiban, 2015; Abed Rabbo et al., 2021).
Of particular interest are the sphingolipids sphingosine 1-phosphate (S1P), ceramide (Cer),
and ceramide 1-phosphate (C1P) which are labeled as bioactive and signaling hubs (Issleny
et al., 2023). These molecules have been directly and indirectly implicated in cell-cell
interactions, cellular migration, senescence, and cell death (Spiegel and Milstien, 2003;
Mendelson et al., 2014), to name a few critical processes. The term “sphingolipid”was coined
by J. L. W. Thudichum because of the enigmatic nature of these lipids (Stiban, 2019). Unlike
glycerophospholipids which contain a glycerol backbone, sphingolipids built on a unique
amino-alcohol sphingoid base (Pruett et al., 2008). The sphingoid backbone is capable of
rendering additional structural diversity to these lipids (Breslow and Weissman, 2010).
Almost a century after their discovery, scientists started to uncover additional roles of
sphingolipid in a wide range of cellular functions and their involvement in maintaining
normal physiology (Hannun and Bell, 1989). Recently, the advent of cutting-edge
technologies such as genome/proteome sequencing, mass-spectrometry, and super-
resolution microscopy coupled with genetic or functional screens in human or other
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higher eukaryotic systems using CRISPR/Cas9, started a new era of
identifying and assigning novel functions to sphingolipids.

Sphingolipids are found in almost all eukaryotes (Heung et al.,
2006) ranging from unicellular yeast to higher eukaryotes such as
humans and plants. They have even been identified in some
prokaryotes (Bacteroidetes) (Rappocciolo and Stiban, 2019;
Johnson et al., 2020), suggesting that enzymes required for their
metabolism are also highly conserved. In fact, homologs of these
enzymes can be found in almost all eukaryotes. Different eukaryotes
exhibit distinct sphingolipid profiles. In addition, complex
eukaryotic systems such as humans or mice show distinct tissue-
specific representations of different sphingolipid species (Laviad
et al., 2008), suggesting that each species may have unique properties
required for specialized functions. This is consistent with a higher
degree of complexity in subunit compositions of several key
sphingolipid metabolic enzymes and their regulating partners.

Sphingolipid metabolic pathways are complex and
interconnected, with multiple metabolites feeding in and out of
these pathways (Santos et al., 2022). This interconnectivity makes it
difficult to pinpoint the significance of any one metabolite species.
Intracellular pools of different sphingolipid species exist as a
dynamic equilibrium between the de novo biosynthetic pathway
and the salvage pathway. Despite all the challenges, in the last few
decades, our understanding of their regulation and physiological
roles made great advances. Several new regulatory subunits of key
sphingolipid metabolic enzymes were identified, along with novel
regulatory mechanisms. In complex higher eukaryotic model
systems (such as in plants, flies, worms, or mice) chemical or

genetic manipulation of different metabolic enzymes helped us
better understand the importance of sphingolipids in maintaining
normal physiology. Genome-wide association studies have revealed
mutations in sphingolipid metabolic genes can be correlated to
diseases such as Alzheimer’s, Parkinson’s, or Amyotrophic Lateral
Sclerosis which were previously not linked.

In this article, we aim to provide an in-depth review of
sphingolipid metabolism, the enzymes involved, and how
different mutations in the subunits of these enzymes impact
sphingolipid metabolism resulting in pathophysiological
conditions. A detailed understanding of the basic architecture of
the sphingolipid metabolic pathway is critical to gain important
insights and address important questions.

2 Sphingolipid metabolism

In mammals, as well as in other eukaryotic cells, sphingolipids
are turned over via three distinct pathways (Figure 2). A series of
membrane-embedded enzymes coordinate, control, and regulate the
different processes of sphingolipid metabolism, with Cer serving as
the precursor molecule of other sphingolipids and their metabolic
hub (Breslow and Weissman, 2010; Gault et al., 2010; Pralhada Rao
et al., 2013). Once Cer is synthesized, it can be used as a precursor for
the synthesis of other sphingolipids, such as sphingomyelin (SM),
glucosylceramide (GlcCer), and gangliosides (Bleicher and Cabot,
2002; Taniguchi and Okazaki, 2021; DAngelo et al., 2018). SM is
synthesized by the transfer of a phosphocholine head group from

FIGURE 1
Variations in the structures of sphingolipids. Sphingolipids are derivatives of the long chain bases sphingosine or sphinganine (center panel).
Ceramides and dihydroceramides (left panel) which are N-acylated sphingosines or sphinganines, respectively, vary in fatty acyl chain length.
Glucosylceramide is a cerebroside (right panel) containing a monosaccharide headgroup on ceramide, whereas gangliosides (e.g., GM1 (bottom panel))
contain oligosaccharides including sialic acid residues. Sphingomyelin (top panel) is a phospholipid that contains a zwitterionic phosphocholine
headgroup attached to ceramide.
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phosphatidylcholine to Cer, while GlcCer is synthesized by the
addition of a glucosyl group to the hydroxyl headgroup of Cer.
Gangliosides are synthesized by the stepwise addition of different
sugar moieties to Cer (Hernández-Bello et al., 2023).

Complex sphingolipids are catabolized to Cer which can then be
further metabolized to sphingosine, which can be phosphorylated to
S1P. S1P can be ultimately cleaved into phosphoethanolamine and
hexadecenal which has been shown to interfere and form adducts
with several biological molecules (Kumar et al., 2011; Upadhyaya
et al., 2012; Schumacher et al., 2017). This process is carried out by a
group of sphingolipid hydrolases, including sphingomyelinases
(SMases), glucocerebrosidases, gangliosidases, and S1P lyases.

2.1 De novo synthetic pathway

The pathway of de novo synthesis initiates with the combination
of L-serine, an amino acid, and palmitoyl-CoA, resulting in the
generation of 3-ketosphinganine, which subsequently undergoes
reduction at its ketone group, leading to the formation of
sphinganine (Gault et al., 2010). Sphinganine then undergoes
N-acylation by Cer synthases (CerSs) (Lahiri and Futerman,
2005; Stiban et al., 2010; Zelnik et al., 2019; Kim et al., 2021),
resulting in the production of dhCer, which is oxidized in the final
step through the introduction of a 4,5-trans double bond in the fatty

acid portion of the molecule, leading to the creation of Cer (Kraveka
et al., 2007; Rodriguez-Cuenca et al., 2015; Harrison et al., 2018;
Alsanafi et al., 2021).

2.1.1 Serine palmitoyltransferase
Serine palmitoyltransferase (SPT) is a resident enzyme of the

endoplasmic reticulum (ER) (Aaltonen et al., 2022) which catalyzes
the rate-limiting step in the de novo pathway (Wells and Lester,
1983; Hanada, 2003; Breslow and Weissman, 2010). SPT belongs to
the α-oxoamine synthase family, enzymes that are responsible for
the condensation of carboxylic acid CoA thioesters with amino acids
(Gault et al., 2010). In this step, sphingoid or long-chain bases are
formed by the decarboxylation of the amino acid serine and its
condensation with palmitoyl-CoA. Sphingoid bases are the
backbone of every complex sphingolipid. Although complex
sphingolipids represent a diverse family of lipids, the diversity
among sphingoid bases is quite restrictive. Broadly they can be
grouped into three with decreasing abundance in mammalian cells:
sphingosine, sphinganine, and phytosphingosine, which is
commonly found in plants, yeasts, and some specialized tissues
such as skin in humans (Chung et al., 2001; Mashima et al., 2019;
Nădăban et al., 2022).

SPT is widely conserved across eukaryotes (Han et al., 2009), and
certain prokaryotes contain this enzyme (Ikushiro et al., 2003).
Bacterial SPT exists as a homodimer (Yard et al., 2007), while
eukaryotic SPT is a heterodimer composed of two major
subunits, SPT long-chain subunits 1 and 2 (SPTLC1 and
SPTLC2). SPTLC1 is highly conserved throughout eukaryotes
and exhibits significant sequence similarity to the bacterial SPT
subunit. Conversely, SPTLC2 displays a relatively higher degree of
sequence diversity and exists in two isoforms, namely SPTLC2 and
SPTLC3. Either of these subunits can interact with SPTLC1 to form
functional SPT enzymes with catalytic activity (Wang et al., 2021a).
The SPTLC2 subunit, containing a binding site for pyridoxal 5-
phosphate, is regarded as the catalytic subunit within the SPT
enzyme (Hornemann et al., 2006). Recent findings have
established that eukaryotic heterodimeric SPT relies on additional
regulatory subunits such as the small subunit of SPT (ssSPT) (Han
et al., 2009) and Orm/ORMDLs to achieve optimal activity and
regulation (Davis et al., 2018).

Multiple isoforms of ssSPTs are present in eukaryotes. In
humans, ssSPT exists in two isoforms ssSPTa and ssSPTb. Each
of these isoforms can bind to the SPT heterodimer and boost its
catalytic activity several hundred folds and confer acyl-CoA
substrate chain length specificity introducing early diversity in
sphingoid base chain lengths. It has been reported in mice and in
plants (A. thaliana) that ssSPTa knockout mutants are
embryonically lethal suggesting their importance in development
(Kimberlin et al., 2013).

Orm proteins were first identified in yeast as negative regulators
of de novo sphingolipid biosynthesis (Breslow et al., 2010). This
family of proteins is highly conserved and homologs of yeast Orm
proteins were identified in higher eukaryotes. In humans, these
proteins are known as ORMDL and they exist in different isoforms
ORMDL1, ORMDL2, and ORMDL3 and share around 80%
sequence homology among themselves (Clarke et al., 2019). Any
of these ORMDL isoforms can interact with SPT (Clarke et al., 2019;
Davis et al., 2019; Wang et al., 2021a; Green et al., 2021). Thus, the

FIGURE 2
Sphingolipid metabolic pathways in eukaryotes. The de novo
synthesis pathway occurs on the cytosolic surface of the ER. It starts
with the condensation of L-serine and palmitoyl-CoA to produce 3-
ketosphinganine (3kdhSph) which is reduced by 3-
ketosphinganine reductase to form sphinganine. Sphinganine is then
N-acylated to dihydroceramide (dhCer) by CerS and in the final step,
ceramide (Cer) is synthesized by the action of dihydroceramide
desaturase, which is responsible for converting the reduced sphingoid
backbone of sphinganine into a monounsaturated sphingosine (Sph)
backbone. Sphingosine kinases catalyze the phosphorylation of Sph to
sphingosine 1-phosphate (S1P), a paracrine signaling molecule. Cer is
transported to the Golgi apparatus by Cer transport protein where it
becomes a substrate for sphingomyelin (SM) synthesis by SM synthase.
Alternatively, Cer can be a substrate for glucosylceramide (GlcCer)
generation, a precursor for other glycosphingolipids (GSLs). Cer can
be phosphorylated to Cer 1-phosphate (C1P) by Cer kinase. GSLs and
SM can be transported to the endosomal system and metabolized by
lysosomal degradation. This figure was created with Biorender.com
using a paid student subscription.
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SPT holoenzyme (Wattenberg, 2021) may consist of heterodimeric
SPT (SPTLC1-2) along with ssSPT and ORMDL proteins. In short,
the holoenzyme, known as the SPOTs complex, is a complex isoform
capable of responding to sphingolipid levels in the intracellular
milieu (Davis et al., 2019).

Since SPT is the rate-limiting step of sphingolipid biosynthesis,
it is a major target for regulation. These regulatory subunits are
crucial for mediating such regulation. SPT can exist in multiple
isoforms (SPTLC1-SPTLC2, SPTLC1-SPTLC3 along with different
combinations which include two ssSPT and three ORMDL isoforms,
each with distinct enzymatic activity and acyl-CoA substrate
preference. Recent determination of the molecular structure of
SPTLC1-SPTLC2-ssSPTa isoform and SPTLC1-SPTLC2-ssSPTa-
ORMDL3 complex shed light into the structural organization of
SPT, substrate recognition, and mechanisms by which regulatory
subunits of SPT (ssSPTs and ORMDLs) influence enzyme activity
(Li et al., 2021a; Wang et al., 2021a). The phosphorylation status of
different SPT subunits modulates the holoenzyme activity.
Mutational studies with phosphomimetic and phosphodeficient
mutants of SPTLC2 (at serine 384) demonstrated altered
enzymatic activity in humans (Ernst et al., 2015).
Phosphorylation of tyrosine 164 in SPTLC1 influences enzyme
activity (Taouji et al., 2013). In plants (Arabidopsis), the
phosphorylation of its long-chain base subunit stimulated both
SPT activity and sphingolipid generation through the de novo
pathway (Li et al., 2023). S1P, a metabolic intermediate, and its
interaction with its receptor (S1PR) was reported to allow the
degradation of ORMDLs, thus releasing the inhibitory effect on
enzyme activity (Sasset et al., 2023). It was also shown that ER stress
causes the upregulation of SPTLC2 (Kim et al., 2022a).

Loss/gain of function mutations or overexpression of these
regulatory subunits can lead to pathophysiological conditions
including diverse growth and developmental defects. It has been
reported that functional deletion of ORMDL genes results in major
myelinating defects in mice (Clarke et al., 2019). Consistent with
ORMDL deletion, overexpression of catalytically super active
isoform of SPT phenocopied myelination defects in mice.
Additionally in mice, a mutation in ssSPTb with an increased
affinity towards C18-fatty acyl-CoA was reported to cause
neurodegeneration in the brain and in the eye (Zhao et al.,
2015). Pathogenic ssSPTa variants have been reported to be
involved in hereditary spastic paraplegia (Srivastava et al., 2023).
SPT holoenzyme harboring these mutants can no longer be
regulated by ORMDL-dependent inhibition, resulting in excessive
sphingolipid production. Pathogenic SPTLC1 variants have been
reported to cause childhood onset of amyotrophic lateral sclerosis, a
debilitating progressive neurodegenerative disease (Mohassel et al.,
2021; Lone et al., 2022). Another neurogenerative disease known as
hereditary sensory neuropathy type 1 has been mapped to be in the
SPTLC1 gene (Bejaoui et al., 2001). These observations suggest that
SPT subunits are crucial for proper growth and development as well
as in maintaining normal physiology.

Neurons (especially myelin sheath) are highly enriched in
sphingolipids, and sphingolipid requirement is high during their
development. Therefore, dysregulation in the enzyme which
catalyzes the first and committed step in the de novo
sphingolipid synthesis will have a great impact. This is in
accordance with the fact that mutations in these subunits can be

correlated with physiological and developmental defects. However,
it will be misleading to interpret that mutations in SPT subunits can
only cause neurological defects. Indeed, genetic and
pharmacological inhibition of SPT resulted in profound changes
in multiple organs in model organisms and humans. For example,
SPT in mice was implicated in insulin sensitivity and adipose
morphology (Chaurasia et al., 2016; Alexaki et al., 2017).
Recently, SPTLC1 has also been reported to be critical for
vascular development in mice (Kuo et al., 2022). Knockout
studies in mice showed that SPTLC2 is required for blood
pressure homeostasis (Cantalupo et al., 2020). A pathogenic
variant of SPTLC1 has been linked to hyperkeratosis lenticularis
perstans, a skin disorder (Jagle et al., 2023). Mutations in different
SPT subunits have been implicated in clear cell renal cell carcinoma
where the expression of SPTLC1 was found to be lower compared to
normal kidney tissues (Zhu et al., 2020). ssSPTb-mediated
modulation of SPT activity has been implicated in poor
prognosis in prostate cancers (Costa-Pinheiro et al., 2020).
Moreover, genome-wide association studies implicated
ORMDL3 in asthma in humans (Moffatt et al., 2007). Multiple
organs and systems in mammals are hence dependent on the proper
functioning of SPT.

2.1.2 3-Ketosphinganine reductase
The ER enzyme 3-ketosphinganine reductase (KDSR) forms

sphinganine via a reduction of the ketone group of 3-
ketosphinganine. KDSR is classified within a larger group of
reductase enzymes referred to as short-chain dehydrogenase/
reductase (Kihara and Igarashi, 2004). Initially discovered in
yeast, KDSR was formerly recognized as TSC10 (Gupta et al.,
2009). Homologs of TSC10 in mammals are called follicular
variant translocation protein 1 (FVT1). It has been documented
that the expression of human FVT1 in yeast tsc10 knockout mutants
can restore their functionality (Kihara and Igarashi, 2004).

Several mutations in KDSR have been reported to have a wide
array of pathologic outcomes. A missense mutation in FVT1 has
been linked to bovine spinal muscular atrophy, a recessive
neurodegenerative disease (Krebs et al., 2007). Other mutations
in this gene have been implicated in normal skin development
(Boyden et al., 2017), thrombocytopenia (Bariana et al., 2019; Liu
et al., 2020), and progressive keratodermia (Wu et al., 2022) in
human patients. Additional compound heterozygous mutations in
KDSR with a corresponding presence of unusual keto-type
sphingoid base have been reported in patients born with
harlequin ichthyosis (Pilz et al., 2022). Loss of function missense
mutation in KDSR resulted in the progression of hepatomegaly and
steatosis in zebrafish (Park et al., 2019). This finding is interesting
because KDSR in zebrafish shows a high degree of homology with
the human enzyme.

2.1.3 Ceramide synthase
The addition of an acyl group to sphinganine is catalyzed by a

family of 6mammalian isozymes, the Cer synthase (CerS) family. In this
process ofN-acylation, fatty acids of various lengths are condensed with
sphinganine, ultimately resulting in the production of dhCer of varying
chain lengths (Lahiri and Futerman, 2005; Pewzner-Jung et al., 2006;
Stiban et al., 2010; Zelnik et al., 2019). These CerS enzymes are located
within the cytosolic layer of the ER (Mesika et al., 2007). It is noteworthy
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that almost all eukaryotes possess these enzymes, although their amino
acid sequences exhibit significant variability (Levy and Futerman, 2010).
The initial discovery of CerS occurred in the yeast S. cerevisiae during a
functional screening aimed at identifying genes associated with aging
(Schorling et al., 2001). Notably, the deletion of these genes led to an
extended lifespan, leading to their initial classification as longevity-
assurance genes (DMello N et al., 1994). Additionally, other CerS
orthologs in higher eukaryotes were identified through homology
searches and screening of respective yeast libraries. In more recent
times, a comprehensive Cer synthetic pathway, including bacterial CerS,
has been revealed in bacteria through the utilization of genomic and
biochemical approaches (Stankeviciute et al., 2022). In humans, CerS
enzymes exist in 6 different isoforms (CerS1-6). Each isoform displays a
distinct but overlapping acyl-CoA chain length specificity and distinct
tissue-specific expressions (Table 1) (Laviad et al., 2008; Levy and
Futerman, 2010; Stiban et al., 2010).

Over the years, a growing body of evidence showed that Cer
levels are highly and tightly regulated. How individual CerS enzymes
are regulated is yet to be fully understood. It appears that these genes
are regulated at different levels, including transcriptional regulation
(Pani et al., 2021), epigenetic modifications (Meyers-Needham et al.,
2012), changes in enzymatic activity, posttranslational modification
such as proteolytic degradation of CerS1 (Sridevi et al., 2009; Sridevi
et al., 2010), and phosphorylation (Muir et al., 2014; Fresques et al.,
2015; Sassa et al., 2016; Zhang et al., 2021a). Phosphorylation of
several CerS isoforms (CerS2, CerS4, CerS5, and CerS6) by casein
kinase 2 (CK2) was shown to enhance enzymatic activities (Sassa
et al., 2016). Moreover, modulation of CerS enzymatic activities have
shown to be dependent on their dimerization status specifically in
CerS2, CerS5, and CerS6 (Laviad et al., 2012). CerS2 which typically
produces C24 sphingolipids was shown to be co-regulated with
Elovl1 (an isoform of the elongase family of enzymes that
produces very long chain fatty acids) (Ohno et al., 2010). This is
in accordance with the fact that in mouse liver CerS2 was shown to
interact with fatty acid transporter protein 2 (Kim et al., 2022b).
Additionally, a poorly characterized protein termed FAM57B was
shown to stimulate CerS activity in human neurons and zebrafish
brains (Tomasello et al., 2022). Recently, it was demonstrated that
CerS1 is specifically inhibited by the small heat shock protein Hsp27
(Boyd et al., 2023).

In yeast, CerS isozymes Lag1 and Lac1 require an additional
small 17 kDa protein known as Lip for optimal activity since
downregulating Lip through promoter substitution led to a
remarkable decrease in sphingolipid biosynthesis (Ishino et al.,
2022). Surprisingly, no mammalian homologs of Lip1 were found
to be required for CerS activity (Vallee and Riezman, 2005). Optimal
CerS activity in yeast is dependent on CK2-mediated
phosphorylation of Lag1 and Lac1 (Fresques et al., 2015).
Sphingolipid metabolism in yeast is sensed through TOR
complex 2 through the detection of complex sphingolipid levels
at the plasma membrane. Activation of TOR complex 2, results in
CerS phosphorylation and enhanced activity in yeast by regulating
kinases Ypk1 and Ypk2 (Aronova et al., 2008). Lag1 was
hyperphosphorylated via TOR complex 2 and Ypk1 in Lip-
deficient yeast (Ishino et al., 2022), indicating the presence of an
intricate, finely-tuned mechanism of CerS regulation. Such
regulation of yeast Lag1 and Lac1 by CK2 and TOR complex 2 is
reminiscent of CK2-dependent phosphorylation of mammalian
CerSs. These findings indicate the possible existence of an
evolutionary conserved regulatory mechanism among eukaryotes.

Other stressors such as DNA damage, p53 upregulation result in
increased Cer levels which can be inhibited by the specific CerS
inhibitor fumonisin B1 suggesting upregulation of CerS (Panjarian
et al., 2008), however, it is unclear whether such increases in Cer are
due to increased expression of the biosynthetic enzyme or enhanced
enzymatic activity. Treatment of “Compound C” an inhibitor of
AMP-activated protein kinase, can upregulate both
CerS5 expression and its enzymatic activity (Jin et al., 2009).
Leptin signaling has also been implicated in altering transcript
levels of CerS2 and CerS4 in addition to SPT (Bonzón-
Kulichenko et al., 2009). These interactions indicate that close
physical proximity of different proteins with different CerSs is
specific and may even be required for optimal activity, substrate
availability, and regulation. Each of these interactions can be a result
or a target of yet-to-be-known broader regulatory mechanisms.
Moreover, alternative splicing of CerS2, which excludes exon-8
containing a putative catalytic domain, showed reduced very
long-chain Cer. Such reduction in Cer levels leads to increased
proliferation and migration in certain breast cancer cells (Pani et al.,
2021). A decrease in C18-Cer due to the repression of

TABLE 1 Different CerSs, their preferred substrates, their tissue distribution, and the key biological processes impacted by the ceramide product.

Isozyme Preferred acyl
chain-length

Highest tissue distribution Key biological function(s) of the
ceramide product

CerS1 C18 Brain, small intestine, testis, placenta, smooth muscle Apoptosis, mitophagy, decreasing
mitochondrial respiration

CerS2 C22-26 Brain, endocrine tissues, respiratory system, proximal digestive tract, liver &
gallbladder, kidney, muscle

Skin, regulation of apoptosis

CerS3 C22-26 (and longer) Proximal digestive tract, male reproductive tissues, skin Skin barrier, membrane rigidness

CerS4 C18-20 Brain, endocrine tissues, respiratory system, gastrointestinal tract, liver,
pancreas, male tissues, female tissues, skin

Apoptosis, membrane dynamics

CerS5 C16 Brain, endocrine tissues, proximal digestive tract, gastrointestinal tract, kidney,
male tissue, skin, bone marrow & lymphoid tissues

Apoptosis, mitophagy, decreasing
mitochondrial respiration

CerS6 C14-16 Brain, endocrine tissues, gastrointestinal tract, female tissues, muscle tissues,
bone marrow and lymphoid tissues

Apoptosis, mitophagy
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CerS1 expression has been linked to resistance to chemotherapy and
metastasis. In head and neck squamous cell carcinoma a splice
variant of CerS1 has been reported to be enriched. This splice variant
lacks the region targeted by miR-574-5p for the micro-RNA-
dependent degradation (Meyers-Needham et al., 2012).
Characterization of CerS2 knockout mice showed a robust
depletion in very long acyl chain Cer (C22-24). Nevertheless, C16-
Cer levels were elevated suggesting the existence of a homeostatic
compensatory regulatory mechanism (Pewzner-Jung et al., 2010).

Altered Cer levels are detected in several pathophysiological
conditions including cancer (Brachtendorf et al., 2019), diabetes
(Hammad et al., 2022; Hammad and Lopes-Virella, 2023), obesity
(Raichur et al., 2019), Parkinson’s disease (Abbott et al., 2014), and
other neurological disorders (Tomasello et al., 2022). Sphingolipids
are also implicated in insulin resistance in the brain which is linked
to metabolic and neurodegenerative diseases (Mei et al., 2023).
Postmortem brain tissues of the anterior cingulate cortex in
patients with Parkinson’s disease showed elevated levels of
shorter chain-length sphingolipid species and corresponding
elevation of CerS1 transcript (Abbott et al., 2014). The brain of
homozygous CerS1 knockout mice showed aberrant cerebellum size
and neuronal apoptosis (Ginkel et al., 2012). Mutation in Hsp27 has
been implicated in a variant of Charcot-Marie-Tooth disease, an
inherited neurological disorder. It has been shown that
Hsp27 knockout mice have decreased Cer levels in peripheral
neurons and that the protein colocalizes with CerS1. Loss of
CerS1 localization due to Hsp27 S135F mutation shows a
profound effect on mitochondrial morphology and respiratory
function indicating a possible role of Hsp27 on the regulation of
CerS1 (Schwartz et al., 2018). Homozygous deletion of CerS1 or
CerS5 showed their requirement in maintaining skeletal muscle
health (Tosetti et al., 2020).

Several CerS knockout mice have been generated by different
groups to help study the biology of these enzymes. CerS2 knockout
mice showed several phenotypic characteristics including aberrant
membrane morphology, membrane order, and higher membrane
fluidity (Pewzner-Jung et al., 2010; Silva et al., 2012). Another study
reported a positive correlation between T cell activation and
expression of CerS2 (Shin et al., 2021). In the liver,
haploinsufficiency of CerS2 led to diet-induced steatohepatitis
and insulin resistance (Raichur et al., 2014). Changes in the
sphingolipid profile due to the deletion of CerS2 inhibit the
packaging of human immunodeficiency virus envelop protein
into virus particles (Barklis et al., 2021). Very long-chain-
containing sphingolipids are required during spermatogenesis.
CerS3 has been shown to be involved in this process where its
expression is upregulated several hundred folds (Rabionet et al.,
2008). CerS4 knockout mice were shown to be highly sensitive to
azoxymethane/dextran sodium sulfate-induced colitis model (El-
Hindi et al., 2022). Similarly, the ablation of CerS2 exacerbates
dextran sodium sulfate-induced colitis (Kim et al., 2017).
Interestingly, CerS6 knockout mice showed impaired neuromotor
functions (Ebel et al., 2013).

Chemical and biological downregulation of certain CerS
contributes to the progression or reversal of diseases. Metastasis-
prone sublines of SKOV3 ovarian cancer cells had decreased
CerS2 expression and a concomitant reduction in Cer
concentrations. Downregulation of CerS2 induced metastasis in

ovarian cancer whereas knock-in of CerS2 suppressed the
formation of lamellipodia required for cancer cell motility
(Zhang et al., 2021b). CerS6 knockdown by antisense RNA was
shown to induce the progression of breast and pancreatic cancers
(Gao et al., 2022; Pan et al., 2022). On the other hand, graft-versus-
host-disease was prevented and reversed by genetic or
pharmacologic inhibition of CerS6 (Sofi et al., 2022). The
synthesis of epidermal Cer species via CerS2 and CerS3 improves
the barrier function of some skin diseases, such as atopic dermatitis,
and ichthyosis (Shin et al., 2020). Interestingly, in another study,
CerS4 was shown to be required for epidermal barrier function, as its
deficiency results in impaired epidermal lipid metabolism and adult
epidermal barrier function (Peters et al., 2020). Both mRNA and
CerS3 protein levels were elevated in hepatocellular carcinoma
compared with adjacent tissues in human patients. Higher
CerS3 expression correlated with shorter patient survival. In vivo,
Hep3B overexpressing CerS3 demonstrated increased cell viability
and proliferation, as well as enhanced migration and invasion (Cai
et al., 2022). These results highlight the role of CerS3 in cancer
progression, possibly through the production of very long chain Cer
species. A possible mechanism is due to the fact that Cer of different
chain lengths interfere with other Cer ability to permeabilize
mitochondrial membranes to initiate apoptosis (Stiban and
Perera, 2015).

2.1.4 Dihydroceramide desaturase
The fourth and final step in the de novo biosynthetic pathway

involves the oxidation of dhCer at the C4 position of its sphingoid
backbone resulting in a 4,5-trans double bond in the molecule. This
is catalyzed by the ER enzyme dhCer desaturase (DEGS/DES) and it
results in the production of Cer (Geeraert et al., 1997; Michel et al.,
1997). DEGS introduces. Two distinct isoforms of DEGS exist in
humans, DEGS1 and DEGS2 (Ternes et al., 2002). These isoforms
differ not only in their catalytic functions but also in their tissue-
specific expressions (Endo et al., 1996; Ternes et al., 2002; Omae
et al., 2004; Siddique et al., 2012). DEGS1 primarily demonstrates
Δ4-desaturase activity, whereas DEGS2 exhibits both Δ4-desaturase
and C4 monooxygenase activities (Ternes et al., 2002; Rodriguez-
Cuenca et al., 2015).

An increasing body of reports suggests that DEGS is regulated
transcriptionally as well as by other regulators (Rodriguez-Cuenca
et al., 2015). Oxidative stress and hypoxia have been reported to
inhibit DEGS activity (Idkowiak-Baldys et al., 2010). Transcription
factors such as NFATC, Hand2 were reported to be directly involved
in low transcript levels of DEGS1 in chronic hypoxia of
cardiomyocyte (Azzam et al., 2013). Other factors such as fatty
acids and cytokines are also known to regulate dhCer levels by
modulating the expression of DEGS (Dogra et al., 2007; Dybkaer
et al., 2007). Homozygous deletion of DEGS1 results in several
physiological defects including scaly skin formation, smaller size,
and tremors, and confers insulin sensitivity in mice (Holland et al.,
2007). Mouse embryonic fibroblasts lacking DEGS1 alleles were
shown to confer protection from apoptosis induced by the
chemotherapeutic agent etoposide (Siddique et al., 2012). Until
recently, human mutations in DEGS were not reported. In 2019,
a report identified a DEGS1 variant causes a complex neurological
disorder in four consanguineous individuals. The patients suffered
mild to severe intellectual disability, spastic quadriplegia, scoliosis,
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and epilepsy (Dolgin et al., 2019). This neuronal dysfunction and
neurodegeneration caused by mutations in DEGS1 highlights the
importance of this enzyme in maintaining neuronal function.
DEGS1 was also shown to regulate the compartmentalization of
Rac1. Rac1 is a small GTPase that regulates oxidative stress and plays
a crucial role in the pathogenesis of various neurological diseases.
DEGS1 deficiency causes dhCer buildup and an ensuing
Rac1 mislocalization in the cell, which in turn enhances oxidative
stress and causes neurodegeneration (Tzou et al., 2021).

Recent studies have shown that DEGS dysregulation is
implicated in the pathogenesis of several diseases, including
metabolic diseases, endothelial impairment, neurological
disorders, and Alzheimer’s disease. DEGS drives lipotoxicity in
metabolic diseases (Blitzer et al., 2020). Lipotoxicity refers to the
accumulation of lipids in non-adipose tissues, which leads to cellular
dysfunction, insulin resistance, and inflammation. It was recently
demonstrated that DEGS1 inhibition can alleviate endothelial
impairment induced by indoxyl sulfate, a uremic toxin that
accumulates in chronic kidney disease. Indoxyl sulfate disrupts
endothelial function and contributes to the development of
cardiovascular disease. DEGS1 inhibition can restore endothelial
function and reduce oxidative stress in endothelial cells (Savira et al.,
2021). Moreover, DEGS1 inhibition can reduce amyloid-β levels in
primary neurons obtained from an Alzheimer’s disease transgenic
model (Ordóñez-Gutiérrez et al., 2018).

2.2 Catabolism of complex sphingolipids

Degradation of complex sphingolipids occurs in the lysosome,
leading to the generation of Cer (Liu et al., 1997). This process is
comprised of a series of enzymes that are aided by activator protein
chaperones (Linke et al., 2001). Multiple enzymes are involved in the
lysosomal breakdown of sphingolipids, and the deficiency of any of
these enzymes can give rise to severe genetic disorders known as
lysosomal storage diseases (LSDs) (Platt, 2014). Sphingolipidoses are
a subset of LSDs primarily associated with sphingolipid metabolism
(Abed Rabbo et al., 2021).

2.2.1 Sphingomyelin hydrolysis
Sphingomyelinases (SMases) hydrolyze SM producing Cer and

phosphocholine (Chatterjee, 1999). They can be categorized based
on their pH preferences. Acidic and neutral SMases (aSMase and
nSMase) are primarily found in lysosomes and cell membranes,
while alkaline SMase (alk-SMase) is predominantly present in the
gastrointestinal tract (Duan, 2006; Insausti-Urkia et al., 2020). These
enzymes play roles in apoptosis, inflammation, and immune
response, and their dysregulation has been linked to diseases
such as Niemann-Pick disease and neurodegenerative disorders
like Alzheimer’s disease (Yatsu, 1971; Schulze and Sandhoff,
2011; Bienias et al., 2016; Moll et al., 2021).

2.2.1.1 Acid sphingomyelinase
Acid SMase (aSMase) is a lysosomal metalloenzyme that

exhibits optimal activity at pH 4.5-5. The enzyme contains
several Zn2+-binding motifs, which makes Zn2+ essential for its
activity (Breiden and Sandhoff, 2021). Numerous in vitro studies
have demonstrated that aSMase is activated by dimerization

following direct oxidation (Henry et al., 2013). However, it is still
unknown if aSMase is oxidatively activated in vivo, as several in vivo
studies have reported that free oxygen radicals do not have an
activating effect on aSMases (Gulbins and Petrache, 2013). aSMases
are divided into two types, lysosomal SMase and secretory SMase
(Jenkins et al., 2009). Lysosomal SMase is primarily considered an
enzyme that catalyzes SM hydrolysis in lysosomes. Moreover,
aSMase is found on the plasma membrane because the lysosomal
membrane is constantly transported to the cell surface through the
endomembrane system. At the plasma membrane, aSMase produces
surface Cer and functions as a signaling protein (Kornhuber et al.,
2022). The specific roles of lysosomal SMase are still not well
understood, but it is thought to be associated with Cer-signaling
pathways such as apoptosis. However, deficiency in this enzyme
leads to defects in cellular processes (Jenkins et al., 2009). On the
other hand, secretory aSMase is secreted extracellularly by the Golgi
apparatus. Secretory aSMase has a putative role in many
physiological and pathophysiological processes, such as
atherosclerosis, where it may be involved in the aggregation of
lipoproteins (Tabas, 1999). The significance of aSMase makes its
mutation a cause of many LSDs. aSMase deficiency results in various
degrees of SM buildup. Lipid storage causes foam cell infiltration in
tissues, as well as clinical symptoms such as hepatosplenomegaly,
pulmonary failure, and, in some cases, central nervous system
involvement (McGovern et al., 2017; Pinto et al., 2021). The
SMPD1 gene encodes aSMase. Recessive mutations in this gene
lead to aSMase deficiency, resulting in the accumulation of SM and
causing LSDs known as Niemann-Pick disease type A and B
(Andrews, 2019).

2.2.1.2 Neutral sphingomyelinase
nSMase, with an optimal pH of 7.4, is an enzyme that can be

activated by a range of structurally diverse compounds that are
physiologically relevant, including tumor necrosis factor (TNFα)
(Marchesini and Hannun, 2004; Shamseddine et al., 2015). This
enzyme was discovered in tissues from Niemann-Pick disease
patients. There are four distinct nSMases found in mammals,
including nSMase1-3 and mitochondria-associated nSMase
(Sindhu et al., 2021). All isoforms require a neutral pH and
divalent cations (Mg2+/Mn2+) for activity (Sindhu et al., 2021).

nSMase1 is a membrane protein with two putative
transmembrane domains at its C-terminus. In vitro nSMase
activity analysis demonstrated Mg2+-dependence. Various
research has shown that nSMase1 is critical for Cer production
in response to stress, and the Cer produced may be a key component
of T cell receptor signaling (Tonnetti et al., 1999).

nSMase2, which has been shown to be palmitoylated in two
cysteine clusters, has optimal activity at neutral pH, is magnesium-
dependent, and is stimulated by unsaturated fatty acids and anionic
phospholipids, particularly cardiolipin and phosphatidylserine
(Tani and Hannun, 2007). It is a key player in stress-induced
Cer formation, and several anti-cancer drugs have been shown to
inhibit nSMase2 (Clarke and Hannun, 2006; Shamseddine et al.,
2015).

nSMase3 is a C-tail-anchored integral membrane protein with
an ER signal in the C-terminus and a proline-rich domain at the
N-terminus that may be involved in protein-protein interactions.
Research on its functional roles is limited compared to the other
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nSMases since it was only recently cloned (Corcoran et al., 2008;
Shamseddine et al., 2015).

Studies have demonstrated that defects in the nSMase gene, the
primary regulator of Cer biosynthesis via the hydrolysis pathway, are
responsible for progressive bone defects (Kim et al., 2008a).
Additionally, nSMase2 activation and Cer inhibit the insulin
signaling pathway, preventing glucose transporter 4 translocation
to the plasma membrane (Pralhada Rao et al., 2013; Sindhu et al.,
2021). Furthermore, in obesity, chronic low-grade inflammation
drives the production of proinflammatory cytokines, which may
increase nSMase2 expression and activity, leading to Cer formation,
mitochondrial dysfunction, and reactive oxygen species generation
(Samad et al., 2006). Finally, nSMase is suggested to be involved in
the pathogenesis of several other diseases, including atherosclerosis,
inflammation, and heart failure (Adamy et al., 2007; Rajagopalan
et al., 2015; Deng et al., 2020; Sindhu et al., 2021).

2.2.1.3 Alkaline sphingomyelinase
Initially identified as an enzyme that catalyzes the breakdown

of sphingomyelin (SM) via phospholipase C activity, alkaline
SMase (alk-SMase) has a different sequence than acid and
neutral SMases. Gene cloning revealed that alk-SMase shares
similarities with members of the nucleotide pyrophosphatase/
phosphodiesterase (NPP) family (Duan, 2006; Duan, 2018) and
is therefore also known as NPP7. The enzymes of the NPP family
are classified as ectoenzyme because they cross the plasma
membrane through either the N or C terminal transmembrane
domain, with the remainder of the enzyme located outside the cells
(Duan, 2006; Gorelik et al., 2017). alk-SMase is expressed in the
intestinal mucosa, as well as in the human liver and bile in many
species (Cheng et al., 2007). Studies have shown that intestinal alk-
SMase can suppress colonic carcinogenesis and inflammation,
hydrolyze dietary SM, and increase cholesterol absorption.
There are three mechanisms thought to be involved in alk-
SMase anticancer actions. Firstly, it hydrolyzes SM to Cer,
which is a well-known antiproliferative and apoptotic molecule.
Secondly, it degrades the phosphocholine moiety of the platelet-
activating factor, rendering it inactive. Platelet-activating factor is
abundantly produced in inflammatory tissues, causing
inflammation and carcinogenesis. Finally, NPP7 converts lyso-
phosphatidylcholine to monoacylglycerol, limiting the generation
of lysophosphatidic acid, which otherwise can be formed by NPP2,
and can lead to cell lysis (Chen et al., 2015; Duan, 2018; Alyamani
et al., 2023).

2.2.2 Hydrolysis of glycosphingolipids
Glycosphingolipids (GSLs) have been associated with many

neurological diseases and important cellular processes
(Hakomori, 2003; Lopez and Schnaar, 2009; Lingwood, 2011;
Schengrund, 2015; Breimer et al., 2017; Zhang et al., 2019;
Komatsuya et al., 2020). Catabolism of GSLs is considered the
second mode of generation of Cer via hydrolysis. GSLs get
endocytosed and transported to the luminal face of intra-
lysosomal vesicles, where they face consecutive removal of sugar
residues using glycosyl hydrolases (glycosidases) (Kolter and
Sandhoff, 2005). This catabolic process generates
monosaccharides and Cer which is recycled and reinserted into
the lysosomal membrane (Ryckman et al., 2020). GSLs with short

sugar chains are not easily susceptible to water-soluble hydrolyzing
enzymes and require the assistance of auxiliary lysosomal lipid
binding proteins. GM2 activator protein (GM2AP) and four
saposins are among these proteins (Kolter and Sandhoff, 2010;
Quinville et al., 2021). Saposins disrupt the interaction of the
glycolipid substrate with the local membrane environment and
allow the glycans to be accessed by water-soluble hydrolytic
enzymes. Consistent with the importance of activator proteins in
GSLs catabolism, mutations in these activator proteins are strongly
linked to pathological buildup of GSLs in certain LSDs despite the
presence of the hydrolase responsible for degradation (Ryckman
et al., 2020; Abed Rabbo et al., 2021).

N-acetyl-hexosaminidases (Hex A and Hex B) are
glycosidases that cleave N-acetyl-glucosamine or N-acetyl-
galactosamine residues from glycoconjugates in ganglioside
catabolism. Hex A is capable of degrading negatively charged
and uncharged substrates, while Hex B primarily cleaves off
N-acetylgalactosamine residues from the uncharged GA2 and
globotetraosylceramide (Lemieux et al., 2006). Hex A and
GM2AP aid in the hydrolysis of GM2. GM2AP transports
GM2 from the membranous environment to the soluble Hex
A for hydrolysis (Zarghooni et al., 2004). The N-terminal and
central hydrophobic domains of GM2AP bind to the negatively
charged lysosomal membrane surface through multiple lysine
residues, disrupting membrane structure and carrying GM2 out
of the membrane into Hex A for hydrolysis (Anheuser et al.,
2015). Hex A removes the terminal N-acetylgalactosamine from
the GM2 ganglioside reducing it to GM3 (Lemieux et al., 2006;
Tancini et al., 2012; Abed Rabbo et al., 2021; Quinville et al.,
2021). GM3 is hydrolyzed by the removal of terminal sialic acid
residues through the collaborative action of sialidase (α-N-acetyl
neuraminidase) and saposin B, producing lactosylceramide
(LacCer) (Khan and Sergi, 2018). LacCer is further hydrolyzed
to GlcCer by GM1-β-galactosidase with saposin B or by
galactosyl-ceramide-β-galactosidase with saposin C (Kolter
and Sandhoff, 2005). GlcCer then produces Cer via the action
of glucosylceramidase (Quinville et al., 2021).

2.2.2.1 Glucosylceramidase
Glucosylceramidase is an enzyme that plays a pivotal role in the

degradation of sphingolipids by hydrolyzing GlcCer, a key
component of these complex lipids, to glucose and Cer. This
enzymatic breakdown process is essential for maintaining cellular
homeostasis and ensuring the proper functioning of various
physiological processes. Through the action of
glucosylceramidase, the recycling of sphingolipid constituents is
facilitated, enabling the utilization of their building blocks for
other cellular processes.

Disturbances in glucosylceramidase activity have been
implicated in the pathogenesis of Gaucher disease, an LSD
characterized by the accumulation of GlcCer and other
sphingolipids in multiple tissues and organs (Futerman and Platt,
2017). Gaucher disease is primarily caused by reduced or absent
glucosylceramidase activity, resulting in the impaired breakdown
and clearance of GlcCer. This accumulation of sphingolipids has
detrimental effects, particularly in the central nervous system,
leading to severe neurological manifestations observed in affected
individuals (Vitner and Futerman, 2013; Vitner et al., 2015).
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2.2.2.2 N-acetyl-hexosaminidase
Hex enzymes break down certain complex carbohydrates off

GSLs. There are two types of Hex enzymes, Hex A and Hex B, which
are encoded by the HEXA and HEXB genes, respectively (Hultberg
et al., 1996). Hex A is a heterodimeric enzyme composed of an alpha
subunit (encoded byHEXA) and a beta subunit (encoded byHEXB).
This enzyme is mainly found in the lysosomes of nerve cells and is
responsible for breaking down GM2 ganglioside (Lemieux et al.,
2006). Deficiencies in Hex A activity can lead to the accumulation of
GM2 ganglioside in the lysosomes of nerve cells, which can cause a
group of inherited disorders known as GM2 gangliosidosis,
including Tay-Sachs disease (Dersh et al., 2016). Hex B, on the
other hand, is a homodimeric enzyme composed of two beta
subunits (encoded by HEXB). It is found in lysosomes
throughout the body and is involved in the breakdown of other
GSLs besides GM2 ganglioside (Bateman et al., 2011).

Deficiencies in Hex A and Hex B can lead to the accumulation of
specific GSLs in lysosomes, causing different LSDs (Abed Rabbo et al.,
2021). Tay-Sachs disease is a severe form of GM2 gangliosidosis
caused by a deficiency in Hex A activity. It is characterized by the
accumulation of GM2 ganglioside in the lysosomes of nerve cells,
which can cause progressive damage to the nervous system.
Symptoms typically appear in infancy and can include muscle
weakness, developmental delay, and blindness (Ramani and Parayil
Sankaran, 2023). Moreover, Sandhoff disease is another type of
GM2 gangliosidosis caused by a deficiency in both Hex A and
Hex B activities. It is similar to Tay-Sachs disease in terms of
symptoms and pathology, but it tends to be more severe and
progresses more rapidly. Whereas GM1 gangliosidoses are a group
of disorders caused by a deficiency in β-galactosidase, which is another
lysosomal enzyme involved in the breakdown of GSLs. However, in
some cases, GM1 gangliosidosis can also be caused by a deficiency in
Hex B activity, which leads to the accumulation of GM1 ganglioside in
the lysosomes of various tissues. Symptoms can vary widely
depending on the type and severity of the disease and can include
developmental delay, seizures, and muscle weakness (Regier et al.,
2016; Rha et al., 2021). Deficiencies in Hex A and Hex B are not
limited to these diseases, as they can also lead to the accumulation of
other GSLs in lysosomes, which can cause other types of LSDs such as
Krabbe disease, Fabry disease, and Niemann-Pick disease, among
others (Patterson et al., 1993; Pavuluri et al., 2017; Lenders and Brand,
2021).

2.3 The salvage pathway

Cer is the central molecule of the sphingolipid family and it plays
multifaceted roles in cellular response, growth, senescence, and
differentiation (Saba et al., 1996; Bartke and Hannun, 2009). The
salvage pathway of Cer (also known as the sphingolipid recycling
pathway) is essentially a combination of different enzymes used in
the other two pathways. It uses the CerS isozymes (from the de novo
pathway) to N-acylate sphingosine directly producing Cer (Jin et al.,
2008; Kitatani et al., 2008). Sphingosine is generated through the
catabolism of complex sphingolipids such as GSLs and SM. Cer can
be deacylated to sphingosine and fatty acid by ceramidases.
Sphingosine can then be reacylated to produce Cer (Kitatani
et al., 2008; Coant et al., 2017) using CerS.

2.3.1 Ceramidase
Ceramidases are a family of hydrolytic enzymes that deacylate

Cer to produce sphingosine and free fatty acid. Ceramidases are
classified into five types based on the appropriate pH for their
activity. Acid ceramidase (aCDase) is an enzyme that catalyzes the
hydrolysis of unsaturated small and medium-chain ceramides
(C6–C18). Neutral ceramidases (nCDase) use Cer and dhCer as
substrates. They aid in the breakdown of dietary Cer molecules.
nCDases are capable of catalyzing the hydrolysis of Cer species
containing 16 and 18 carbons. Alkaline ceramidases (ACERs) are
mainly found mainly in the Golgi apparatus and the ER, where they
hydrolyze very long-chain Cer (C20–C24) (Coant et al., 2017;
Quinville et al., 2021).

2.3.1.1 Acid ceramidase
Acid ceramidase (aCDase) is a lysosomal enzyme that

hydrolyzes small and medium-chain ceramides (C6–C18) through
intralysosomal membrane turnover. The optimal pH for full activity
is ~4.5. AC is synthesized as inactive proenzymes and activated by
autocleavage of an internal peptide bond preceding Cys 143. Saposin
D facilitates aCDase access to Cer access by involving membrane
disruption (Coant et al., 2017; Gebai et al., 2018). aCDase can also
catalyze the reverse reaction and synthesize Cer from sphingosine
and free fatty acids in vitro and in situ (Park and Schuchman, 2006).

Research on Farber disease has provided insights into the role of
aCDase in human diseases. Farber disease is an LSD caused by a
mutation in the ASAH1 gene encoding aCDase, leading to decreased
enzymatic activity and Cer accumulation in the tissues (Ehlert et al.,
2007). Farber’s disease symptoms appear in children within the first
few weeks of birth. It has a clinical triad of painful joint deformity,
subcutaneous nodules near the joints, and hoarseness (Ekici et al.,
2012). In addition, aCDase protein expression was found to be
upregulated in Ulcerative Colitis tissues. Myeloid aCDase deficiency
protects against tumor occurrence in colitis-associated cancer and
limits the expansion of neutrophils and granulocytic myeloid-
derived suppressor cells in the tumor microenvironment
(Venable et al., 1994; Espaillat et al., 2018).

2.3.1.2 Neutral ceramidase
Neutral ceramidase (nCDase), encoded by ASAH2 gene, is a type

II membrane protein involved in the metabolism of dietary
sphingolipids and Cer molecules. nCDase is highly expressed in
the large intestine and can hydrolyze Cer species containing
16 and 18 carbons (Garcia-Barros et al., 2016; Coant et al., 2018).
The optimal pH required for its activity is around 7. It is localized to
the plasma membrane, ER/Golgi complex, and mitochondria,
particularly in the liver (Sakamoto et al., 2018). Inhibiting nCDase
molecularly and pharmacologically in colon cancer cells increases Cer,
which results in decreased cancer cell survival and increased
apoptosis. nCDase inhibition also resulted in the loss of
components of pathways involved in the development of colon
cancer, including β-catenin and ERK inhibition (Garcia-Barros
et al., 2016). nCDase knockout mice are resistant to acute kidney
injury caused by cisplatin, a chemotherapeutic agent used to treat solid
organ tumors. Cisplatin’s utility in treating certain cancers is limited
due to its nephrotoxicity. Following cisplatin treatment, NC knockout
mice have better kidney function, less injury and structural damage,
lower rates of apoptosis, and less ER stress (Sears et al., 2022).
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2.3.1.3 Alkaline ceramidase
There exist three distinct subtypes of alkaline ceramidases (ACER1-

3), which demonstrate optimal activity at pH ~9. ACER1 is primarily
located in the ER and selectively catalyzes the hydrolysis of Cer with
unsaturated long acyl chains or very long saturated or unsaturated acyl
chains. ACER2, on the other hand, is a ceramidase that predominantly
resides in the Golgi apparatus and targets different Cer for hydrolysis.
ACER3, however, is present in both the ER and Golgi complex and
preferentially catalyzes the hydrolysis of phytoceramide, a Cer analog, as
well as Cer with unsaturated long acyl chains (Xu et al., 2010). Using
various biochemical and structural approaches the Hannun and Obeid
groups found that ACER enzymes share a similar catalytic mechanism
with other zinc-dependent amidases, such as carboxypeptidases and
thermolysin. Specifically, the enzymes use a zinc ion to activate a water
molecule, which then attacks the amide bond in the Cer substrate,
leading to hydrolysis (Yi et al., 2022).

In terms of function, ACER1 regulates Cer metabolism, which is
essential for maintaining epidermal and appendageal homeostasis.
Studies in mice have shown that ACER1 deficiency leads to an
increase in various Cer and sphingoid bases in the skin, eventually
causing gradual hair loss due to an enlargement of the follicular
infundibulum and a decrease in hair follicle stem cells (Lin et al., 2017).

ACER2, a transcriptional target of the p53 protein, regulates the
expression of genes involved in cell cycle arrest, programmed cell death,
andmetabolism to facilitate theDNAdamage response (Xu et al., 2018).
Deficiency of the ACER2 gene in mice leads to reduced blood levels of
sphingoid base 1-phosphates, such as S1P and dhS1P, by controlling the
generation of sphingoid bases in hematopoietic cells (Li et al., 2018).
ACER2 is also implicated in placental vascular integrity in mice. It is
expressed in both maternal and fetal endothelial cells of the placenta
and is essential for normal fetal growth and survival. Loss of ACER2 in
either the mother or the fetus resulted in placental vascular defects,
leading to fetal growth restriction, placental thrombosis, and fetal
demise. ACER2 plays a critical role in maintaining sphingolipid
homeostasis in the placenta, which is necessary for proper vascular
function (Li et al., 2020). Moreover, ACER2 is upregulated in response
to DNA damage and the loss of ACER2 or its bioactive product
sphingosine impairs the DNA damage response and increases
genomic instability (Xu et al., 2016).

ACER3, with its multiple transmembrane domains, is mainly
located in the ER and Golgi membrane. ACER3 promotes the
growth of hepatocellular carcinoma cells through the S1P/S1PR2/
PI3K/AKT signaling pathway and may be a potential therapeutic
target for the treatment of liver cancers (Yin et al., 2018).
Knockdown of ACER3 has been shown to decrease cancer cell
growth and increase apoptosis in hepatocellular carcinoma
patients. In addition, ACER3 knockout in mice results in an
accumulation of multiple Cer, as well as a lack of the age-related
increase in sphingosine and S1P levels in the brain, leading to
Purkinje cell degeneration and motor coordination deficits
(Wang et al., 2015).

2.4 Inhibitors of sphingolipid metabolic
enzymes

As in other metabolic pathways, small, inhibitory molecules of
sphingolipid enzymes are available (Millner and Atilla-Gokcumen,

2021; Skácel et al., 2021). These compounds selectively modulate the
activity of specific enzymes involved in multiple sphingolipid
metabolic pathways (Figure 3). The complex nature of
sphingolipid pathways is also reflected in the variety of
compounds that interact with, and inhibit, certain enzymes in
the pathway. Table 2 below outlines some of the inhibitory
molecules and their target enzymes. In the table, the molecules
are classified as “inhibitors” if they exert direct effects on the enzyme
they inhibit or “modulators” that affect the enzymes indirectly.
These inhibitors, most of which are natural products, have been
extensively used in basic research to study the complex intricate
biology of sphingolipids and understand reaction mechanisms.
More importantly, they hold significant promise for therapeutic
interventions in a range of diseases, including cancer, LSDs, immune
system dysfunctions, and neurodegenerative diseases (Bu et al.,
2021; Afrin et al., 2023).

While it is beyond the scope of this review to dissect all known
inhibitors of sphingolipid metabolism, it is worthwhile to mention a
few prominent examples. Myriocin, also known as
thermozymocidin, is an inhibitor of SPT, the first and regulatory
enzyme of the de novo pathway (Riley et al., 1999). Myriocin,
originally isolated from the thermophilic fungus Myriococcum
albomyces, is a naturally occurring non-proteinogenic amino acid
(Kluepfel et al., 1972). Myriocin has been an invaluable
pharmacological tool for exploring the role of de novo
sphingolipid biosynthesis in myriad cellular functions. By
inhibiting SPT, myriocin disrupts sphingolipid generation leading
to varied sphingolipid profiles within cells. Myriocin, thus, has been
used to investigate the impact of altered sphingolipid levels on
cellular processes, including cellular signaling, immune cell
function, apoptosis, autophagy, and membrane dynamics, to
name a few (Scarlatti et al., 2003; Johnson et al., 2004; Rentz
et al., 2005; Ordoñez et al., 2015; Guo et al., 2020; Yu et al.,
2022). It has also been instrumental in understanding the roles of
sphingolipids in various diseases, such as cancer, cardiovascular
diseases, and neurodegenerative disorders (Park et al., 2008; Adachi
et al., 2018; Mingione et al., 2021; Weiss et al., 2021). While there
may be several potential clinical applications for the use of myriocin,
particularly in the context of diseases characterized by sphingolipid
metabolism dysregulation, no approved drug by the U.S. Food and
Drug Administration (FDA) is available to date. Nevertheless, it was
shown that the suppression of SPT via the administration of
myriocin in mouse models reduced the replication of hepatitis C
virus (HCV) (Umehara et al., 2006). Similarly, myriocin inhibited
HCV replication in human hepatocytes (Katsume et al., 2013)
suggesting it might serve as a novel drug in the treatment of
HCV infection. Myriocin has also shown potential in managing
nonalcoholic steatohepatitis (Yang et al., 2019).

CerS enzymes are responsible for the loading of the long-chain
base with the fatty acid generating a two-tailed molecule, dhCer.
CerS enzymes are regulated at multiple levels. Pharmacologically, a
natural product has been used as a potent inhibitor of these enzymes.
Fumonisin B1 is a mycotoxin primarily produced by several species
of Fusarium molds (Rentz et al., 2005). Since it inhibits CerS, it
prevents the generation of pro-apoptotic lipids and hence is
considered a potent carcinogenic particularly causing esophageal
cancer and hepatocellular carcinoma (Stockmann-Juvala and
Savolainen, 2008). Fumonisin B1 has been used in basic research
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to study the intricate mechanistic details of the de novo synthesis
pathway in several organisms (Zeng et al., 2020; Li et al., 2021b;
Chen et al., 2021; Zhao et al., 2022).

At the other end of sphingolipid metabolism, inhibitors such as
eliglustat and miglustat represent important pharmacological
compounds that target LSDs (Desnick et al., 2013; Garbade et al.,
2020). These disorders are resultant of rare genetic conditions
whereby certain lysosomal enzymes are defective or lacking
leading to the accumulation of undegraded lipids within
lysosomes (Abed Rabbo et al., 2021). Both drugs are inhibitors of
GlcCer synthase (GCS) which is responsible for the glycosylation of
Cer in the Golgi apparatus (Bleicher and Cabot, 2002; Pothukuchi
et al., 2021). These drugs are FDA-approved for the treatment of
Gaucher disease, the major LSD (Futerman and Platt, 2017).
Miglustat (brand name Zavesca®), is approved for the treatment
of Gaucher disease type 1 resulting from a deficiency in
glucocerebrosidase. Miglustat thus mitigates Gaucher debilitating
symptoms by limiting the buildup of GlcCer, reducing the storage of
this substrate (Ficicioglu, 2008). While miglustat has shown promise
in treating other LSDs, its FDA approval specifically pertains to
Gaucher disease. A more recently approved oral drug for Gaucher
disease is eliglustat (Cerdelga®) which is another inhibitor of GCS.
While both inhibitors target GCS and concomitantly lower GlcCer
concentrations, they are not equivalent. Miglustat is a glucose analog
whereas eliglustat, which is more potent and specific, is a Cer mimic
(Mistry et al., 2023). Both drugs use substrate reduction therapy
which may complement enzyme replacement therapy in the

treatment of LSDs, offering hope for improved therapeutic
outcomes and enhanced quality of life for patients affected by
such ailments (Abed Rabbo et al., 2021).

Another branch of sphingolipid metabolism is the
phosphorylation of sphingosine to S1P by the sphingosine
kinases (SphK1 and SphK2). S1P is a potent cell survival signal
(see below). While FDA-approved SphK inhibitors are still lacking,
multiple research compounds and experimental drugs are currently
being investigated (Table 2). These molecules modulate S1P levels
and cellular signaling resulting in some therapeutic outcomes. PF-
543, developed by Pfizer, is currently considered themost potent and
selective SphK1 inhibitor. PF-543 assumes multifaceted roles with
profound implications. In preclinical investigations, PF-543 has
shown promise in suppressing cancer cell proliferation,
migration, and invasion. It has also demonstrated potential in
reducing inflammation and autoimmune responses. These
collective observations suggest that PF-543, through the
inhibition of SphK1 and subsequent modulation of S1P levels,
may offer therapeutic promise in the treatment of malignancies
and the management of immune-related disorders, presenting a
compelling proposition for further exploration and translation into
clinical applications (Yi et al., 2023). Another important modulator
of SphK1 is fingolimod (FTY720, sold under the brand name
Gilenya®). This prodrug is interesting as it has been approved as
the first oral drug to treat multiple sclerosis through interaction with
the S1P receptor (Chun et al., 2019). Although it primarily acts as an
S1P receptor modulator, it does inhibit SphK1, indirectly affecting

FIGURE 3
Pharmacological inhibitors of sphingolipid metabolism. Ceramide (the center molecule) is generated (left panel) via the de novo pathway [1],
sphingomyelin hydrolysis [2], or the salvage pathway [3]. Ceramide can be catabolized (right panel) into several molecules. Known inhibitors of some
enzymes of the pathways are presented in red. When more than one inhibitor is available for a particular enzyme, a random representative inhibitor was
selected. SPT, serine palmitoyltransferase; KDSR, 3-ketosphinganine reductase; CerS, ceramide synthase; DEGS, dihydroceramide desaturase;
SMase, sphingomyelinase; SMS, sphingomyelin synthase; GBA, glucocerebrosidase; CDase, ceramidase; SphK, sphingosine kinase; SPP, sphingosine 1-
phosphate phosphatase; SPL, sphingosine 1-phosphate lyase; GCS, glucosylceramide synthase; CerK, ceramide kinase. This figure was created with
Biorender.com using a paid student subscription.
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TABLE 2 Different inhibitors and modulators of sphingolipid metabolic enzymes.

Enzyme Inhibitor/modulator Classification References

Serine
palmitoyltransferase (SPT)

1. Myriocin Inhibitor Kluepfel et al. (1972), Osuchowski et al.
(2004)

2. Sphingofungin Inhibitor Hanada et al. (2000)

3. Lipoxamycin Inhibitor Mandala et al. (1994), Harrison et al. (2018)

4. L-cycloserine Inhibitor Lowther et al. (2010)

5. β-chloro-L-alanine Modulator Ikushiro et al. (2004)

Ceramide synthase (CerS) 1. Fumonisin B1 Inhibitor Harel and Futerman (1993), Merrill et al.
(1993), Riley and Merrill (2019)

2. Australifungin Inhibitor Mandala et al. (1995), Wells et al. (1998),
Mandala and Harris (2000), Mullen et al.
(2012)

3. Fingolimod (FTY720) Inhibitor Lahiri et al. (2009)

Dihydroceramide
desaturase (DEGS1)

1. GT11 Inhibitor Triola et al. (2004), Skácel et al. (2021)

2. XM462 Inhibitor Camacho et al. (2012)

3. Fenretinide Inhibitor Rahmaniyan et al. (2011), Bikman et al.
(2012)

4. 4-[4-(4-chloro-phenyl)-thiazol-2-ylamino]-phenol
(SKI-II)

Inhibitor Cingolani et al. (2014)

5. Resveratrol Modulator Signorelli et al. (2009)

6. Celecoxib Inhibitor Schiffmann et al. (2009), Siddique et al.
(2015)

7. Curcumin Modulator Fabrias et al. (2012), Casasampere et al.
(2016)

8. Δ9-tetrahydrocannabinol (THC) Modulator Hernández-Tiedra et al. (2016),
Muñoz-Guardiola et al. (2021)

Ceramide kinase (CerK) 1. NVP-231 Inhibitor Pastukhov et al. (2014)

Glucosylceramide
synthase (GCS)

1. Eliglustat Inhibitor El Malki et al. (2023)

2. Miglustat Inhibitor El Malki et al. (2023)

3. T-036 Inhibitor Fujii et al. (2021)

4. 1-phenyl-2-decanoylamino-3-morpholino-1-
propanol (PDMP)

Modulator Inokuchi and Radin (1987)

5. DL-threo-1-phenyl-2-palmitoylamino-3-
morpholino-1-propanol (PPMP)

Modulator Stefanić et al. (2010)

6. N-butyldeoxynojirimycin (NBDNJ) Inhibitor Platt et al. (1994)

7. N-butyldeoxygalactonojirimycin (NBDGJ) Inhibitor Andersson et al. (2000)

Ceramidase (CDase) 1. (1S,2R)-D-erythro-2-(N-myristoylamino)-1-phenyl-
1-propanol (D-e-MAPP)

Modulator Bielawska et al. (1996), Raisova et al. (2002)

2. (1R,2R)-2-N-myristoylamino-1-(4-nitrophenyl)-1,3-
propandiol (D-NMAPPD, and AD2646)

Inhibitor Dagan et al. (2003), He et al. (2005)

3. Ceranib-2 Inhibitor Draper et al. (2011)

4. SACLAC Inhibitor Pearson et al. (2020)

Sphingomyelinase (SMase) 1. Glutathione Inhibitor Liu and Hannun (1997)

2. Phosphatidylinositol 3,5-bisphosphate (PIP2) Inhibitor Kolzer et al. (2003)

3. Phosphatidylinositol 3,4,5-triphosphate (PIP3) Inhibitor Testai et al. (2004)

(Continued on following page)
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SphK/S1P signaling. FTY720 has been extensively used in basic and
translational cancer research (White et al., 2016). It is worth noting
that FTY720 was also able to inhibit CerS (Lahiri et al., 2009),
although at much higher concentrations compared to Fumonisin.

3 Sphingolipids at the interface of
multiple diseases

Sphingolipids have emerged as key players in various diseases,
spanning cancer, neurodegenerative disorders, metabolic diseases,
cardiovascular conditions, inflammatory disorders, and infectious
diseases (Yu et al., 2012; Trayssac et al., 2018; Wang et al., 2021b;

Hernández-Bello et al., 2023). In cancer, dysregulated sphingolipid
metabolism contributes to cell proliferation, survival, angiogenesis,
and metastasis (Ghandour et al., 2021). Neurodegenerative
diseases are characterized by disruptions in sphingolipid
homeostasis, impacting neuronal function and promoting
inflammation (Chiurchiu et al., 2018; Belarbi et al., 2020).
sphingolipid imbalances also play a role in metabolic disorders,
impairing insulin signaling and promoting inflammation in
conditions like obesity and insulin resistance (Sindhu et al.,
2021). Additionally, sphingolipids influence the pathogenesis of
cardiovascular diseases, inflammatory disorders, and infectious
diseases, affecting immunity, inflammatory responses and disease
progression (Lee et al., 2023). Understanding the intricate

TABLE 2 (Continued) Different inhibitors and modulators of sphingolipid metabolic enzymes.

Enzyme Inhibitor/modulator Classification References

4. Ceramide 1-phosphate (C1P) Inhibitor Gomez-Munoz et al. (2004)

5. Sphingosine 1-phosphate (S1P) Modulator Gomez-Munoz et al. (2003)

6. α-mangostin Inhibitor Okudaira et al. (2000)

7. Cowanin Inhibitor Okudaira et al. (2000)

8. Cowanol Inhibitor Okudaira et al. (2000)

9. GW4869 Inhibitor Luberto et al. (2002)

10. SR33557 Inhibitor Jaffrezou et al. (1991)

11. Macquarimicin A Selective inhibitor Munakata et al. (2003)

12. Undecylidene-aminoguanidine (C11AG) Selective inhibitor Amtmann et al. (2000)

13. Scyphostatin Inhibitor Nara et al. (1999)

14. Alutenusin Inhibitor Uchida et al. (1999)

15. Chlorogentisylquinone Specific irreversible inhibitor Uchida et al. (2001)

16. Manumycin A Specific irreversible inhibitor Arenz et al. (2001)

17. Spiroepoxide Specific irreversible inhibitor Arenz and Giannis (2000)

18. Sphingolactones Selective irreversible inhibitors Wascholowski and Giannis (2006)

Sphingosine kinase (SphK) 1. N,N-dimethylsphingosine (DMS) Inhibitor Nishiuma et al. (2008), Yura et al. (2020)

2. L-threo-sphinganine (safingol) Inhibitor Buehrer and Bell (1992), Olivera et al. (1998)

3. (2R,3S,4E)-N-methyl-5-(4′-pentylphenyl)-2-
aminopent-4-ene-1,3-diol (SK1-I)

Specific inhibitor Paugh et al. (2008), Kapitonov et al. (2009)

4. 4-[4-(4-chloro-phenyl)-thiazol-2-ylamino]-phenol
(SKI-II)

Inhibitor French et al. (2006), Chiba et al. (2010)

5. PF-543 Inhibitor Schnute et al. (2012), Yi et al. (2023)

6. Fingolimod (FTY720) Inhibitor Kahan (2004), Baumruker et al. (2007),
Takabe et al. (2008), White et al. (2016)

7. ABC294640 (Opaganib) Inhibitor French et al. (2010), Gao et al. (2012), Baker
et al. (2013), Snider et al. (2013)

8. MP-A08 Inhibitor Pitman et al. (2015), Powell et al. (2017)

Sphingosine 1-phosphate
lyase (SPL)

1. 2-acetyl-4-(tetrahydroxybutyl)imidazole (THI) It is still unclear whether THI, LX2931,
or LX2932 inhibit SPL directly or not

Ohtoyo et al. (2015)

2. (E)-1-(4-((1R,2S,3R)-1,2,3,4-tetrahydroxybutyl)-1H-
imidazol-2-yl)ethanone oxime (LX2931)

Bagdanoff et al. (2010)

3. (1R,2S,3R)-1-(2-(isoxazol-3-yl)-1H-imidazol-4-yl)
butane-1,2,3,4-tetraol (LX2932)

Bagdanoff et al. (2010)
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involvement of sphingolipids in these diseases offers opportunities
for targeted therapeutic interventions.

3.1 Sphingosine, ceramides, and their
phosphorylated derivatives

Sphingosine is a bioactive lipid molecule that plays a critical role
in cellular signaling pathways. It is generated from the breakdown of
SM, and it can be converted into a number of biologically active
derivatives. It can act as a second messenger in various cellular
processes, such as apoptosis, differentiation, and proliferation
(Bartke and Hannun, 2009). Changes in sphingosine levels have
been implicated in the pathogenesis of a number of
neurodegenerative disorders, such as Alzheimer’s and Parkinson’s
diseases, as well as in cancer, cardiovascular diseases, and
inflammatory disorders (Alessenko and Albi, 2020). In terms of
its bioactivity, sphingosine has been shown to activate sphingosine-
activated protein kinase in cultured rat hippocampal neurons and
astrocytes inducing apoptosis (Kanno and Nishizaki, 2011).
Additionally, sphingosine inhibited protein kinase C (PKC) in
airway smooth muscles resulting in cell death (Tolan et al.,
1997). Mitogen-activated protein kinase pathway was inhibited
by sphingosine and its methylated derivative dimethylsphingosine
promoting cancer cell arrest and apoptosis (Sakakura et al., 1997).
Clearly, sphingosine and its derivatives have differential effects on
cells (Kim et al., 2008b). Sphingosine has also been shown to regulate
the activity of ion channels in the plasma membrane (Rodriguez-
Duran et al., 2019), such as the transient receptor potential
melastatin channel (Qin et al., 2013). These channels are
involved in various cellular processes, such as sensory perception,
and sphingosine-mediated regulation of these channels can have
important physiological consequences. Additionally, sphingosine
has been implicated in the regulation of stress responses in
eukaryotic cells. In yeast, for example, sphingosine levels increase
in response to heat stress (Dickson, 2008; Cowart et al., 2010).

S1P exhibits greater diversity as a bioactive lipid mediator
compared to its precursor, sphingosine, and is involved in regulating
various cellular processes associated with both health and disease
(Maceyka et al., 2012). S1P is generated through the
phosphorylation of sphingosine by SphK1 and SphK2 (Hait and
Maiti, 2017). In vitro experiments investigating skeletal muscle
growth in mice have demonstrated the role of S1P in activating and
differentiatingmuscle satellite cells, as well as facilitating their entry into
the cell cycle. Notably,muscular injury induces changes in S1P signaling
by upregulating the gene encoding SphK1, suggesting S1P’s
involvement in the rapid response to injury (Tan-Chen et al., 2020).

Cer and its phosphorylated derivative, C1P, are prominent
signaling molecules in inflammatory responses (Chalfant and
Spiegel, 2005). Recently, C1P has been shown to possess an anti-
inflammatory property in certain types of cells, although it had
previously been found to be pro-inflammation (Gomez-Munoz
et al., 2016). C1P is a key regulator of cancer cell migration, and
survival and has mitogenic properties (Camacho et al., 2022). Cer
and C1P have been extensively studied in terms of their biological
functions.

Cer molecules are potent inducers of cell cycle arrest and
apoptosis, whereas C1P promotes cell growth and survival

(Gomez-Munoz et al., 2016; Hait and Maiti, 2017). Concerning
inflammation, Cer and C1P stimulate Ca+2-dependent cytosolic
phospholipase A2, which subsequently leads to arachidonic acid
release and metabolism involving cyclooxygenase 2-mediated
inflammation (Hait and Maiti, 2017). C1P enhances arachidonic
acid-mediated prostaglandin E2 synthesis in wound healing process
(Chalfant and Spiegel, 2005; Wijesinghe et al., 2014). Cer can
stimulate the proinflammatory transcription factor NF-κB. NF-κB
in mammalian cells induces the upregulation of other genes that are
involved in inflammatory responses (Gomez-Munoz et al., 2016).

Cer has also been shown to cause a controlled permeabilization
of the mitochondrial outer membrane via channel formation
(Colombini, 2019). The outer membrane contains some of the
enzymes that are responsible for synthesizing Cer (Birbes et al.,
2002; Hernandez-Corbacho et al., 2017). However, most of the Cer is
generated in the ER at the contact sites between ER and
mitochondria, termed mitochondria-associated membranes. Cer
generated in the ER can transfer seamlessly from ER to
mitochondria without the requirement of assisting proteins
(Stiban et al., 2008). Cer channels are dynamic, increasing in size
with the addition of more monomers or disassembling with the
removal of molecules into the membrane (Siskind et al., 2003).
Following an apoptotic signal, the concentration of Cer in the
mitochondrial outer membrane increases dramatically leading to
the formation of these channels (Siskind, 2005). Targeting SMase to
mitochondria and not to other cellular compartments led to Cer
accumulation and apoptosis (Birbes et al., 2001). The regulation of
the channel size depends on controlling the levels of Cer in the
membrane, in addition to the presence of protein and lipid
regulators of channel assembly and disassembly (Elrick et al.,
2006; Siskind et al., 2006; Stiban et al., 2006; Ganesan and
Colombini, 2010; Ganesan et al., 2010; Abou-Ghali and Stiban,
2015; Stiban and Perera, 2015).

3.2 Glycosphingolipids

In neurons, GSLs play a crucial role in regulating impulse
transmission, as well as the development and differentiation of
neuronal cells (Zhang et al., 2019). Additionally, GSLs control
other cellular processes, such as apoptosis (Belarbi et al., 2020).
As receptors for extracellular signals, GSLs located on the plasma
membrane outer surface play a vital role in signal transduction.

Several toxins, including cholera toxin (CTx), heat-labile
enterotoxin (LTx), and Shiga toxin (STx), use GSLs as receptors.
The B-subunit of these toxins binds to gangliosides GM1 and
Gb3 on epithelial membranes in the intestine. This interaction is
crucial for providing a toxic effect, leading to immunomodulation in
some cells and inducing apoptosis in others (Smith et al., 2004;
Lingwood, 2011; Klokk et al., 2016). The interaction between toxins
and GSL receptors stimulates signaling pathways that enhance the
adaptive immune response, promoting the differentiation of B and
T cells to combat the pathogen. Furthermore, CTx’s binding to the GSL
at the cell surface of intestinal epithelial cells leads to upregulation of
interleukins 6 and 1. This stimulation enhances T-cell co-stimulatory
molecule expression and antigen-presenting cells that act as co-
stimulatory molecules. Moreover, it may also stimulate T helper cell
type 2 in adjuvant responses (Smith et al., 2004).
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GSLs have also been implicated in the pathogenesis of several
diseases, including neurodegenerative disorders, cancer, and
cardiovascular disease (Dang et al., 2018; Belarbi et al., 2020;
Ryckman et al., 2020; Zheng et al., 2021). Gangliosides, a type of
GSL with sialic acid moieties, are highly abundant in the grey
matter of the brain and modulate signaling pathways that alter
neuronal activities (Lopez and Schnaar, 2009; Schengrund, 2015).
Mutations in genes encoding ganglioside synthases have been shown
to increase the risk of neurodegenerative diseases. For example,
mutations in the ST3Gal5 gene that encodes monosialoganglioside
GM3 synthase have been linked to infant onset epilepsy, while
mutations in the ST3Gal5 and B4GalNT1 genes, which encode
GM2 synthase, increase the risk of developing multiple sclerosis
(Schengrund, 2015).

Failure of GSL homeostasis is associated with Parkinson’s
disease (Belarbi et al., 2020), which is characterized by the
impairment of the substantia nigra responsible for the generation
of dopamine (Beitz, 2014; Belarbi et al., 2020). Parkinson’s disease is
associated with the impairment of several cellular processes,
including mitochondrial function and protein folding, ER stress,
failure in calcium homeostasis, alterations in blood-brain barrier
permeability, and neuroinflammation (Belarbi et al., 2020). GSL
defects have been linked to the neuroinflammation mechanism in
Parkinson’s disease. The presence of mutations in the GBA gene,
which encodes the enzyme glucocerebrosidase responsible for the
degradation of GlcCer into Cer and glucose, is a common risk factor
for Parkinson’s disease (Schneider, 2018). The mutation in the GBA
gene results in the accumulation of GSL disrupting their
homeostasis (Schneider, 2018). Another putative mechanism for
the relationship between GSLs and Parkinson’s disease is the failure
of calcium homeostasis (Schneider, 2018; Belarbi et al., 2020).
Studies have shown a direct connection between the
accumulation of GlcCer and calcium levels in neurons
(Korkotian et al., 1999).

3.3 Sphingomyelins

In nervous tissues, SM has many structural and functional
roles including myelination, neurogenesis, neuron differentiation,
neuronal-glial connection, synaptogenesis, and synaptic
transmission (Ong et al., 2015; Signorelli et al., 2021). Myelin
sheaths are membranes composed of lipids-rich multilayers,
surrounding the axons of the neurons in the peripheral and
central nervous system. Myelin sheaths have an essential role in
accelerating the impulses along the nerves (Signorelli et al., 2021).
During cell development in infants, it has been shown that dietary
SM is essential in cognitive development and neurodevelopmental
processes such as myelination (Schneider et al., 2019). In the
peripheral nervous system, myelin sheaths are formed by
Schwann cells, whereas in the central nervous system,
oligodendrocytes form these sheets (Simons and Nave, 2015).
SM has a functional role in promoting cognitive development
modulated by oligodendrocytes (Schneider et al., 2019).

Myelin sheaths are rich in long-chain SM and hydroxy SM
(hydroxySM). hydroxySM has a special role in the long-term
stabilization of the myelin sheath, and dysregulation of hydroxySMs
can lead to early degradation, resulting in neurodegenerative disorders

(Signorelli et al., 2021). Additionally, SM is required for the optimal
functioning of myelin basic proteins (MBPs) (Signorelli et al., 2021).
MBPs are required for the compaction of the multilayers of the myelin
sheaths and in their adherence together (Boggs, 2006). SM and MBP
interact so that the absence of SM leads to a defect in the incorporation
of MBP in the membranes of myelin sheaths (Widder et al., 2020;
Signorelli et al., 2021) leading to the partial or full disintegration of the
sheath. Because of their function inmyelin formation (compaction) and
long-term stability, MBPs are regarded as risk factors for Multiple
Sclerosis, which is a neurodegenerative disease characterized by myelin
sheath degeneration (Boggs, 2006).

Similarly, the accumulation of SM causes different neurological
disorders. SM buildup following SMase deficiency is associated with
Parkinson’s disease (Pan et al., 2023). Reduced levels of aSMase
prevent autophagy, whereas reduced levels of nSMase prevent stem
cell differentiation; both mechanisms impair neurogenesis
(Signorelli et al., 2021).

4 Conclusion

Sphingolipid are lipid molecules whose functions transcend
mere membrane composition and structure. They are involved in
cellular signaling and physiology. They are intricately made and
utilized in several pathways all of which end with the generation of
Cer. Cer species in cells are used to mediate myriad cellular
functions. In a variety of diseases of the immune and the
nervous systems irregularities of sphingolipid metabolism occupy
center stage. It is paramount to identify pathways of sphingolipid
action in health and in pathophysiology. Sphingolipid functions are
multifaceted and very diverse and they affect different cells very
differently. Hence, possible treatments for certain immunological
and nervous ailments may reside in pinpointing which sphingolipid
species is up or downregulated and whether their levels can be
pharmacologically or genetically altered in patients. Dissecting
sphingolipid metabolism mechanistically in relation to diseases is
still in its infancy but offers some promise for future treatments. In
the field of sphingolipid biochemistry, current and future trends
focus on the identification of specific sphingolipid species that are
dysregulated in different diseases. Understanding the intricate
mechanisms governing sphingolipid metabolism in the context of
diseases presents an exciting avenue for exploration.
Pharmacological and genetic interventions aimed at modulating
sphingolipid levels could potentially offer novel therapeutic
strategies for these ailments. Moreover, studies on the elaborate
mechanisms of sphingolipid signaling as bioactive lipids are and will
be taking center stage. Investigating the cell-type-specific effects of
sphingolipids will be crucial, as these molecules exhibit diverse and
multifaceted functions that can vary across different cell types.
Sphingolipid research presents an exciting and broad area of
investigation for newcomers as well as established researchers.
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