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Epilepsy is a prevalent brain disease, which is quite difficult-to-treat or cure. This
study developed a novel automatic seizure detection method based on the
persistent homology method. In this study, a Vietoris–Rips (VR) complex
filtration model was constructed based on the EEG data. And the persistent
homology method was applied to calculate the VR complex filtration barcodes
to describe the topological changes of EEG recordings. Afterward, the barcodes as
the topological characteristics of EEG signals were fed into the GoogLeNet for
classification. The persistent homology is applicable for multi-channel EEG data
analysis, where the global topological information is calculated and the features
are extracted by considering the multi-channel EEG data as a whole, without the
multiple calculations or the post-stitching. Three databases were used to evaluate
the proposed approach and the results showed that the approach had high
performances in the epilepsy detection. The results obtained from the CHB-
MIT Database recordings revealed that the proposed approach can achieve a
segment-based averaged accuracy, sensitivity and specificity values of 97.05%,
96.71% and 97.38%, and achieve an event-based averaged sensitivity value of 100%
with 1.22 s average detection latency. In addition, on the Siena Scalp Database, the
proposed method yields averaged accuracy, sensitivity and specificity values of
96.42%, 95.23% and 97.6%. Multiple tasks of the Bonn Database also showed
achieved accuracy of 99.55%, 98.63%, 98.28% and 97.68%, respectively. The
experimental results on these three EEG databases illustrate the efficiency and
robustness of our approach for automatic detection of epileptic seizure.
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1 Introduction

Epilepsy is a chronic brain disease caused by the sudden abnormal discharge of brain
neurons, and worldwide more than 70 million of people are suffering from epilepsy (Thijs
et al., 2019; Bandopadhyay et al., 2021). When an epileptic occurs, the patients will lose
consciousness, have convulsions, and cannot control their body movements. Epilepsy
increases the risk of physical injuries, and accidents such as slipping and fainting caused
by epilepsy would lead secondary injury to patients (Kaushik et al., 2022). Consequently,
timely detection and intervention are crucial for patients.

Electroencephalogram (EEG) reflects the electrophysiological activities about brain
nerve cells on the cerebral cortex or scalp, and records a lot of physiologic and
pathological information. EEG is widely used in research in the field of brain science,

OPEN ACCESS

EDITED BY

Henggui Zhang,
The University of Manchester,
United Kingdom

REVIEWED BY

Rishi Raj Sharma,
Defence Institute of Advanced
Technology (DIAT), India
Francesco Carlo Morabito,
Mediterranea University of Reggio
Calabria, Italy

*CORRESPONDENCE

Feifei Liu,
liufeifei19@sdjzu.edu.cn

Shuhua Shi,
sdsfhf@sdjzu.edu.cn

RECEIVED 24 May 2023
ACCEPTED 28 November 2023
PUBLISHED 12 December 2023

CITATION

Wang Z, Liu F, Shi S, Xia S, Peng F, Wang L,
Ai S and Xu Z (2023), Automatic epileptic
seizure detection based on
persistent homology.
Front. Physiol. 14:1227952.
doi: 10.3389/fphys.2023.1227952

COPYRIGHT

©2023Wang, Liu, Shi, Xia, Peng, Wang, Ai
and Xu. This is an open-access article
distributed under the terms of the
Creative Commons Attribution License
(CC BY). The use, distribution or
reproduction in other forums is
permitted, provided the original author(s)
and the copyright owner(s) are credited
and that the original publication in this
journal is cited, in accordance with
accepted academic practice. No use,
distribution or reproduction is permitted
which does not comply with these terms.

Frontiers in Physiology frontiersin.org01

TYPE Original Research
PUBLISHED 12 December 2023
DOI 10.3389/fphys.2023.1227952

https://www.frontiersin.org/articles/10.3389/fphys.2023.1227952/full
https://www.frontiersin.org/articles/10.3389/fphys.2023.1227952/full
https://www.frontiersin.org/articles/10.3389/fphys.2023.1227952/full
https://crossmark.crossref.org/dialog/?doi=10.3389/fphys.2023.1227952&domain=pdf&date_stamp=2023-12-12
mailto:liufeifei19@sdjzu.edu.cn
mailto:liufeifei19@sdjzu.edu.cn
mailto:sdsfhf@sdjzu.edu.cn
mailto:sdsfhf@sdjzu.edu.cn
https://doi.org/10.3389/fphys.2023.1227952
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/physiology
https://www.frontiersin.org
https://www.frontiersin.org/journals/physiology
https://www.frontiersin.org/journals/physiology#editorial-board
https://www.frontiersin.org/journals/physiology#editorial-board
https://doi.org/10.3389/fphys.2023.1227952


such as disease detection (van der Zande et al., 2018; Oh et al., 2020),
emotion recognition (Liu et al., 2020; Iyer et al., 2023), and sleep
disorder diagnosis(Sharma et al., 2021; Chen et al., 2023) etc. The
analysis of EEG signals can provide a diagnostic basis and an
effective treatment for abnormal functioning of the brain, so
studying EEG signals is a common way to analyze brain diseases
(Acharya et al., 2013). Meanwhile, EEG is widely used for the
epilepsy detection and treatment due to its low sampling cost and
high time resolution (Vidyaratne and Iftekharuddin, 2017). However,
the traditional epilepsy-detecting method requires the physicians to
visually evaluate and manually label EEG signals, which is
complicated and extremely expensive. Moreover, EEG recordings
often last several hours, so it is actually a quite burdensome work
for the physicians. Therefore, the automatic detection method of
epileptic seizures has great significance to the long-term monitoring,
diagnosis and treatment of epilepsy patients (Liu et al., 2012).

In recent years, many researchers have done a large number of
works about the automatic epileptic seizure detection. And these
studies are mainly divided into two directions: the feature extraction
and classification (Vidyaratne and Iftekharuddin, 2017). About 90%
studies focused on developing an effective method of feature
extraction to find the most prominent EEG features that can be
used for the epilepsy diagnosis (Hussein et al., 2018). Extracting
features in the time domain, frequency domain, and time-frequency
domains of EEG signals has always been a focus of past work, and
these presented feature extraction methods were evaluated based on
several open EEG databases (Alotaiby et al., 2014).

In 2011, D. Wang et al. applied the best basis-based wavelet
packet entropy to extract feature parameters of EEG signals (Wang
et al., 2011). In 2014, a framework based on the wavelet-based
nonlinear features was proposed by Chen et al. (2014), which
extracted some features on the selected single channel at the
different resolutions of time and frequency. Zhang et al. (2017)
explored a quadratic feature extraction method based on the
Autoregression (AR) and Variational Mode Decomposition
(VMD) for epilepsy detection in 2017. Bhattacharyya and
Pachori (2017) proposed a novel method based on the Empirical
Wavelet Transform (EWT), which was effective for epilepsy
detection about long time EEG recordings on five channels. In
2018, Hussein et al. (2018) used a new epilepsy detecting algorithm
based on the L1-Penalized Robust Regression (L1PRR). Their study
showed that the algorithm could improve the detection accuracies
and robustness for the EEG signals with artifacts and white noise
(Hussein et al., 2018). Sharma et al. (2018) proposed that Iterative
Filtering (IF) is suitable for analyzing non-stationary signals and
better than traditional data adaptive analysis methods. In 2021,
Mandhouj et al. (2021) used the Short-Time Fourier Transform
(STFT) tool to do the time-frequency analysis of the EEG signal and
create the EEG spectrum image, which reducing the complexity of
the feature extraction process (Mandhouj et al., 2021). Moreover, A.
Zarei and Asl (2021) introduced a new method for automatic
detection of seizures based on the Discrete Wavelet Transform
(DWT) and Orthogonal Matching Pursuit (OMP). They used the
DWT and OMP to decompose EEG segments into different sub-
bands, calculate features according to different coefficients, and used
the Sequential Forward Feature Selection (SFFS) method to choose
the best collection of features (Zarei and Asl, 2021). In 2022,
Rajinikanth et al. (2022) proposed a method to use the Synchro

Extracting Transform (SET) to examine EEG signals (Rajinikanth
et al., 2022). A. Anuragi et al. proposed using the FBSE-EWT
algorithm to extract sub-bands from EEG and reconstruct them
into a 3D Phase-Space Representation (PSR). This method was
suitable for analyzing non-stationary EEG signals and when using
Extra Tree (ET) classifier, a classification accuracy of 100% can be
achieved (Anuragi et al., 2022).

Machine learning is a mature technique. Many researchers used
machine learning for epilepsy detection in a large number of studies
(Vidyaratne and Iftekharuddin, 2017). A.H. Shoeb et al. put forward
an automatic epilepsy detection method for the patients. This
method used the Support Vector Machine (SVM) for feature
classification, which can offer 96% prediction sensitivity (Shoeb
and Guttag, 2010). Moreover, Billeci et al. (2018) introduced a
patient-specific method for predicting epileptic seizures based on
the combination of the Heart Rate Variability (HRV) parameters
and Recurrence Quantification Analysis (RQA) parameters, and it
incorporated EEG and ECG features, and fed them into the SVM
for classification (Billeci et al., 2018). The research of Sanchez-
Hernandez et al. (2022) showed that the performance of the classifier
may be affected by many factors, and evaluated the combination of
six feature selection methods and five classification models, and
obtained the best combination (Sanchez-Hernandez et al., 2022).
Deep learning algorithm is more effective in processing large and
complex bioelectric signals, so it has been gradually utilized in the
field of epilepsy detection in recent years, especially the Convolutional
Neural Network (CNN) (Hu et al., 2019). S. Raghu et al. used the CNN
and transfer learning to classify seven variants of seizures and non-
seizure EEG. They used 10 pretrained networks to identify the best
network for the proposed study. Then, they achieved higher
classification accuracy of 82.85% using transfer learning, and the
highest classification accuracy of 88.30% was achieved using the
extract image feature approach (Raghu et al., 2020).

However, most of the previous researches selected a specific single
channel from the multi-channel EEG signals, or separated the multi-
channel, extracted the features separately and then spliced the features,
and few studies analyzed the multi-channel EEG directly. The
separation of signals and the features splicing need more calculating
cost and time, and this would result in missing the best opportunity for
disease treatment. Synchronization analysis of high-dimensional EEG
signals is the key for timely automatic epileptic seizure detection.
Persistent homology is a new method in topological data analysis.
Thismethod is applicable to high-dimensional data analysis and has the
characteristics of not being limited by the threshold. It is a valid
instrument for analyzing high-dimensional nonlinear data and
nonlinear structure (Liang et al., 2021). Persistence was first
proposed by H. Edelsrunner et al. (Edelsbrunner et al., 2002) in
2002, and it has been applied in many different research fields
(Parks and Marchette, 2016). Lee et al. (2012) proposed a brain
connectivity model using the persistent homology to avoid the single
fixed threshold (Lee et al., 2012). Pachauri et al. (2011) explored the
persistence of topological features induced by cortical thickness signals.
The research results showed that persistent homology had the great
advantage in capturing subtle anatomical variations in complex data
(Pachauri et al., 2011). Persistent homology includes multiple
complexes, of which the Vietoris-Rips (VR) complex is a practical
complex suitable for analyzing high-dimensional data (Zomorodian,
2010). Guo et al. (2022) used persistent homology and VR complex to
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construct multi-scale brain network to extract features from the EEG
signals of schizophrenic patients for analysis and demonstrated their
stability as a biological reference standard. Fernández and Mateos
(2022) used persistent homology to calculate topological biomarkers
from the signals as features, and experiments have shown that

biomarkers can effectively detect changes in brain dynamics
(Fernández and Mateos, 2022). Yan et al. (2023) proposed an
analysis method based on persistent homology for EEG emotion
recognition, which extracts topological features from different EEG
rhythm bands through VR filtering.

FIGURE 1
The main flowchart of the proposed approach for automatic seizure detection.
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This study developed a new epileptic seizure detecting method
based on the persistent homology, which can analyze the multi-
dimensional EEG signals directly. First, the multi-dimensional EEG
data are embedded into the metric space, to generate a point cloud
matrix. Then, the VR complexes are born, growing, and
disappearing gradually in the VR composite filtering processing.
And, a persistence barcode is generated to record this process.
Finally, GoogLeNet model is employed for the classification. This
proposed new method can be directly applied to multi-channel EEG
signals without separating channels, and is suitable for the epileptic
detection. Three EEG epilepsy databases were applied to evaluate the
performance of this method. The experimental results demonstrate
that it has great performance, high reliability and robustness for the
epileptic seizure detection.

The rest of the paper is organized as follows: Section 2 describes
the EEG databases and proposed the epileptic seizure detection
approach; Section 3 presents the experiments and results; Section 4
discuss and analyze the outcome of experiment. Finally, Section 5
concludes this work.

2 Materials and methods

The flowchart of the proposed approach for automatic seizure
detection is shown in Figure 1. At first, a pre-processing step is
necessary, including the noise reduction to eliminate noise
disturbances and down-sampling of the original EEG recordings to
reduce computing costs, and the preprocessed signals are segmented
into 2-s fragments. Then, the complex filtration model is constructed,
and the topological features are extracted using persistent homology.
Finally, the GoogLeNet is employed for classifying features.

2.1 EEG database

In this study, three EEG databases have been used to evaluate the
performance of the proposed approach. These three databases are
the CHB-MIT Scalp EEG Database, the Siena Scalp Database, and
the Bonn Database.

2.1.1 CHB-MIT Scalp EEG Database
The first database used in this study is the CHB-MIT Scalp EEG

Database (Shoeb and Guttag, 2010), which contains 24 cases of scalp
EEG recordings from 23 pediatric patients, including 5 male
patients, 17 female patients, and one unspecified gender. The
case “Chb24” is a case without age and gender, which was later
added to the database. “Chb21” and “Chb01” were obtained from
the same patient, “Chb21” is the EEG recording obtained for the
second time after 1.5 years. Each recording is sampled at 256 Hz.
Most recordings contain 23 EEG channels, which are based on the
international 10–20 electrode placement system. All recordings
totaled 872 h, including 198 seizures, with each recording
containing between 0 and 5 epileptic seizures. More details of
selected recordings from this database used in this study are
described in Table 1. Since the channels and the order of the
channels were different between different records, the channels
are also selected to ensure that the channels remained consistent
for each recording in this study (FP1-F7, F7-T7, T7-P7, P7-O1, FP1-

F3, F3-C3, C3-P3, P3-O1, FP2-F4, F4-C4, C4-P4, P4-O2, FP2-F8,
F8-T8, P8-O2, P7-T7, T7-FT9, FT9-FT10, FT10-T8).

2.1.2 Siena Scalp Database
Moreover, in order to ensure the robustness of the proposed

approach, another EEG database have been utilized, Siena Scalp
Database (Detti et al., 2020). This database was acquired by the Unit
of Neurology and Neurophysiology at the University of Siena, Italy,
and it contains 41 scalp EEG recordings from 14 patients, including
9 male and 5 female patients, respectively. The sampling rate is
512 Hz. All recordings totaled 128 h, including 47 seizures, with
each recording containing between 1 and 3 epileptic seizures. More
details overviews of selected recordings of this database are
summarized in Table 1.

2.1.3 Bonn Database
Furthermore, to evaluate the applicability of the proposed

approach on single-channel EEG recordings and
multiclassification, the Bonn Database has also been used in this
study. This database was collected by the Department of
Epileptology at University of Bonn, Germany (Andrzejak et al.,
2001). The database consists of five sets (from Set A to Set E) of
single-channel EEG recordings, and each set contains 100 segments
with a length of 23.6 s, which are sampled at 173.61 Hz and based on
the international 10–20 system. Sets A and B were collected from five
healthy subjects. Set A consisted of subjects with eyes open, Set B has
consisted of subjects with eyes closed. Sets C, D and E were collected
from five patients with epilepsy. While Sets C and D only include
interictal recording. The recordings in Set D were collected from
within the epileptogenic zone of the brain, and the recordings in Set
C were collected from the formation of the opposite hemisphere.
The recordings in Set E are all with epileptic seizures. This database
has been filtered at frequencies between 0.53 and 40 Hz.

2.2 Pre-processing

Several recordings in the CHB-MIT Database contain different
channels when compared with others, so it is necessary to choose the
same channels to ensure the uniformity of all recordings. But the
channels contained from each subject in the Siena ScalpDatabase varied
widely, which made it infeasible to standardize them in this study. EEG
generated cortically is susceptible to contamination by non-cerebral
artifact origins such as blinking, ocular movements, and
electromyography (EMG). Moreover, it is also contaminated by
external electromagnetic activity such as the electrical disturbances
and instrument noise, all of which would diminish the quality of
EEG recordings and cause the wrong features to be extracted
(Upadhyay et al., 2016). Therefore, the noise reduction is necessary
for the EEG recordings. Since most seizure activity occurs in this
0.5–40 Hz frequency range (Zarei and Asl, 2021), band-pass filtering
of 0.5–40 Hz is carried out in this study for the two databases
mentioned above. And down-sampled the sampling frequency of the
Siena Scalp Database to 256 Hz. Bonn Database has already been pre-
processed, so this pre-processing step is not necessary.

The sliding windows was used to segment the seizure period into 2-
s fragments El. The same operation is carried out on the interictal
period. There are equal numbers of the seizure and interictal fragments.
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2.3 Persistent homology

Persistent homology is a basic tool in Topological data analysis.
It has applications in various domains such as image recognition,
biology, chemistry, and network analysis (Fugacci et al., 2016).
Persistent homology describes the changes in homology that
occur to the complex in Topological space.

2.3.1 Persistent homology
Let (X,d) be a metric space, and a Vietoris-Rips (VR) complex

with ε parameters is a simple complex denoted byVR(X, ε), and whose
vertex is the set X. Subset x0, x1,/, xk{ } of X generates a k-complex if
and only if d(xi, xj)≤ ε for all 0≤ i, j≤ k. However, there is usually a
middle range, where VR(X, ε) has homology groups isomorphic to
those of X, and therefore has Betti numbers equal to those of X.
Edelsbrunner et al. (2002) have made the following observation:
whenever ε≤ ε′, there exists a natural inclusion of simplicial
complexes VR(X, ε)-VR(X, ε′). From this functoriality property,

one gets a linear transformationHk(VR(X, ε)) → Hk(VR(X, ε′)) for
any k. In order to study the homology of a space using a point cloud
sampled from it, one should keep track of all the linear transformations
described above and the whole system of vector spacesHk(VR(X, ε)).
This system is called persistent Vector space (Zomorodian and
Carlsson, 2005). For each persistence vector space, there is an
invariant called barcode, which is a finite collection of intervals.
Intuitively, persistent barcodes are a set of intervals that represent
the life of nontrivial circles during the process of complex growth. The
left endpoint of the interval represents the birth of new topological
properties, while the right endpoint of the interval represents its death.
Longer intervals are considered to represent inherent characteristics of
the complex, while shorter intervals are considered noise or improper
sampling. Figure 2B gives an example of a barcode. Persistent homology
is an effective tool to describe the change process of topological
properties of the simple complexes.

VR complexes constructed from a point cloud data and how to
generate a barcode are described in the following example to help

TABLE 1 Details of selected recordings of the CHB-MIT Database and Siena Scalp Database.

CHB-MIT database Siena Scalp Database

Patient ID Gender Age No. of seizures Seizure minutes Patient ID Gender Age No. of seizures Seizure minutes

Chb01 F 11 7 7:22 PN00 M 55 5 5:25

Chb02 M 11 3 2:52 PN01 M 46 2 2:08

Chb03 F 14 7 6:42 PN03 M 54 2 4:04

Chb04 M 22 4 6:18 PN05 F 51 3 1:44

Chb05 F 7 5 9:18 PN06 M 36 5 4:42

Chb06 F 1.5 10 2:33 PN07 F 20 1 1:02

Chb07 F 14.5 3 5:25 PN09 F 27 3 3:23

Chb08 M 3.5 5 15:19 PN10 M 25 10 6:05

Chb09 F 10 4 4:36 PN11 F 58 1 0:55

Chb10 M 3 7 7:27 PN12 M 71 4 4:50

Chb11 F 12 3 13:26 PN13 F 34 3 4:24

Chb12 F 2 27 16:29 PN14 M 49 4 2:43

Chb13 F 3 10 7:20 PN16 F 41 2 3:50

Chb14 F 9 8 2:49 PN17 M 42 2 2:33

Chb15 M 16 20 32:02

Chb16 F 7 8 1:09

Chb17 F 12 3 4:53

Chb18 F 18 6 5:17

Chb19 F 19 3 3:56

Chb20 F 6 8 4:54

Chb21 F 13 4 3:19

Chb22 F 9 3 3:24

Chb23 F 6 7 7:04

Chb24 - - 16 8:31
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understand persistent homology. Constructed of the VR complexes in
the example is shown in Figure 2. Place 5 points on the plane
[Coordinates of points are (2,2), (0,3), (−1,2), (0,0), (1,0)], and draw
five circles centered around the points with the radius ε/2. Suppose that
β0 is the 0-dimensional Betti number, represents the number of
components, and β1 is the 1-dimensional Betti number, represents
the number of loops. When ε< 1.0, the five points are independent of
each other and each point is an independent component. Such as in
Figure 2Ai, when ε� 0.6, there are five components and no one loop
formed. Therefore, the 0-dimensional Betti number β0� 5 and the 1-
dimensional Betti number β1� 0. In Figure 2Aii, along with ε increase
to ε� 1.0, points x4 and x5 are connected, two points form one 1-
dimensional simplex. There are four components, that is β0� 4. In
Figure 2Aiii, when ε� 1.44, the two upper left points x2 and x3 are
connected form a new component, this means β0� 3. In Figure 2Aiv, a
loop is formed, so β0� 1 and β1� 1 when ε� 2.35. Then, the persistence
barcode calculated based on persistent homology is shown in the
Figure 2B.

2.3.2 Vietoris–Rips complex filtration model
For generating the point cloud, each EEG segment with a duration

of 2 s is segmented into T-s epochs using a sliding window. The
segmented fragments are folded and arranged sequentially, such that
the number of points in the point cloud can be increased. For an EEG
with n-channels, a point cloud with 2n points can be obtained by
folding once, and so on. Let each point in the constructed point cloud
be the point X in Euclidean space, with threshold ε representing the
Euclidean distance between point clouds.

From this, a VR filtration model of the EEG can be defined as:

VR X, ε1( ) ⊆ VR X, ε2( )⊆/⊆VR X, εM( )
As mentioned in Section 2.3.1, this process can be intuitively felt

through the VR filtration barcode. The horizontal lines in the
barcode represent the topological properties, with the left end of
the line represents the appeal of a new topological property, and the

right end represents it disappear. The change rules of topological
property of an EEG can be described through Betti number. β0 is the
0-dimensional Betti number used to represents the number of
components of the EEG recordings, and the number of 1-
dimensional holes is represented by the 1-dimensional Betti
number β1. Figure 3 shows the construction process of a VR
complex filtration model in the proposed approach.

2.4 Classifier

In the classification step, the GoogLeNet classifier was used for
the classification of seizure and interictal samples. GoogLeNet is a
new deep learning algorithm proposed by Szegedy et al. (2015). In
contrast to the traditional linear convolutional structure of CNNs,
which contains a nonlinear convolution structure, namely,
Inception (Szegedy et al., 2015). The inception enables a greater
retention of input information and solves many negative effects due
to the increased depth of the network. The two main advantages of
Inception are using 1 × 1 convolution for up- or down-
dimensioning, and performing simultaneous convolutional re-
aggregation at multiple sizes, which can reduce the training
parameters of the model and the total calculation.

2.5 Experimental design

Two classification experiments were designed in this study to
test the classification performance of our proposed method:
segment-based classification (Experiment 1); and event-based
classification (Experiment 2). In Experiment 1, the fragments of
each database were divided into 70% and 30% for training and
testing respectively. This experiment was used to calculate the
accuracy of classification. In Experiment 2, the number of
epileptic seizure events for each subject in the CHB-MIT

FIGURE 2
(A) Construction of Vietoris–Rips complex. (i–iv) are VR(X,ε) complexes of the point cloud data with ε = 0.6, 1.0, 1.44, and 2.35 respectively. (B) The
persistence barcode generated by this VR complex.
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Database was noted as S. The classifier was trained using EEG
samples of all interictal samples and S-1 seizure events, and the
testing was done on the remaining 1 seizure event. This step was

repeated S times, so that each seizure event is tested once. This was
used to calculate the detection latency and the number of error
detections of epilepsy.

FIGURE 3
Process of feature extraction. (A) EEG fragment. (B)Construct point cloud. Divide and fold the EEG fragments to increase the number of the points in
the point clouds. (C) Point cloud. The figure shows the projection of the point cloud on the three-dimensional plane. (D) Barcode.

FIGURE 4
Confusion matrices of the classification results of the Bonn Database. (A) A-C-E; (B) A-D-E; (C) B-C-E; (D) B-D-E; (E) AB-CD-E.
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2.6 Evaluation method

The evaluation indicators of model used in this study are
Accuracy (Acc), Sensitivity (Sens), Specificity (Spec), Precision
(Pre), modified Accuracy (mAcc), and comprehensive index F1
measure, which are defined as follows:

Acc � TP + TN

TP + FP + TN + FN
× 100

Sens � TP

TP + FN
× 100

Spes � TN

TN + FP
× 100

Pre � TP

TP + FP
× 100

F1 � TP

TP+0.5 FP + FN( )× 100

mAcc � Sens + Spec

2

where, the True Positive (TP) represents the number of seizure
fragments correctly classified; the False Positive (FP) is the
number of interictal fragments incorrectly classified to be the
seizure fragments; the True Negative (TN) the number of
correctly classified the interictal fragments; the False Negative
(FN) is the number of seizure fragments incorrectly classified as
the interictal indeed.

3 Results

The proposed approach was evaluated on three public EEG
databases, and the results are shown in this section.

TABLE 2 The detection results of the proposed approach at the segment-based.

Patient ID Acc% Sens% Spec% Pre% F1% mAcc%

Chb01 100 100 100 100 100 100

Chb02 98.04 96.08 100 100 98 98.04

Chb03 99.58 100 99.15 99.16 99.57 99.58

Chb04 100 100 100 100 100 100

Chb05 97.89 97.59 98.19 98.18 97.89 97.89

Chb06 90.7 93.02 88.37 88.89 90.91 90.7

Chb07 100 100 100 100 100 100

Chb08 99.45 100 98.91 98.92 99.46 99.45

Chb09 98.78 97.56 100 100 98.77 98.78

Chb10 99.24 98.48 100 100 99.24 99.24

Chb11 99.59 99.17 100 100 99.58 99.59

Chb12 88.93 86.85 91 90.61 88.69 88.93

Chb13 92.25 89.15 95.35 95.04 92 92.25

Chb14 93.75 95.83 91.67 92 93.88 93.75

Chb15 89.19 88.68 89.7 89.59 89.13 89.19

Chb16 100 100 100 100 100 100

Chb17 100 100 100 100 100 100

Chb18 96.24 94.62 97.85 97.78 96.17 96.24

Chb19 100 100 100 100 100 100

Chb20 98.84 98.84 98.84 98.84 98.84 98.84

Chb21 98.28 100 96.55 96.67 98.31 98.28

Chb22 100 100 100 100 100 100

Chb23 99.2 100 98.4 98.43 99.21 99.2

Chb24 89.19 85.14 93.24 92.65 88.73 89.19

Average 97.05 ± 3.89 96.71 ± 4.59 97.38 ± 3.65 97.36 ± 3.66 97.02 ± 3.95 97.05 ± 3.89

Bold values are used to distinguish between individual values and mean values.
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3.1 Detection results of CHB-MIT Database

3.1.1 Detection results at the segment-based
The detecting results at the segment-based of the CHB-MIT

Database are shown in Table 2. It can be seen from this table, the
proposed approach provides a mean accuracy of 97.05%, a mean
sensitivity of 96.71%, and a mean specificity of 97.38%. Moreover,
the precision, modified accuracy and F1 measure are also shown,
97.36%, 97.02%, and 97.05%, respectively. The subject “Chb06,”
“Chb12,” “Chb15,” and “Chb24” had low performance in all
evaluation indexes, of which “Chb12” was the lowest. However,
the evaluation indexes of 18 subjects are close to or more than 95%,
accounting for 3/4 of all subjects.

3.1.2 Detection results at the event-based
Experiment 2, the event-based classification, was also conducted

on the CHB-MIT Database. All 181 seizure events of 24 subjects were
detected by the proposed approach successfully. This corresponds to a

detection sensitivity of 100%. Table 3 summarizes the results at the
event-based. And, Table 3 also records the average, lowest, and highest
detection seizure detection latencies for each subject. The proposed
approach achieves a mean seizure detection latency of 1.22 s. And,
73% of seizures being detected without the detection latency and 95%
of all seizures were detected with less than or equal to 5 s after the
onset. The minimum latency achieved for each subject was 0 s except
for “Chb15,” “Chb18,” “Chb22” and “Chb24” which showed
minimum latency of more than 10 s “Chb24” has average
detection latency is 4.125 s, while 96% of subjects’ average
detection latencies are less than or equal to 4 s.

3.2 Detection results of Siena Scalp
Database

Moreover, the detection evaluation indexes of the Siena Scalp
Database are shown in Table 4. It can be seen from Table 4 that

TABLE 3 The detection results of the proposed approach at the event-based.

Patient ID No. of marked seizures No. of true detections Sens% Lowest latency(s) Highest latency (s) Avg. latency (s)

Chb01 7 7 100 0 0 0

Chb02 3 3 100 0 0 0

Chb03 7 7 100 0 1 0.14

Chb04 4 4 100 0 2 0.5

Chb05 5 5 100 0 3 1

Chb06 10 10 100 0 4 0.9

Chb07 3 3 100 0 0 0

Chb08 5 5 100 0 0 0

Chb09 4 4 100 0 0 0

Chb10 7 7 100 0 0 0

Chb11 3 3 100 0 0 0

Chb12 27 27 100 0 4 0.88

Chb13 10 10 100 0 3 0.8

Chb14 8 8 100 0 1 0.25

Chb15 20 20 100 0 13 3.6

Chb16 8 8 100 0 1 0.125

Chb17 3 3 100 0 0 0

Chb18 6 6 100 0 16 2.66

Chb19 3 3 100 0 0 0

Chb20 8 8 100 0 2 0.25

Chb21 4 4 100 0 0 0

Chb22 3 3 100 0 12 4

Chb23 7 7 100 0 0 0

Chb24 16 16 100 0 48 4.125

Total 181 181 100(mean) 0(mean) 4.58(mean) 1.22(mean)

Bold values are used to distinguish between individual values and mean values.
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the method in this study provides a mean accuracy of 96.41%, a
mean sensitivity of 95.23%, and a mean specificity of 97.6%.
Noteworthy, all subjects have the mean accuracy of more than
90%, and the evaluation indexes of nine subjects are close to or
more than 95%, accounting for 64.3% of all subjects. The worst
result, an accuracy of 90% with neither the sensitivity nor the
F1 measure reached 90%, is acquired from the subject “PN10.”

3.3 Detection results of Bonn Database

Similarly, using five sets from the Bonn Database to evaluate the
classification performance of the proposed approach on different types
of classification tasks, the results are shown in Table 5. The objects of
Case 1 are Set A and Set E, and the objects of Case 3 are Sets A, B and Set
E. The purpose of both cases is to detect healthy EEG recordings and
seizure EEG recordings. The objects of Case 2 are Set C and Set E, and
the objects of Case 4 are Set C, D and Set E. The purpose is to detect the
EEG recordings in the interictal and seizure recordings.

The results shows that the detection of interictal and seizure
(Case 2) could achieve an accuracy of 98.63% and a sensitivity of
99.69%. In addition, the results of the detection of healthy EEG
recordings and seizure EEG recordings (Case 1) could achieve
99.55% accuracy and 100% sensitivity. This demonstrates that the
approach in this study can also detect healthy EEG recordings from
seizure in addition to interictal and seizure recordings. Moreover,
the results also show that the approach is applicable to single-
channel EEG and can achieve better results.

4 Discussions

This study constructed a new automatic seizure detection
method based on the persistent homology, and it provides the
satisfactory performance in all conducted experiments. Therefore,
this section shows the comparison between the results of the
proposed approach and the existing approaches in recent years.
Furthermore, this study also analyzes the influences of different
model constructions on the classification performance and the high
detection latency appearing in the experiment, and discusses the
performance of the approach on the multivariate classification.

4.1 Comparison with other research results

In this section, we compare the performances of the present
study with those obtained in previous literatures. And we compare
the detection results on the same database.

Table 6 summarizes the detailed comparison of the detection
results between proposed methods with previous works on the

TABLE 4 The detection results of the proposed approach for the Siena Scalp Database.

Patient ID Acc% Sens% Spec% Pre% F1% mAcc%

PN00 93.88 95.92 91.84 92.16 94 93.88

PN01 97.37 94.74 100 100 97.3 97.37

PN03 96.58 94.52 98.63 98.57 96.5 96.58

PN05 100 100 100 100 100 100

PN06 96.47 95.29 97.65 97.59 96.43 96.47

PN07 100 100 100 100 100 100

PN09 100 100 100 100 100 100

PN10 90 84.55 95.45 94.9 89.42 90

PN11 100 100 100 100 100 100

PN12 94.25 91.95 96.55 96.39 94.12 94.25

PN13 97.47 97.47 97.47 97.47 97.47 97.47

PN14 93.24 91.89 94.59 94.44 93.15 93.24

PN16 94.93 95.65 94.2 94.29 94.96 94.93

PN17 95.65 91.3 100 100 95.45 95.65

Average 96.41 ± 2.91 95.23 ± 4.22 97.6 ± 2.61 97.56 ± 2.6 96.34 ± 3.01 96.42 ± 2.91

Bold values are used to distinguish between individual values and mean values.

TABLE 5 The detection results of the proposed approach for the Bonn
Database.

Case Tasks Acc
%

Sens
%

Spec
%

Pre
%

F1% mAcc
%

1 A-E 99.55 100 99.09 99.09 99.55 99.55

2 C-E 98.63 99.7 97.58 98.64 98.65 98.64

3 AB-E 98.28 96.82 99.02 98 97.41 97.92

4 CD-E 97.68 98.79 97.12 94.49 96.59 97.95
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TABLE 6 Comparison of detection results between the proposed approach and previous works on the CHB-MIT Database.

Authors Method Classifier Patients No. of
seizures

Avg. Acc% Avg. Sens% Avg. Spec% Event. Sens% Avg. Latency (s)

Shoeb and Guttag (2010) Energy of filter bank SVM 24 163 NR NR NR 96 4.6

Kiranyaz et al. (2014) Multi-dimensional particle swarm optimization CNBC 21 NR NR 89.01 94.71 NR NR

Chen et al. (2014) Wavelet-based nonlinear features ELM 12 68 NR 92.6 NR NR NR

Fergus et al. (2015) Feature-ranking algorithms, Principle component
analysis

KNNC 24 171 NR 93 94 NR NR

Vidyaratne and Iftekharuddin
(2017)

Harmonic wavelet packet transform, Fractal dimension RVM 22 150 NR NR NR 96 1.89

Yuan et al. (2018) Earth mover’s distance BLDA 24 145 95.74 95.65 95.75 94.48 NR

Kaleem et al. (2018) Empirical mode decomposition-based dictionary
approach

SVM 23 NR 92.91 94.27 91.55 NR NR

Zabihi et al. (2020) Nonlinear dynamics, nullclines ANN 24 NR 95.11 91.15 95.16 NR NR

Zarei and Asl (2021) Orthogonal matching pursuit SVM 23 182 96.04 95.96 96.39 NR NR

Zarei and Asl (2021) Discrete wavelet transform SVM 23 182 97.09 96.81 97.26 NR NR

Li et al. (2021) Empirical mode decomposition, common spatial pattern SVM 24 131 97.49 97.34 97.50 98.47 NR

This work Persistent Homology GoogLeNet 24 181 97.05 96.71 97.38 100 1.22

NR, not reported.

Bold values are used to distinguish our research results from those of others in the past.
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TABLE 7 Comparison of detection results between the proposed approach and previous works for the Siena Scalp Database.

Authors Method Classifier Avg.
Acc%

Avg.
Sens%

Avg.
Spec%

Sanchez-Hernandez et al.
(2022)

Multiple feature extraction KNN/SVM 96 84 NR

Xiong et al. (2022) Improved genetic algorithm RF 98.88 98.36 99.13

Jiang et al. (2023) Pearson correlation coefficient and mutual information combined
functional brain networks

SVM 95.68 97.72 93.9

Zhao et al. (2023) Feature coupling block CNN +
Transformer

97.87 97.4 96.99

This work Persistent Homology GoogLeNet 96.42 95.23 97.6

NR, not reported.

Bold values are used to distinguish our research results from those of others in the past.

TABLE 8 Comparison of detection results between the proposed approach and previous works for the Bonn Database.

Case Tasks Authors Avg. Acc% Avg. Sens% Avg. Spec%

1 A-E Wang et al. (2011) 99.449 NR NR

Kaya et al. (2014) 98 99 97

Bhardwaj et al. (2016) 99.11 95.29 100

Yavuz et al. (2018) 99.5 99 100

Gupta et al. (2018) 94.85 95.4 94.3

Nabil et al. (2020) 100 100 100

Rajinikanth et al. (2022) 98.5 99 98

This work 99.55 100 99.09

2 C-E Siuly et al. (2011) 96.4 98 94.8

Samiee et al. (2015) 98.5 99.3 97.7

Yavuz et al. (2018) 99 98 100

Gupta et al. (2018) 97.5 98 97

Nabil et al. (2020) 95 96 94

Aayesha et al. (2021) 99.81 99.62 100

This work 98.64 99.7 97.58

3 AB-E Yavuz et al. (2018) 99.67 99 100

Gupta et al. (2018) 97.27 97.4 97.15

Nabil et al. (2020) 2020 99 100

Dash and Kolekar (2020) 2020 99.58 NR

Anuragi et al. (2022) 2022 100 100

This work 98.28 96.82 99.02

4 CD-E Yavuz et al. (2018) 98.33 96 99.5

Gupta et al. (2018) 96.92 96.85 97

Nabil et al. (2020) 95.67 98 94.5

Dash and Kolekar (2020) 97.5 NR NR

Aayesha et al. (2021) 98.89 98.48 99.08

This work 97.68 98.79 97.12

NR, not reported.

Bold values are used to distinguish our research results from those of others in the past.
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CHB-MIT Database. From the segment-based detection results, our
approach obtained a mean accuracy of 97.05%, comparable the
results of the study by Zarei and Asl (2021), slightly lower than that
reported by Li et al. (2021), significantly higher than other research
results in Table 6. However, a total of 181 seizure events were used in
this study involving all subjects, while the 131 seizure events used by
C. Li et al. And the reliability and applicability of the proposed
approach is better demonstrated by using as many seizure
recordings from the database as possible. And the 100% event-
based detection sensitivity is obviously higher than the other seizure
detection approaches in Table 6. In addition, the average latency in
this study is 1.22 s, which is better than 1.89 s in the study by
Vidyaratne and Iftekharuddin (2017) and 4.6 s in the study by Shoeb
and Guttag (2010).

Moreover, the results on the Siena Scalp Database are shown in
Table 7. Compared with the results from the reference (Sanchez-
Hernandez et al., 2022), both approaches have similar mean
accuracy, but the approach in this study provides a mean sensitivity
of 94.9%, which is better than 84%. Xiong et al. (2022) used RF to
classify, and obtained a mean accuracy of 98.88%. However, they
segmented the seizure period into 4-s fragments, while we
segmented into 2-s. Jiang et al. (2023) proposed a seizure detection
algorithm using an improved functional brain network structure for the
feature extraction, and compared with their results, the proposed
method in this study has better accuracy and specificity. These
experimental results demonstrated the superiority of the seizure
detection approach proposed in this study. The method proposed by
Zhao et al. (2023) obtained an accuracy of 97.87% and a sensitivity of
97.4%, but the specificity of 96.99%was slightly lower than ourmethod.

Furthermore, the comparison of the proposed approach as well
as previous studies on the Bonn Database are shown in Table 8. In
Case 1 (Sets A and E), the results of the proposed study is the same as
those of the study (Yavuz et al., 2018), slightly lower than study
(Nabil et al., 2020), and better than other previous works. In Case 2
(Sets C and E), the sensitivity of 99.7% in this study is better than

that Samiee et al. (2015), the accuracy was similar to Aayesha et al.
(2021) and higher than others. In Case 3 (Sets A, B and E), Anuragi
et al. (2022) got the best classification performance, but different
from us, they took 500 classification sample, while we took 2-s
fragments as the sample, so we have 11,000 samples. In Case 2 and
Case 4 (Sets C, D and E), the best results of accuracy and specificity
are obtained by Yavuz et al. (2018), but the sensitivity of this study is
quite better than other previous works.

4.2 Applied to multivariate classification

In this study, we performed multiple classification tasks on
several sets of the Bonn Database to test the feasibility of the
proposed method for multiple EEG signals classification. Divides
the five sets of the database into three categories, the healthy EEG
recordings (Set A and Set B), the interictal EEG recordings of
epileptic patients (Set C and Set D) and the seizure EEG
recordings of epileptic patients (Set E), respectively. Carry out
five different task combinations of the above three categories,
and the classification results are shown in Figure 4.

As Figure 4 shows, the classification precision for seizures is still
maintained at a high level in the five tasks, and the classification
precision for healthy EEG recordings can achieve more than 80%,
but most of the misclassification that occurred are concentrated in
classifying healthy and interictal EEG recordings. Even so, the
available multiclassification results still can demonstrate the
feasibility of persistent homology in the multiple classifications of
epilepsy.

4.3 Effects of different model constructions

Generally, the construction of VR complex filtration model will
have direct influence on the detection results, which is discussed in

FIGURE 5
(A) Example of barcode when the point cloud with 38 points. (B) Example of barcode when the point cloud with 152 points. All them from subject
CHB05_06, the 476–478 s.
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this section. For a 2 s EEG segment, the original data is a fragment of
n × 256 Hz × 2 s recording (where n is the number of channels).
Without changing the original EEG data, the number of points in the
point cloud can be increased by collapsing the channels to construct
multiple VR complex filtration model. The results of construction
will be visually represented in the barcode. Decompose the 2s EEG
segment into two equal-length (1 s) segments, then overlap the two
segments, and a data segment of 2n × 256 is obtained. And the VR
complex filtration model and barcode from the point cloud with 2n
points are constructed. Similarly, using the same method, the
complex filtration model from the point cloud with 4n, and 8n
points can also be constructed, and the corresponding barcode can
be generated. In the study, the 19-channel from the CHB-MIT
database was used so that the barcodes could be obtained from the
point cloud with 19, 38, 76, and 152 points, respectively. As shown in
Figure 5, for the same segment of the EEG recording with different

filtration model constructions, the changes in the barcode are not
only reflected in the increase of features in the 0-dimensional, but
the changes are more obvious in the 1-dimensional.

Figure 6 shows the evaluation indexes for the 24 subjects in the
CHB-MIT database under the five different model constructs.
When the number of points is 152, the proposed approach
provides the mean accuracy 97.05%. Overall, as the number of
points in the point cloud increases, all evaluation indexes improve
to different degrees and the best indexes are gained at 152.
Continuing to increase the number of point cloud points has
been experimented in this work. But it bears a burden of large
computation and the computation time. The results proved that
although the number of points had an influence on the evaluation
indexes, the overall was relatively stable, and all the indexes could
be maintained above 93%, which reflects that the proposed method
has the high robustness and stability.

FIGURE 6
The boxplot of evaluation indices. Comparison of detection results by different model constructions. Among the 5 constructions, the number of
points in the point cloud are 19, 38, 76, and 152, respectively.

FIGURE 7
An epileptic segment of patient “Chb24.” (A) Themarked epileptic seizure detected time is 3,527 s. (B) The actual time of epileptic seizure detected is
3,575 s.
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4.4 Analysis of high detection latency and
real-time validation

The seizure detection latency for each seizure event is
showed in Section 3.1.2. Benefiting from the calculations of
multiple EEG channels by the persistent homology, the
rhythmic changes of EEG signals can be captured sensitively,
resulting in the good results with an average detection latency of
1.22 s. Notably, there was a rare high latency detection result in a
seizure event in the subject “Chb24,” which seizure event is
detection at a latency of 45 s. Figure 7 shows an EEG segment of
the rare misclassification seizure event of “Chb24_11.” In
Figure 7, the 3,257 s marked by red line a is the starting time
of epilepsy, while the 3,575 s marked by red line b is the actual
starting time of epilepsy detected in this study. It can be
seen from the figure that in a period of time after 3,527 s, the
EEG signal of the subjects remained stable, the rhythm did not
change significantly, and there was no irregular abnormal
waveform in each channel, which lasted until 3,575 s. After
3,575 s, the EEG signal began to change violently, the
waveform was highly irregular, and the normal rhythm
disappeared. It is the aforementioned discrepancy that the
proposed approach classifies the segment 3,527–3,575 s as
interictal, which is the reason for the large difference between
the seizure detection time and the labeled seizure time for
subject Chb24_11. Due to the lack of strict and unified
epilepsy labeling standards, the physician’s labeling may have
some errors with the actual seizure time; Moreover, the
collection of EEG recordings is greatly affected by the
environment, which impede the development of epilepsy
detection. This is the main problem faced by the automatic
epileptic seizure detection at present.

For real-time signals performance analysis, we selected a
segment of EEG signal including seizure and interictal period,
the reliability of the epileptic seizure detecting method on real
EEG signals was tested. As shown in the Figure 8, based on the
original label, we know that epilepsy occurs at the 50 s and ends at
the 120 s. And the proposed method detected epilepsy with a
starting time of 49 s and an ending time of 119s. In addition, the
detection results contain several errors that have a short duration of

no more than 2 s, are all within acceptable error limits. The
evaluation results show that the proposed method has capability
to detect epileptic seizure.

4.5 Limitations and prospects

Owing to the different choices of channels during EEG
acquisition, the different EEG databases cannot be unified, and
even the channels of different subjects in the same database
cannot be unified, resulting in the inability of joint use between
databases, the inability to construct a large database, and the
limited amount of epilepsy recording. Moreover, the quality of
the EEG recording is greatly affected by the external disturbance
and varies significantly between different subjects. These are the
reasons that limit the development of automatic seizure detection
research.

Although the great accuracy of epilepsy detection was obtained
in this work, some improvements still need to be made. In addition,
as a next step, we will study the multiple classification of EEG
epilepsy species and the influence of the feature extraction. Another
possible work is to apply persistent homology to the epilepsy
prediction.

5 Conclusion

This study developed a novel automatic seizure detection
approach based on the persistent homology to extract the
topological features of high-dimensional EEG recordings.
First to construct the Vietoris-Rips filtration model and then
to generate the persistent homology barcode, and last applying
GoogLeNet classifier to detect the seizure. The detection results
obtained from the CHB-MIT Database recordings revealed that
the proposed approach have great performance not only on
segment-based experiment but also on an event-based
experiment. Furthermore, the proposed approach was also
evaluated using the Siena Scalp Database and the Bonn
Database, both of which showed excellent results and all
evaluation indexes are achieved over 95%. These results

FIGURE 8
Detect an EEG signal with duration of 200s and containing seizure and interictal period.
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suggested that the proposed approach had high accuracy and
robustness, as well as strong universality and applicability for
automatic seizure detection. Moreover, this study shows that the
proposed approach is not only applicable to binary classification
of EEG, but also suitable for multiclassification. At the same
time, we also explored the effects of VR complex filtration model
construction on detection performance. Increasing the points in
the point cloud can obtain more topological features, which
could improve the detection quality, but the computation time
also need to be considered. To summarize, this study shows that
persistent homology has shown good performance in the
detection of epilepsy. Persistent homology can directly
process high-dimensional data without selecting channels and
splicing features, which is quite suitable for multiple-channels
EEG signals analysis. In addition, the method constructed in this
paper provides a flexible application framework and lays a
foundation for the analysis of EEG signals using persistent
homology.
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