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Skeletal muscle is the major component of meat, and is primarily composed of muscle
fibers bounded by multiple connective tissue layers (Velleman and McFarland, 2014). These
connective tissue layers function as an essential support and functional system,
incorporating components like blood vessels and extracellular matrix macromolecules.
Consequently, muscle development and growth, morphological structure, and
biochemistry are crucial aspects in the determination of meat yield and quality. The
modern poultry industry has had one area of focus on selection for enhanced growth
performance, specifically emphasizing increased body weight and skeletal muscle yield
(Havenstein et al., 2007; Collins et al., 2014). Structural abnormalities, such as diminished
connective tissue spacing and reduced capillary density resulting from excessive muscle fiber
hypertrophy, have been observed in the breast muscle of modern rapid-growing poultry lines
(Velleman et al., 2003; Joiner et al., 2014). The loss of connective tissue spacing and presence
of oversized myofibers result in direct contact between muscle fibers, and this condition is
correlated with a greater occurrence of muscle fiber degeneration (Wilson et al., 1990;
Velleman et al., 2003). Furthermore, insufficient capillary supply in the breast muscle could
limit the removal of anaerobic respiration byproducts, such as lactic acid. The residual lactic
acid in the breast muscle can lead to a decrease in pH, potentially exacerbating muscle
degeneration. In addition to the structural flaws, the breast muscle of modern fast-growing
poultry breeds exhibits conditions such as Wooden Breast (Sihvo et al., 2014) and White
Stripping (Soglia et al., 2018), which adversely affect the quality of the breast meat. Muscle
growth and structure are primarily determined by muscle cell biology and biochemistry,
which are influenced by signal transduction pathways. One of the key players involved in
muscle function is the mechanistic target of rapamycin (mTOR) pathway, which is critical in
regulating muscle hypertrophic growth and mass accretion in poultry (Vignale et al., 2015;
Ma et al., 2018). This opinion paper will discuss how the mTOR pathway modulates skeletal
muscle growth, structure, and biochemistry, and ultimately can affect poultry meat yield and
quality.

Muscle fiber number is fixed by the time of hatch (Smith, 1963). Post-hatch muscle
grows through the hypertrophy of existing muscle fibers. Accumulation of intracellular
protein in existing muscle fibers is the most likely mechanism for post-hatch muscle
hypertrophic growth. With regard to the molecular mechanisms, mTOR is a key
regulator controlling muscle size and mass accretion in mammals and poultry (Bodine
et al., 2001; Vignale et al., 2015). It has been broadly hypothesized that mTOR promotes
myofiber hypertrophy by stimulating protein synthesis (Wang and Proud, 2006; Wang et al.,
2015; You et al., 2019). A schematic illustration of possible mechanisms of mTOR pathway in
skeletal muscle function is presented in Figure 1. Using mammalian models, the mTOR
protein kinase has been found to function in two distinct multiprotein complexes: mTOR
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complex 1 (mTORC1) and mTOR complex 2 (mTORC2) (Hara
et al., 2002; Sarbassov et al., 2004). As an intracellular nutrient sensor
(Tesseraud et al., 2006; Vignale et al., 2015), mTORC1 has been
found to promote protein synthesis with the stimulation of
intracellular nutrients including amino acids (Kop-Bozbay and
Ocak, 2019), vitamins (Vignale et al., 2015), fatty acids (Yoon
et al., 2011), and glucose (Patel et al., 2001) in birds and
mammals. In addition to nutrients, extracellular growth factors
also stimulate the activation of mTORC1 via specific
transmembrane growth factor receptors (Rommel et al., 2001).
Both nutrients and growth factors activate mTORC1 via the
phosphoinositide 3 kinase (PI3K)/protein kinase B (Akt)
signaling. For mTORC2, it can also be activated by nutrients
(Tato et al., 2011) and growth factors (García-Martínez and
Alessi, 2008) through the PI3K/Akt pathway in mammalian cells.
Activated mTORC2 indirectly activates mTORC1 through Akt
(Sarbassov et al., 2005; Moschella et al., 2013). Downstream
mTOR effectors for protein synthesis are p70 S6 kinase (S6K)
(Brown et al., 1995; Ohanna et al., 2005; Vignale et al., 2015) and
eukaryotic initiation factor 4E binding protein 1 (4EBP1) (Hara
et al., 1998;Wang et al., 2015). As the amount of intracellular protein
directly determines the size of myofibers, both mTOR/S6K and
mTOR/4EBP1 signaling plays an essential role in regulating the

hypertrophic growth of poultry skeletal muscle (Zhang et al., 2014;
Wang et al., 2015). Notably, using human models, Cuthbertson et al.
(2006) reported that it is the myofibrillar proteins and not the
sarcoplasmic proteins which promote hypertrophic growth of
muscle fibers. Abou Sawan et al. (2018) also showed that
mTORC1 increased muscle myofibrillar protein synthesis but not
mitochondrial protein synthesis via the S6K and 4EBP1 in human
muscle fibers. In avian species, the mTOR pathway may also
promote muscle fiber hypertrophy and muscle mass accretion by
upregulating myofibrillar proteins synthesis in an S6K- and 4EBP1-
dependent manner. Future studies will be needed to test this
hypothesis.

At the periphery of each muscle fiber, there exists a specific
population of muscle stem cells known as satellite cells (Mauro,
1961). Satellite cells act as the exclusive cell reservoir for post-hatch
muscle hypertrophy, and this occurs through satellite cell
proliferation, differentiation, and donation of cell nuclei to
existing muscle fibers (Moss and Leblond, 1971; Cardiasis and
Cooper, 1975). In poultry, satellite cell mitotic activity peaks
during the first week after hatch (Mozdziak et al., 1994; Halevy
et al., 2000), after which it gradually diminishes, eventually reaching
a mitotically quiescence state in mature muscle (Schultz and Lipton,
1982). With damage to muscle fibers (Bischoff, 1975; Snow, 1977),

FIGURE 1
A schematic representation of themTORpathway inmuscle cells. Both growth factors, through their receptors, and intracellular nutrients trigger the
activation (or phosphorylation) of phosphoinositide 3 kinase (PI3K). Once activated, PI3K in turn activates protein kinase B (Akt) and mTOR complex 1
(mTORC1). Nutrients and growth factors, via the PI3K/Akt pathway, can also stimulate mTOR complex 2 (mTORC2), which, once activated, can further
stimulate mTORC1 via Akt. Moreover, activated mTORC2 phosphorylates cytoplasmic p21-activated kinase (PAK) and integrin β3 via Akt,
contributing to cytoskeleton organization and migration. Downstream targets of mTORC1 include but are not limited to p70 S6 kinase (S6K), eukaryotic
initiation factor 4E binding protein 1 (4EBP1), myoblast determination factor 1 (MyoD), myogenin (MyoG), peroxisome proliferator-activated receptor-
gamma (PPARγ), and CCAAT/enhancer-binding protein-beta (C/EBPβ). Both S6K and 4EBP1 are implicated in the initiation of gene expression for protein
synthesis. MyoD and MyoG are myogenic transcriptional regulatory factors promoting myogenesis, while PPARγ and C/EBPβ are adipogenic factors that
stimulate the transcription of genes involved in lipid synthesis.
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the mitotically inactive satellite cells re-enter the cell cycle and repair
the damaged muscle fibers. Numerous studies have suggested that
mTORC1 promotes satellite cell myogenesis by inducing the
expression of myogenic transcriptional factors such as myoblast
determination factor 1 (MyoD) and myogenin (MyoG) (Han et al.,
2008; Vignale et al., 2015; Xu et al., 2022a; Xu and Velleman, 2023)
(Figure 1). In chicken breast muscle, impaired proliferation and
differentiation with decreased expression of mTOR, MyoD, and
MyoG were observed in the breast muscle satellite cells of a
current faster-growing broiler chicken line compared to two
historical chicken lines from 1990s (Xu and Velleman, 2023).
Insufficient myogenesis by satellite cells may result in a higher
incidence of myofiber degenerative and fibrotic myopathies like
Wooden Breast, as satellite cells with impaired regeneration
potential are unable to fully restore the necrotic myofibers to
their original size (Velleman and Clark, 2015; Clark and
Velleman, 2016; Velleman et al., 2018). In contrast, Wooden
Breast has not been observed in modern faster-growing turkeys.
This difference can be partially explained by increased satellite cell
myogenesis facilitated by an enhanced mTOR/S6K pathway in
turkeys (Xu et al., 2022a). The other complex, mTORC2,
promotes mouse satellite cell myogenesis, primarily through the
activation of Akt/mTORC1 signaling (Matheny Jr et al., 2012)
(Figure 1). In addition, mTORC2-triggered Akt activation
influences actin polymerization, which in turn affects
cytoskeleton organization and cell migration through its
downstream effectors including p21-activated kinase (PAK)
(Zhou et al., 2003) and integrin β3 (Kirk et al., 2000) in
mammals (Figure 1). Satellite cell alignment, a prerequisite for
their fusion to form multinucleated myotubes, requires migration
(Chazaud et al., 1998). Taken together, the mTOR pathway plays a
multifaceted role in muscle biology; it not only directly regulates
protein synthesis in muscle fibers but also modulates muscle
hypertrophy and regeneration potential of damaged fibers by
controlling the myogenic or regenerative potential and migration
of satellite cells.

In addition to regulating muscle growth and regeneration, the
mTOR pathway also governs the possible adipogenesis of muscle
satellite cells. This is accomplished by regulating the expression of
adipogenic regulatory factors like peroxisome proliferator-activated
receptor-gamma (PPARγ) (Kim and Chen, 2004) and CCAAT/
enhancer-binding protein-beta (C/EBPβ) (Kim et al., 2014)
(Figure 1). As multipotential stem cells, satellite cells can
spontaneously transdifferentiate to an adipocyte-like lineage and
synthesize lipid content with appropriate extrinsic stimuli (Asakura
et al., 2001; Shefer et al., 2004). As shown by Xu et al. (2021; 2022a),
heat stress significantly increased the activity of the mTOR/S6K
pathway, which is accompanied by increased lipid synthesis in
turkey breast muscle satellite cells. Furthermore, knocking down
the expression of mTOR significantly decreased lipid accumulation
and suppressed the expression of both PPARγ and C/EBPβ in turkey
satellite cells (Xu et al., 2022b). In in vivo studies, the increased
intracellular lipid content has been associated with the increased
intramuscular fat deposition in chicken breast muscle (Piestun et al.,
2017; Patael et al., 2019), potentially influencing protein-to-fat ratio
in poultry breast muscle. The increase in intramuscular fat depots
may also be associated with fat-associated myopathies like White
Striping.

Considering the crucial role of the mTOR pathway in skeletal
muscle growth, structure, and physiology, numerous extrinsic
factors have been investigated for their potential effects on
mTOR activity. Nutrients such as phosphatidic acid (Yoon et al.,
2011), vitamin D (Vignale et al., 2015) and leucine (Kop-Bozbay and
Ocak, 2019) and specific growth factors like epidermal growth factor
(EGF) (Cao et al., 2009) and insulin-like growth factor-1 (IGF-1)
(Rommel et al., 2001) are well-known activators of the mTOR
pathway in birds and mammals, which may in turn stimulates
muscle protein synthesis. The mTOR pathway is also
significantly influenced by various cellular stressors. For example,
the mTOR pathway can sense and respond to thermal stress (Xu
et al., 2022a) and oxygen stress (Chaillou and Lanner, 2016),
subsequently adjusting protein synthesis in skeletal muscle.
Nonetheless, the regulation of the mTOR pathway is tissue- and
species-specific in poultry muscle, relying on a delicate balance of
various factors. Different timing, intensity, or duration of these
stimuli can also result in distinct cellular responses. Taking
temperature effect as an example, Xu et al. (2022a) reported that
cold stress (5°C colder than the control) inhibited the activity of the
mTOR/S6K pathway in breast muscle satellite cells of one-week-old
turkeys. However, an increase in mTOR activity was observed when
newly hatched chickens were constantly challenged with chronic
cold stress (5.3°–12.3°C colder than the control) during the first week
after hatch in the chicken leg muscle (Nguyen et al., 2015).
Comprehending how the extrinsic factors are involved in the
regulation of the mTOR pathway is critical in optimizing poultry
skeletal muscle growth and structure.

The mTOR pathway is undeniably critical in poultry skeletal
muscle growth and physiology by stimulating myofiber protein
accumulation (Wang and Proud, 2006) and regulating satellite cell
myogenesis and adipogenesis (Xu et al., 2022a; b). These mTOR
functions may have a direct impact on poultry meat quality.
Gaining a deeper understanding of the mTOR pathway and its
regulatory mechanisms will enable the poultry industry to develop
strategies for optimizing poultry muscle growth and enhancing
meat quality. For example, providing feed with higher vitamin D
(Vignale et al., 2015), arginine (Yu et al., 2018), leucine (Kop-
Bozbay and Ocak, 2019) might achieve the nutritional stimuli
necessary for mTOR activity in poultry skeletal muscle.
Introducing a heat stress with appropriate intensity and
duration, particularly during the first week after hatch when
satellite cells exhibit peak mitotic activity and temperature
sensitivity (Mozdziak et al., 1994; Halevy et al., 2001), will
significantly increase the activity of the mTOR pathway (Xu
et al., 2022a), which in turn, will stimulate satellite cell
myogenesis and protein synthesis, resulting in increased muscle
mass accretion and preventing myofiber necrotic and fibrotic
myopathies like Wooden Breast. Nevertheless, as indicated by
Ma et al. (2018), it is vital to avoid chronic high-intensity heat
stress to mitigate negative effects on mTOR activity. Furthermore,
the elevation in mTOR activity induced by heat stress at an early
age also promotes fat accumulation, particularly in the breast
muscle satellite cells of rapid-growing poultry (Xu et al., 2022b).
Increased intramuscular fat deposition could be associated with
fat-associated myopathies like White Striping, impacting the
quality of breast meat. As poultry breast muscle is a favored
consumer source of high-protein and low-fat meat, fluctuating
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between heat and cold stress in the first week post-hatch could
potentially augment mTOR-mediated protein synthesis, while
inhibiting mTOR-driven fat production. Continued research is
necessary to discover the appropriate strategies of controlling the
mTOR pathway in response to various stimuli, ultimately
improving poultry skeletal muscle growth while producing a
high-quality meat product.
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