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SLIT ligand and its receptor ROBO were initially recognized for their role in axon
guidance in central nervous system development. In recent years, as research has
advanced, the role of the SLIT-ROBO signaling pathway has gradually expanded
from axonal repulsion to cell migration, tumor development, angiogenesis, and
bonemetabolism. As a secreted protein, SLIT regulates various pathophysiological
processes in the kidney, such as proinflammatory responses and fibrosis
progression. Many studies have shown that SLIT-ROBO is extensively involved
in various aspects of kidney development and maintenance of structure and
function. The SLIT-ROBO signaling pathway also plays an important role in
different types of kidney disease. This article reviews the advances in the study
of the SLIT-ROBO pathway in various renal pathophysiological and kidney
disorders and proposes new directions for further research in this field.
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1 Introduction

In terms of structure and function, the kidney is potentially one of the most complicated
organs in the human body (Abed et al., 2015). Over 850 million people worldwide are
affected by kidney disease, and frighteningly, chronic kidney disease is predicted to become
the fifth largest cause of death in the world by 2040 (Foreman et al., 2018; Jager et al., 2019).
The continued progression of kidney inflammation can lead to fibrosis, which can cause
irreversible damage to the kidneys (Meng et al., 2014). In addition, the incidence of
podocyte-related nephropathy is progressively increasing, so there is an urgent need to
elucidate the underlying mechanisms that regulate the structure and function of glomerular
podocytes.

The SLIT-ROBO pathway was first identified as an axon guide in nervous system
development (Brose et al., 1999; Kidd et al., 1999; Li et al., 1999) and has since been shown to
function in areas such as cardiac and vascular morphogenesis, bone metabolism, and
tumoral development (Dallol et al., 2002; Guan et al., 2003; Dickinson et al., 2004; Zhou
et al., 2011; Li et al., 2015; Rama et al., 2015).

In neurogenesis, SLIT acts as a chemorepulsive midline cue that binds to the receptor
ROBO, expressed on axonal growth cones, to control midline crossing (Kidd et al., 1999).
SLIT2 acts at an early stage of osteoclast development and binds directly to the
ROBO1 receptors of preosteoclasts to inhibit osteoclast differentiation (Park et al., 2019).
SLIT2 also reduces the migration and fusion of preosteoclast cells and thus inhibits osteoclast
formation (Park et al., 2019). In osteoblasts, SLIT3 binds to ROBO1/2 on the cell membrane
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and activates ß-catenin, promoting osteoblast proliferation and
migration and facilitating bone formation (Kim et al., 2018; Koh,
2018).

In the developing mouse heart, deletion of Robo1 alone or both
Robo1 and Robo2 results in the absence of a membranous ventricular
septum at birth, a deletion also cause by the Slit3 mutation
(Mommersteeg et al., 2013). In addition, deletion of Robo1
resulted in a partial absence of the pericardium (Mommersteeg
et al., 2013). The role of SLIT2 in angiogenesis is highly context
dependent. SLIT2 drives retinal angiogenesis and endothelial cell
migration by binding to ROBO1 and ROBO2 receptors (Rama et al.,
2015). In contrast, in systemic sclerosis (SSc), the SLIT2-ROBO4
interaction interferes with angiogenesis by inhibiting Src kinase
phosphorylation (Romano et al., 2018). The differential roles of
SLIT2 in angiogenesis may depend specifically on binding to
ROBO1 or ROBO4 receptors and the differential regulation of
downstream signaling to endothelial cells.

The SLIT-ROBO pathway plays a dual role in cancer, promoting
tumor progression in pancreatic (Han et al., 2015), nasopharyngeal
(Alajez et al., 2011) and prostate cancers (Latil et al., 2003), and
acting as a cancer suppressor in gastric, lung, breast and ovarian
cancers (Dickinson et al., 2011; Lahoz and Hall, 2013; Wen et al.,
2014; Zhang et al., 2015).

This paper provides a review of the research advances in the
SLIT-ROBO signaling pathway in various physiological and
pathological processes in the kidney, aiming to shed new light on
the prevention and management of kidney disorders.

2 Structure and characteristics of SLIT
proteins

SLIT is a highly conserved secreted protein containing
approximately 1,500 amino acids (Dickson and Gilestro, 2006). It
was identified for the first time in a genetic screen in Drosophila and
was found to be involved in midline axonal repulsion during the
development of the central nervous system (Simpson et al.,
2000).The Slit gene and its expression were subsequently detected
in Caenorhabditis elegans (Hao et al., 2001), chickens (Hao et al.,
2001; Holmes and Niswander, 2001), Xenopus (Li et al., 1999; Hao
et al., 2001), rats (Itoh et al., 1998; Yi et al., 2006), mice (Brose et al.,
1999; Hao et al., 2001), and humans (Itoh et al., 1998; Hao et al.,
2001). The SLIT family has three subtypes in mammals, namely,
SLIT1, SLIT2, and SLIT3 (Dickinson et al., 2004; Fujiwara et al.,
2006).The SLIT1 gene is located on human chromosome 10q24.1,
the SLIT2 gene is located on 4p15.31, and the SLIT3 gene is located
on 5q34-q35.1 (Katoh and Katoh, 2005). Initial studies reported that
SLIT1 was mainly expressed in the nervous system, and as research
progressed, SLIT2 and SLIT3 were detected in the nonneural system
(Brose et al., 1999). According to available studies, the SLIT protein
is expressed in brain, lung, pancreatic, and breast cancer tissues, as
well as in macrophages, neutrophils, glomerular endothelial cells,
and mesangial cells (Gu et al., 2015; Fan et al., 2016; Ding et al.,
2020).

The SLIT family has a high degree of homology among species
(Dickinson et al., 2004). Structurally, it consists of a putative signal
peptide, four leucine-rich repeats (LRRs), 7 (Drosophila SLIT) to 9
(vertebrate SLIT) epidermal growth factor (EGF) repeats, a laminin

G domain, and a cysteine-rich domain (Rothberg et al., 1990;
Rothberg and Artavanis-Tsakonas, 1992) (Figure 1). Most SLIT
proteins can be fragmented by an unknown protease between the
fifth and sixth EGF repeats, with a conserved proteolytic site (Brose
et al., 1999; Wang et al., 1999; Patel et al., 2001; Kellermeyer et al.,
2020).

According to existing studies, different SLIT fragments and SLIT
subtypes have distinct functions in vivo. Research has shown that
SLIT2 is an ~200kD glycoprotein generally cleaved into a 55-60kD
C-terminal segment (SLIT2-C), a 140kD N-terminal segment
(SLIT2-N), and some unknown segments (Nguyen Ba-Charvet
et al., 2001) (Figure 1). The whole-length SLIT2 and SLIT2-N-
terminus both combine with ROBO receptors to repel axons,
neurons, and leukocytes such as neutrophils; promoted neural
system development; and exhibit anti-inflammatory effects. The
junction of SLIT2-C with the cell membrane is less tight than
that with SLIT2-N. SLIT2-C does not bind to ROBO receptors
but can bind to the semaphorin receptor PlexinA1 to act as a
commissural axon guide (Delloye-Bourgeois et al., 2015). Similar
to SLIT2, SLIT3 can also be degraded into C-terminal and
N-terminal fragments by proteases. A study found that the
N-terminal fragment of recombinant SLIT3 can interact with
ROBO4 during angiogenesis to promote angiogenesis. Thus, mice
lacking SLIT3 or with Slit3mutations may present disruption in the
development of diaphragmatic vessels, leading to diaphragmatic
herniation (Zhang et al., 2009; Zhang et al., 2014). In addition, recent
studies have found evidence that the C-terminal portion of
recombinant hSLIT3 can conjugate with both heparin and
heparan sulfate, effectively neutralizing the anticoagulant activity
of heparin and exerting the detoxifying effect of excess heparin and
heparan sulfate (Condac et al., 2012).

3 Structure and characteristics of
ROBO proteins

ROBO is the predominant receptor for the SLIT ligand family. It
is a single-pass transmembrane receptor protein with a conserved
intracellular domain and consists of 1,000–1,600 amino acids (Jiang
et al., 2022). Similar to the SLIT family, ROBOwas first discovered in
a Drosophila genetic screen (Seeger et al., 1993). Although ROBO
receptors are strongly conserved, the quantity of Robo genes varies
slightly among species. There is only one ROBO receptor in Xylia;
three ROBO receptors (ROBO1, ROBO2, and ROBO3) in Xenopus,
chicken, and Drosophila; and four ROBO receptors (ROBO1/
DUTT1, ROBO2, ROBO3/RIG-1, and ROBO4/Magic
Roundabout) are found in mammals such as humans
(Huminiecki et al., 2002; Hohenester, 2008). In human
chromosomes, the ROBO1 and ROBO2 genes are at 3p12.3, and
the ROBO3 and ROBO4 genes are at 11q24.2 (Tong et al., 2019).

ROBO transmembrane receptors are immunoglobulin
superfamily members with cell adhesion molecules (Hohenester,
2008). ROBO1-3 are displayed in cells of various tissues, especially in
the neural system. ROBO1-3 share a similar protein structure, made
up of five immunoglobulin (Ig) structural domains, three fibronectin
type III (FN III) repeat sequences, a transmembrane structure, and
an intracellular structural domain (Evans and Bashaw, 2010; Wang
and Ding, 2018). The cell cytoplasmic structural domains of
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ROBO1 and ROBO2 encompass four well-conserved proline-rich
structural domains, named CC0, CC1, CC2, and CC3; the
cytoplasmic domain of ROBO3 has only three domains, CC0,
CC2, and CC3 (Wang and Ding, 2018). ROBO4 is mainly
expressed in the vascular endothelium and is involved in
angiogenesis (Park et al., 2003; Bedell et al., 2005). The structure
of ROBO4 is dissimilar to that of the other ROBO receptors. Its
external structure contains only two Ig structural domains and two
FN3 structural domains, while the intracellular part consists of only
the CC0 and CC2 structural domains (Huminiecki et al., 2002)
(Figure 1). The intracellular structural domains of ROBO receptors
have no fixed catalytic activity. However, they can exert their
function by recruiting or activating downstream signaling
molecules through the proline-rich structural domains described
above (Dickson and Gilestro, 2006).

Interestingly, the ROBO family can also be cleaved into
different fragments by a variety of metalloproteases at the
posttranscriptional level, which dramatically increases its
functional diversity. It has been reported that SLIT ligands
located in the extracellular matrix bind to the extracellular
structural domain of the ROBO receptor, which leads to
exposure of the metalloprotease scission site in the near-
membrane area of the ROBO protein, resulting in cleavage of
the ROBO receptor (Coleman et al., 2010). The extracellular
component of the ROBO receptor is lost after cleavage. In
addition, it was found in human tumor cells that the carboxyl
terminus of the ROBO protein, which is the intracellular
structure produced by metalloprotease cleavage, can be further
fragmented by γ-secretase, and the resulting smaller C-terminal
segment ROBO protein can translocate to the nucleus, leading to
nuclear accumulation of the ROBO C-terminal fragment (Seki
et al., 2010). The carboxyl terminus of some transmembrane
receptors is also trafficked to the nucleus after multiple
proteolyses to mediate target gene transcription (Fortini,
2002). The intracellular structure of the ROBO receptor can
combine with a variety of molecules to deliver signals
(Figure 1). It is unclear whether this nuclear translocation
phenomenon affects signaling downstream of ROBO.

4 SLIT-ROBO signaling pathway

The second LRR domain of the SLIT protein binds to the active
site in the first Ig domains of ROBO1 and ROBO2 to transmit
cellular signals. In mammals, alteration of several amino acids in the
first Ig domain of ROBO3 prevents it from binding to SLIT (Zelina
et al., 2014). The binding residues in SLIT2 required for ROBO1 and
2 binding are lost in ROBO4 (Koch et al., 2011).Biochemistry and
genetics studies have found that heparan sulfate (HS) proteoglycan
is necessary for SLIT-ROBO signaling and that it is an indispensable
coreceptor in SLIT-ROBO signals. The presence of HS can not only
stabilize the SLIT-ROBO complex by binding to the SLIT ligands of
the extracellular matrix but also assist the signaling of ROBO
receptors and mediate the biological effects of cells (Steigemann
et al., 2004).

SLIT ligand and ROBO receptor binding are the most common
but not the only mode of binding. There is increasing evidence that
SLIT and ROBO proteins can bind to other receptors and ligands,
respectively, and mediate different biological roles. The N-terminus
of SLIT can combine directly with the N-terminal Ig domain of
Dscam1, promoting the association of Dscam1 with receptor
tyrosine phosphatase69D (RPTP69D), which in turn causes the
direct dephosphorylation of Dscam1 (Dascenco et al., 2015). This
feature of SLIT is unrelated to ROBO receptors and electively
promote the extension of specific axon collaterals (Dascenco
et al., 2015). SLIT-C can specifically attach to the semaphorin
receptor PlexinA1 to exert a coaxonal guiding role (Delloye-
Bourgeois et al., 2015); In addition, SLIT-C also regulates the
spatial distribution of cells by binding to the basement
membrane scaffold protein dystroglycan (Wright et al., 2012).
Recent studies have found that the C-terminus of SLIT2 activates
the PKA signaling pathway and adjusts glucose homeostasis
(Svensson et al., 2016).

The SLIT protein has been thought to be the only ligand for the
ROBO receptor. However, several amino acid changes in the first Ig
of ROBO3 cause it to lose the ability to bind to the SLIT family but
allow it to bind with NELL ligands (Zelina et al., 2014). The neural
epidermal growth factor (NELL) protein was found to be a ligand for

FIGURE 1
(A) The structure and proteolysis of SLIT. (B) The structure of ROBO. (C) The proteolysis of ROBO.
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ROBO2/3, but not ROBO1/4. Interaction analysis with NELL1 and
ROBO receptor families revealed that NELL1/2 is capable of binding
to the first FN III domain of ROBO2, but this binding relies on a
conformational transition in the ROBO2 protein that discloses its
binding site to NELL (Barak et al., 2019; Yamamoto et al., 2019).In
addition, NELL2 binds to ROBO3 to inhibit SLIT2-ROBO1/2-
mediated repulsion and guide axons across the midline (Jaworski
et al., 2015). The more mysterious ROBO4 receptor has not been
found to have a direct interaction with the SLIT family, ROBO4 has
been found to interact with another guidance receptor Unc5B and to
regulate angiogenesis independently of its intracellular domain
(Koch et al., 2011; Zhang et al., 2016). Hence, more research on
ROBO4 is needed. The SLIT-ROBO signaling pathway and
interactions with other related ligand receptors significantly add
to the variety and sophistication of the pathway.

5 SLIT-ROBO function in the kidney

5.1 SLIT-ROBO and kidney development

5.1.1 SLIT-ROBO and congenital anomalies of the
kidney and urinary tract

A series of malformations afflicting kidney morphogenesis
and other components of the urinary tract are collectively
referred to as congenital anomalies of the kidney and urinary
tract (CAKUT) (Westland et al., 2020). The pathogenesis of
CAKUT has not been fully elucidated, but abundant
investigations suggest that single gene abnormalities are
relevant to the development of the disease (Kanda et al., 2020;
Saygili et al., 2020; Wang et al., 2020; Wu et al., 2020; Li Y. et al.,
2021).In a large cohort study, ROBO2 gene mutations were
strongly linked to congenital renal and urethral abnormalities,
particularly vesicoureteral reflux (VUR) (Hwang et al., 2014). In
another study, researchers investigated a male with a novel
translocation, 46, X,t (Y;3) (p11;p12)dn, who exhibited various
congenital anomalies, including severe bilateral ureteral ligation
defects. This translocation impairs the ROBO2 gene, which
encodes the transmembrane receptor for the SLIT ligand,
ROBO2, reducing ROBO2 protein expression (Lu et al., 2007).
At the same time, they found that adult heterozygous mice with
decreased Robo2 gene dose also presented a distinct CAKUT-
VUR phenotype (Lu et al., 2007).

Bertoli-Avella et al. investigated the possible causal relationship
of variants in the ROBO2 gene in 95 individuals with native VUR or
unrelated VUR/CAKUT. They identified 24 variants of the ROBO2
gene, four amino of, which resulted in acid replacements:
Asp766Gly, Arg797Gl, Asn515Ile, and Gly328Ser. [15] Another
study showed that SLIT2 and its receptor ROBO2 function as
key players in the formation of ureteral buds. Mutations in SLIT2
and ROBO2 cause ureteral dysplasia, the development of multiple
ureteral buds, and improper insertion of the ureter into the renal
duct, leading to the reflux of urine. [75] The interaction of the
ureteral bud and metanephric mesenchyme is critical for renal
development. [76, 77] SLIT-ROBO signaling restricts the extent
of nephrogenic regions by restricting epithelial/mesenchymal
mutual effects in the neonatal metanephric kidney (Wainwright
et al., 2015).

A recent study analyzed the genetic burden of 26 unresolved
CAKUT families after whole-exome sequencing. They found two
heterozygous mutations in SRGAP1 in two unrelated families.
SRGAP1 is essential for metanephric development and is a
GTPase-activating protein of the SLIT2-ROBO2 signaling
pathway. Further studies suggest that a gain-of-Function
mutation in SRGAP1 and a loss-of-Function mutation in SLIT2
may cause innate anomalies in the kidney and urinary tract (Hwang
et al., 2015). Thus, the SLIT2-ROBO2 signaling pathway and its
downstream regulators have been demonstrated to be engaged in the
development of congenital abnormalities of the nephron and
urethra.

5.1.2 SLIT-ROBO and renal angiogenesis
In the vascular system, SLIT2 is known to play a role in

promoting angiogenesis through ROBO1 and ROBO2 on
endothelial cells. Mechanistically, it promotes endothelial cell
migration by activating the Rac1 signaling pathway transduction.
Additionally, ROBO1/2 is required for a vascular endothelial growth
factor (VEGF)-induced activation of Rac1 and lamellipodia
formation (Rama et al., 2015).

Recent studies have revealed that the SLIT2-ROBO signaling
pathway plays a crucial role in the formation of the glomerular
capillary plexus (Li J. et al., 2021). One study demonstrated that
alkaline-phosphatase–conjugated full-length SLIT2 protein (SLIT2-
FL-AP) binds to glomerular capillaries but not to other renal vessels,
suggesting that SLIT2 has a specific role in the glomerulus (Li J. et al.,
2021). In contrast to Cre-negative littermates, global deletion of Slit2
(Slit2f/f; Rosa-CreERT2) in neonatal mice with small kidney volumes
reduced the numbers of vascularized glomeruli in the superficial
cortex, without significant changes in vascularized glomeruli in the
juxtamedullary region (Li J. et al., 2021). In terms of mechanism,
SLIT2 may promote glomerular angiogenesis by stimulating
endothelial cell proliferation and migration, as glomerular
endothelial cell proliferation is reduced and apoptosis is increased
in SLIT2iKO mice (Li J. et al., 2021). Moreover, in SLIT2iKO mice, the
VEGF signaling pathway, which is essential for glomerular
angiogenesis, was inhibited and protein blots showed a significant
reduction in VEGFR2 expression in kidney tissue (Li J. et al., 2021).
This suggests that in the absence of SLIT2, defective
VEGFR2 signaling leads to defects in glomerular vascularity. In
addition, some other evidence suggests that SLIT2-ROBO1/2 can
link VEGFR2 to Endophilin-A2 (ENDO2), a BAR-structured
protein that coordinates CLATHRIN-independent internalization
and promote VEGFR2 internalization and downstream signaling
cascades, thereby stimulating endothelial cell migration and
angiogenesis (Genet et al., 2019). In conclusion, deletion of
SLIT2 not only reduces VEGFR2 expression but also inhibits
VEGF signaling by suppressing VEGFR2 internalization.

ROBO1,2iKO mice exhibited a similar phenotype of reduced
endothelial cells in the glomerulus, whereas ROBO4−/− mice did
not, suggesting that SLIT2 promotes glomerular vascular
development primarily through ROBO1/2. Mice with endothelial-
specific Robo2 deletion (Robo1−/−; Robo2f/f; Cdh5-CreERT2) also
exhibited reduced glomerular endothelial cells, suggesting that
SLIT2 acts, at least in part, through the ROBO1/2 receptor in
glomerular endothelial cells (Li J. et al., 2021). This study
suggests for the first time that SLIT2-ROBO signaling plays a
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crucial role in glomerular angiogenesis and suggests a positive
therapeutic role for SLIT2 as a novel specific regulator of
glomerular angiogenesis in a range of diseases that cause severe
glomerular vascular loss.

5.2 SLIT-ROBO and renal pathophysiology

5.2.1 SLIT-ROBO and kidney inflammation
Studies have shown that SLIT2 effectively inhibits TNF-a-

induced neutrophil adhesion to human umbilical vein endothelial
cells (HUVECs) (Chaturvedi et al., 2013). SLIT2 mediates anti-
chemotaxis by blocking chemoattractant-induced cell polarization
ad actin barbed end formation (Tole et al., 2009). Importantly, this
effect of SLIT2 depends on its receptor ROBO1 (Prasad et al., 2007;
Tole et al., 2009; Chaturvedi et al., 2013), which was demonstrated to
be expressed in inflammatory cells such as neutrophils, dendritic
cells, and macrophages (Guan et al., 2003; Prasad et al., 2007; Tole
et al., 2009; Chaturvedi et al., 2013; Geraldo et al., 2021; Yusuf et al.,
2021) (Table 1).

Further studies revealed that SLIT2 impacts neutrophil
chemotaxis in addition to other crucial stages of neutrophil
recruitment, such as trapping, adherence, and transendothelial
translation. Another study found that SLIT2 was upregulated in
the skin by allergen sensitization and downregulated Langerhans cell
migration through direct interaction with ROBO1, which in turn led
to inhibition of contact hypersensitivity (Guan et al., 2003).
Furthermore, investigations by Prasad et al. found that
SLIT2 inhibited CXCL12-mediated T-cell and monocyte
transendothelial migration and chemotaxis (Prasad et al., 2007).
Overall, some of the above findings suggest the possibility that
SLIT2 may play a fundamental role in suppressing inflammatory
responses, and anti-inflammatory therapy targeting the SLIT2-
ROBO1 pathway may be promising.

However, some studies have also found that ROBO1 may be
proinflammatory, as ROBO1 downregulation suppresses LPS-
induced cytokine expression in HUVECs (Zhao et al., 2014). This
study suggested that SLIT2 inhibits LPS-induced chemokine and
inflammatory cytokine production, upregulaing the cell attachment
protein ICAM-1, and monocyte adherence through the
endothelium-specific receptor ROBO4 (Zhao et al., 2014).

5.2.2 SLIT-ROBO and kidney fibrosis
Inflammation is a predisposing factor for fibrosis (Kuusisto

et al., 2012; Wong et al., 2014; Hartupee and Mann, 2016; Anzai,
2018; Mack, 2018). Tissue damage and inflammatory reactions
result from various causes (Fleming et al., 2010; Oishi and
Manabe, 2018). The injured tissue secretes several chemokines
and cytokines, the most important of which are TNF-α and IL-8.
The secreted cytokines recruit various immune cells to accumulate at
the site of the injury (Son et al., 2014; Zheng et al., 2019). These
immune cells secrete profibrotic mediators, such as TGF-β, which
induce fibrosis to promote tissue repair and healing (Lan, 2011;
Conti et al., 2018). The inflammatory response and fibrosis
progression complement each other and are jointly responsible
for tissue damage. Recurrent long-term inflammation, damage
and repair of tissues, and hyperaccumulation of the extracellular
matrix (ECM) can lead to renal insufficiency and eventually

unreversible glomerulosclerosis. Because fibrosis causes
irreversible damage to kidney tissue, early intervention before
progression to fibrosis is particularly critical.

The secretory ligand SLIT2 and its receptor ROBO1 have been
shown to manage the migration of cells, including smooth muscle
cells, macrophages, neutrophils, T lymphocytes, dendritic cells, and
perivascular cells (Wu et al., 2001; Guan et al., 2003; Liu et al., 2006;
Prasad et al., 2007; Tole et al., 2009; Guijarro-Muñoz et al., 2012;
Chaturvedi et al., 2013; Pilling et al., 2014; Chen et al., 2021; Geraldo
et al., 2021). Cell migration involves rearrangement of the
cytoskeleton (Adamson et al., 1999). Previous studies have
reported that SLIT2 inhibits the activation of Rac2 and CDC42,
which is induced by chemotactic agents in neutrophils (Tole et al.,
2009). Upon the action of chemokines, activation of the small Rho
GTPase family members Rac1, Rac2, CDC42, and RhoA plays a
pivotal role in the rearrangement of cytoskeletal actin (Wong et al.,
2001; Liu et al., 2006; Filippi et al., 2007). These individuals of the
small Rho GTPase family are important mediators of cytoskeletal
rearrangements, an important physiological change in cell migration
(Nobes and Hall, 1995; Hall, 1998; Raftopoulou and Hall, 2004;
Filippi et al., 2007). Notably, the progression of fibrosis also involves
cytoskeletal rearrangements (Buckley et al., 2012). The well-known
profibrotic cytokine TGF-β activates multiple cell types to
differentiate into myofibroblasts that synthesize collagen and the
extracellular matrix (Willis and Borok, 2007; Zhang et al., 2019). The
combination of TGF-β and its receptors induces the
phosphorylation of Smad2 and Smad3 intracellular structures on
serine residues. Phosphorylated Smad2 and Smad3 bind to
Smad4 and then enter the nucleus, where Smad proteins induce
the expression of profibrotic genes (Attisano and Wrana, 2002).
Smad protein phosphorylation is cytoskeleton dependent, and
pharmacological disruption of the actin cytoskeleton significantly
reduces basal and TGF-β1-mediated increases in collagen I and IV
(Attisano and Wrana, 2002). Likewise, the Rho-family GTPase
suppressor Clostridium difficile toxin B or the Rho-related kinase
suppressor Y-27632 stopped the action of TGF-β1 (Attisano and
Wrana, 2002).

The SLIT2-ROBO1 signaling pathway is likely to affect the
rearrangement of cytoskeletal actin by inhibiting the activation of
small Rho GTPase family members, thereby improving fibrosis
(Figure 2). The study by Yuen et al. found that SLIT2 could
inhibit the formation of actin stress fibers and TGF-β-mediated
Smad signaling, delay the progression of renal fibrosis, and improve
renal function, which is mainly reflected in the decrease in serum
creatinine levels (Yuen et al., 2016). A recent study showed that
SLIT2 ameliorated kidney fibrosis and inflammation after hypoxia
and LPS-induced epithelial cell injury by impacting the TLR4/NF-
κB pathway in the renal tubules, a process that was independent of
HIF-1α (Zhou et al., 2017).

The SLIT2-ROBO signaling pathway has different effects on
fibrosis in different cell types and different disease models (Pilling
et al., 2014; Huang et al., 2020; Ahirwar et al., 2021; Liu et al.,
2021).Fibroblast-secreted SLIT2 inhibits monocyte-to-fibroblast
differentiation, and rSLIT2 injection reduces bleomycin-induced
pulmonary fibrosis (Pilling et al., 2014). Similar studies have
shown that endogenous SLIT2 restrains TGF-β1-mediated
compliance signaling in lung fibroblasts (Huang et al., 2020).
Importantly, recent studies have found that SLIT2 reduces
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fibrosis in mice with breast cancer by enhancing the production of
metalloproteinase 13 expression in tumor-resistant M1-like
macrophages (M1-TAMs) (Ahirwar et al., 2021). However,
significantly increased collagen I and α-smooth muscle actin (α-
SMA) production were found in SLIT2-Tg mice, suggesting that
SLIT2-ROBO1 pathway activation contributes to liver fibrosis
(Chang et al., 2015; Li C. et al., 2019). Another study discovered
that rSLIT2 treatment dramatically raised the expression of
profibrotic mediators and extracellular matrix components in
mouse hepatic stellate cells, suggesting that SLIT2-ROBO2
transduction facilitates liver fibrosis (Zeng et al., 2018).
Consistently, the SLIT2-ROBO1 signaling also promotescardiac
fibrosis, which is partially dependent on PI3K/AKT pathway
activation (Liu et al., 2021). In addition, SLIT3, another isoform
of the SLIT family, can be secreted by fibroblasts. SLIT3 deficiency
inhibits fibroblast activity, reduces collagen type I expression, and
ameliorates stress-induced cardiac fibrosis (Gong et al., 2020). In
conclusion, although SLIT2-ROBO signaling plays different roles in
fibrosis in other organs and kidney tissue, all current findings point
to the SLIT2-ROBO1 pathway inhibiting renal fibrosis and
improving renal function (Zhou et al., 2017).

5.3 SLIT-ROBO and homeostasis of the renal
filtration membrane

In the glomerulus, ROBO2 and SRGAP1 are highly expressed in
developing podocytes and in the basal surface of mature podocytes,
while glomerular endothelial and mesangial cells secrete SLIT2 and
SLIT3 (Fan et al., 2012; Fan et al., 2016). Genetic mutations in actin-
related proteins induce foot process disappearance and proteinuria,
suggesting that dynamic activity of the actin cytoskeleton is engaged
in the generation and sustainment of complex foot process

constructs (Krolewski and Bonventre, 2012). Notably, the SLIT-
ROBO pathway regulates the rearrangement of the actin
cytoskeleton by inhibiting the activity of the small Rho GTPase
protein (Tole et al., 2009) (Figure 3). This implies that the SLIT-
ROBO2 signaling pathway may play key roles in the homeostasis of
network signaling in glomerular endothelial cells, mesangial cells,
and podocytes, as well as the formation and maintenance of
podocyte shape and function.

5.3.1 SLIT-ROBO and podocyte foot process
formation

In addition, the SLIT2-ROBO2 pathway has been demonstrated
to be engaged in the formation of the podocyte foot process (Fan
et al., 2012) (Figure 3). Nephrin (Nph) is an important slit-
diaphragm protein, an adhesion molecule belonging to the
immunoglobulin superfamily, used to link the foot processes of
adjacent podocytes (Ruotsalainen et al., 1999). Nephrin knockout
resulted in specific features of abnormal foot process widening,
septum vanishing, and basal membrane thickening (Doné et al.,
2008). The phosphorylated intracellular domain of nephrin recruits
the SH2 domain at the C-terminus of the adaptor protein Nck and
induces the SH3 domain at the N-terminus of Nck to recruit
multiple cytoskeletal modulators, including Pak and N-WASP to
induce actin polymerization (Jones et al., 2006; Verma et al., 2006).
The ROBO2 receptor directly binds to the SH3 domain at the
N-terminus of the adaptor protein Nck and forms a compound
with nephrin via Nck to depress the actin-inducing effect of nephrin.
Podocyte-specific ROBO2-deficient mice exhibited an irregular and
disorganized staggered pattern of foot processes at approximately
4 weeks, further demonstrating the critical role of the
ROBO2 protein in podocyte foot process formation. Interestingly,
the knockdown of ROBO2, a negative regulator of nephrin, also
ameliorated the abnormal podocyte phenotype caused by nephrin

FIGURE 2
Role of the SLIT-ROBO signaling pathway in renal fibrosis.
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deletion (Fan et al., 2012). Although the exact mechanism by which
ROBO2mediates the actin-induced inhibition of Nephrin is unclear,
it may involve competitive binding of the SH3 domain, and the
mutual checks and balances of ROBO2 and nephrin together
regulate podocyte foot process plasticity, supporting the stability
of the glomerular filtration membrane.

5.3.2 SLIT-ROBO in podocyte adhesion
The SLIT2-ROBO2 signaling pathway can not only interfere

with the formation of normal foot processes in podocytes by
inhibiting the function of nephrin but also reduce podocyte
adhesion to the extramural matrix, resulting in the shedding and
loss of podocytes from the basement membrane. Integrin α3/β1, a
common and important adhesion molecule, binds to laminin-
α5β2γ1 (laminin-521) on the glomerular basement membrane,
forming a focal adhesive compound and maintaining the
structural stability of the filtration membrane by connecting the
cytoskeleton via several actin proteins (Sachs and Sonnenberg, 2013)
(Figure 3). RhoA, a downstream regulator of the SLIT-ROBO
pathway, has been proven to mediate stress fiber generation and
actin polymerization by inducing rho-associated protein kinase
(ROCK)-dependent phosphorylation of myosin II (Vicente-
Manzanares et al., 2009). Nonmuscle myosin II (NMII) consists
of two heavy chains, two regulatory light chains (MRLCs), and two
essential light chains (MELCs), and is responsible for the generation
of stress fibers in podocytes (Vicente-Manzanares et al., 2009). The
SLIT2-ROBO2 signaling pathway interfered with NMII activation,
suppressed stress fiber generation in podocytes, reduced the
formation of focal adhesive, and reduced the adhesion of
podocytes to the extracellular matrix. It has been reported that in
the presence of SLIT2, MRLCs can directly interact with SLIT-
ROBO Rho GTPase activating protein 1 (SRGAP1) and form a
ROBO2-SRGAP1-NMII complex via MRLCs (Fan et al., 2016).
Therefore, the SLIT2-ROBO2 pathway serves a nonnegligible
function in the glomerular filtration screen, which involves not

only the stabilization of podocyte structure but also the attachment
of podocytes to the glomerular basement membrane.

5.4 SLIT-ROBO and renal disease

5.4.1 Acute kidney injury
As previously described, SLIT2 is effective in inhibiting the

migration and recruitment of leukocytes in vitro and exerts anti-
inflammatory effects. This raises the question of whether SLIT2 also
plays an important role in acute kidney injury, which also involves
massive infiltration of inflammatory cells. Previous researchers have
used anti-glomerular basement membrane (GBM) antibodies to
induce a crescentic glomerulonephritis (GN) model in male
Wistar-Kyoto (WKY) rats to investigate the role of SLIT2 in
inflammation in vivo (Kanellis et al., 2004). This study
demonstrated that the mRNA levels of glomerular Slit2 were
significantly reduced in induced crescentic glomerulonephritis
(Kanellis et al., 2004). They injected rabbit polyclonal anti-SLIT2
antiserum into rats with glomerulonephritis and found that rats
treated with anti-SLIT2 antiserum developed proteinuria and
crescentic bodies earlier than control rats (Kanellis et al., 2004).
In addition, injection of exogenous recombinant human SLIT2
(rhSLIT2) into crescentic GN rats significantly improved the
histological and functional parameters of the rat kidney (Kanellis
et al., 2004). Mechanistically, rhSLIT2 reduced the migration of
leukocytes induced by the chemotactic inducer MCP1. This effect
may be due to the inhibition of GTPase activity.

In another study, a mouse ischemia‒reperfusion injury (IRI)
model was constructed using bilaterally clamped renal pedicles, and
the protein levels of endogenous SLIT2 were significantly reduced in
the renal IRI model (Chaturvedi et al., 2013). Creatinine levels in
mice with renal IRI were significantly reduced by
intraperitoneal injection of whole-length human SLIT2 (hSLIT2)
and a bioactive N-terminal fragment of mouse SLIT2 (N-mSLIT2)

FIGURE 3
Role of the SLIT-ROBO signaling pathway in the glomerular filtration barrier.
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(Chaturvedi et al., 2013). In contrast, the nephroprotective effect of
N-mSLIT2 was markedly diminished after preincubation with the
ROBO-1 receptor, suggesting that the nephroprotective effect of
SLIT2 is dependent on the ROBO1 receptor (Chaturvedi et al.,
2013). Mechanistically, SLIT2 reduces neutrophil adhesion and
transendothelial cell migration to vascular endothelial cells
exposed to hypoxia-reoxygenation (H/R) (Chaturvedi et al., 2013)
(Figure 4).This study also showed that this inhibition of neutrophil
adhesion was dependent on ROBO1 receptors on neutrophils rather
than ROBO receptors on vascular endothelial cells (Chaturvedi
et al., 2013). Neutrophils, immune cells in the body, also play an
indelible role in innate immunity. Interestingly, although the
SLIT2 protein inhibited chemokine-induced neutrophil
migration, it did not impair protective neutrophil immune
functions such as phagocytosis and superoxide production
(Chaturvedi et al., 2013). Previous studies have shown that
SLIT2 inhibits the migration of leukocytes through the regulation
of GTPase activity (Kanellis et al., 2004). The varying effects of
SLIT2 on different neutrophils may be due to the complex and
unknown role of GTPases in these effects.

5.4.2 Diabetic nephropathy
Podocytes play a vital role in maintaining glomerular filtration

barrier function through their interdigitated foot processes.
Disruption of the structural function of podocytes leads to the
development of proteinuria. The previous section described how
SLIT-ROBO signaling reduces F-actin polymerization via SRGAP1,
thereby destabilizing podocytes (Fan et al., 2016). However, a
different perspective was recently presented in studies on diabetic
nephropathy, where the mRNA levels of SLIT-ROBO GTP
activating protein 2a (SRGAP2a) were significantly reduced in
patients with diabetic nephropathy (Pan et al., 2018).
Furthermore, the decrease in SRGAP2a correlated with a
decrease in proteinuria and glomerular filtration rate in patients
(Pan et al., 2018). They identified SRGAP2a as a podocyte-
specific protein by colocalizing it with the podocyte
marker synaptic regulatory protein by immunofluorescence

staining (Pan et al., 2018). Inhibition of podocyte SRGAP2a
significantly disrupted the podocyte cytoskeleton and enhanced
podocyte migration (Pan et al., 2018). These results suggest that
SRGAP2a is involved in maintaining the stability of the podocyte
membrane. Mechanistically, SRGAP2a maintains podocyte stability
by inactivating the GTPases RhoA and Cdc42 (Pan et al., 2018). A
deficiency of Cdc42 or RhoA can lead to severe proteinuria and foot
process effacement (Huang et al., 2016). Excessive activation of
RhoA in podocytes also promotes the development of proteinuria by
interfering with the actin cytoskeleton and focal adhesions (Zhu
et al., 2011). Therefore, tightly controlled Rho-GTPase activity is
essential for maintaining a stable podocyte actin cytoskeleton and
normal podocyte function. The difference in the functions of
SRGAP1 and SRGAP2a may be due to the binding of different
Rho families of small GTPases in different cells during different
pathological processes. SLIT-ROBO signaling mediated by two
different SRGAPs plays different roles in podocyte stability. The
role that drugs targeting the SLIT ligand and ROBO receptor will
play in diabetic patients is unknown.

5.4.3 FSGS
The main feature of focal segmental glomerulosclerosis (FSGS)

is proteinuria associated with podocyte damage (De Vriese et al.,
2018). In the previous sections, we mentioned that the SLIT2-
ROBO2 signaling pathway regulates podocyte adhesion and foot
process formation; therefore, inhibition of the SLIT2-ROBO2
signaling pathway may be a new target for the treatment of
FSGS. PF-06730512 is a novel, recombinant, ROBO2 human
immunoglobulin G1 (IgG1) crystallized fragment (Fc) fusion
protein that is in clinical development for the treatment of FSGS
(Lim et al., 2021). It reduces SLIT2-ROBO2 downstream signaling
and improves podocyte structure and function by blocking the
interaction of SLIT2 with ROBO2 (Lim et al., 2021). A clinical
trial evaluated the safety, tolerability, immunogenicity, and
pharmacokinetics of PF-06730512 in single or multiple escalating
doses in healthy adult participants (Lim et al., 2021). This study
included six single ascending dose (SAD) cohorts and four multiple

FIGURE 4
Role of the SLIT-ROBO signaling pathway in renal inflammatory response.
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ascending dose (MAD) cohorts. Adverse events occurred more
frequently in the PF-06730512 group than in the placebo group
(Lim et al., 2021). The most commonly reported treatment-related
adverse event in the SAD cohort was headache, and the most
commonly reported treatment-related adverse events in the MAD
cohort were dry skin and headache (Lim et al., 2021). In all cohorts,
the majority of adverse events were mild or moderate in severity
(108 and 21, respectively). The incidence of immunogenicity was
low, with no ADA-positive samples in the SAD cohort and two
ADA-positive samples in the MAD cohort (Lim et al., 2021). In this
human study, PF-06730512 was largely safe, most adverse events
were mild, and the frequency of emergencies was not dose
dependent (Lim et al., 2021). Immunogenicity did not occur in
the majority of subjects, indicating good resistance to PF-06730512
(Lim et al., 2021). In conclusion single doses of PF-06730512 up to
1,000 mg (intravenous) and multiple doses of PF-06730512 up to
1,000 mg (intravenous) and 400 mg (subcutaneous) were safe and
well tolerated in healthy participants (Lim et al., 2021). After
assessing the safety and tolerability of PF-06730512, investigators
evaluated the preliminary efficacy and safety of the ROBO2 fusion
protein in patients with FSGS in a separate clinical trial (Beck et al.,
2021). However, the results of this trial have not yet been reported.
Since the ROBO2 fusion protein targets the structure and function of
podocytes regulated by SLIT2-ROBO2, all diseases that can cause
structural disruption of podocytes are theoretically within the
therapeutic scope of PF-06730512. This study excluded other
diseases that cause loss of podocyte function to assess the efficacy
of PF-06730512 in FSGS patients, advancing the clinical application
of PF-06730512 and providing a new target for the treatment
of FSGS.

5.4.4 Lupus nephritis
Systemic lupus erythematosus (SLE) is a complex, chronic

inflammatory autoimmune disease that can accumulate in multiple
organs (Kaul et al., 2016). One of the kidneys is often damaged. A recent
clinical study identified SLIT2 as a biological marker of renal
impairment in SLE (Zhang et al., 2021). They divided 103 SLE
patients into four groups, namely, SLE patients with sole renal
impairment (SK, n = 32), SLE patients with sole skin involvement
(SS, n = 20), SLE patients who had both renal and skin impairment (KS,
n = 18), and SLE patients with no kidney and skin involvement (NKS,
n= 33) (Zhang et al., 2021). Patients in the SK and SS groups had higher
serum SLIT2 levels than those in the NKS group, while patients in the
KS group had higher serum levels than those in the SS and SK groups,
suggesting that SLE patients with skin damage or kidney damage had
higher levels of serum SLIT2 (Zhang et al., 2021). Further study found
that serum SLIT2 levels were higher in patients with active SLE than in
those with inactive SLE (Zhang et al., 2021). Furthermore, SLIT2 levels
were positively correlated with anti-dsDNA antibody levels and
negatively correlated with complement C4, a result that suggests a
correlation between serum SLIT2 levels and SLE activity (Zhang et al.,
2021). Immunofluorescence results showed high expression of
SLIT2 and ROBO1 in renal tubular epithelial cells from patients
with lupus nephritis (Zhang et al., 2021). This study identified an
association between increased serum SLIT2 levels and activity, renal
damage, and skin damage in patients with SLE, but did not specifically
explore the association between SLIT2 and the mechanisms underlying
the development of renal damage in SLE. Previous studies have
suggested that in systemic sclerosis (SSc), an upregulation of serum
SLIT2 levels promotes skin damage by disrupting endothelial cell
function (Romano et al., 2018). Therefore, we speculate that in SLE,

TABLE 1 Downstream regulation and role of the SLIT-ROBO signaling pathway in various cells.

Cell type SLIT/ROBO
pathway

Downstream signaling molecules Function References

Neutrophil SLIT2-ROBO1 Inhibit Rho GTPases, Rac2 and Cdc42 Inhibit neutrophil chemotaxis Tole et al. (2009)

Chaturvedi et al.
(2013)

T cells SLIT2-ROBO1 Inhibit Src, Lck, Akt, Rac Inhibit the CXCL12/CXCR4-induced
chemotaxis of T cells

Prasad et al. (2007)

Langerhans
cells

SLIT2-ROBO1 None Inhibit the migration of Langerhans cells Guan et al. (2003)

Macrophages SLIT2-ROBO1 Activate RhoA Inhibit macrophage spreading and induce cell
rounding

Bhosle et al. (2020)

Monocytes SLIT2-ROBO1 Inhibit Rho GTPases, Rac1 and Cdc42 and the activity
of PI3K and Erk1/2

Inhibits monocyte adhesion to endothelial cells Mukovozov et al.
(2015)

HUVECs SLIT2-ROBO1/2 Activate Rac1 Promote retinal angiogenesis Rama et al. (2015)

MVECs SLIT2-ROBO4 Inhibit Src Inhibit angiogenesis Romano et al. (2018)

HUVECs SLIT2-ROBO4 Inhibit Pyk2 Inhibit LPS-induced endothelial inflammation Zhao et al. (2014)

NRK49F SLIT2-ROBO1 Inhibit RhoA Inhibits TGF-β–induced fibroblast activation
and renal fibrosis

Yuen et al. (2016)

Podocytes SLIT2-ROBO2 ROBO2 interacts with Nck to inhibit nephrin Inhibits nephrin-induced actin polymerization Fan et al. (2012)

Podocytes SLIT2-ROBO2 ROBO2/SRGAP1/NMIIA form a complex; inhibited
NMII activity

Reduced formation of focal adhesion Fan et al. (2016)
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SLIT2-ROBO1 signaling is involved in SLE renal damage via an
unknown mechanism.

5.4.5 Renal cystic disease
Renal cystic diseases include genetic, developmental and acquired

disorders (Cornec-Le Gall et al., 2014). Hereditary renal cystic disease is
caused by abnormalities of the renal tubular epithelium, including defects
in differentiation, polarization and cilia production, which ultimately lead
to the development of renal cysts (Cornec-Le Gall et al., 2014). In a study
on themechanisms of renal cystic disease, ROBO2deficiencywas found to
cause cystic kidney, where cystic cells in the renal tubular epithelium
exhibit cilia defects and polarity defects (Li Q. et al., 2019). They further
found that knockdown of ROBO2 caused upregulation of P53 and P21,
molecules associated with cellular senescence (Li Q. et al., 2019). Previous
studies have reported that phosphorylation of the E3 ubiquitin ligase
MDM2 mediates the degradation of P53 and that dephosphorylation of
MDM2 stabilizes P53 (Marine and Lozano, 2010). Therefore, the
researchers considered whether the deletion of ROBO2 could affect the
phosphorylation of MDM2. In a deepening mechanistic study, it was
found that Baiap2, a multistructural domain protein, can bind to ROBO2,
forming a protein complex (Li Q. et al., 2019). Baiap2 and ROBO2 are
required to maintain the phosphorylation of MDM2, as deficiency of
ROBO2 or Baiap2 resulted in dephosphorylation of MDM2 and
upregulation of P53 expression (Li Q. et al., 2019). Overall,
ROBO2 mediates the degradation of P53 by interacting with Baiap2 to
maintain the phosphorylation of MDM2 and the development of renal
tubular epithelial cells. Interestingly, however, the role of ROBO2 in renal
cystic disease is not regulated by SLIT2, as SLIT2 does not affect
MDM2 phosphorylation when ROBO2 is deficient (Li Q. et al., 2019).
This suggests that ROBO receptors may function independently of the
ligand SLIT, which also suggests new insights and ideas for subsequent
studies of the SLIT-ROBO signaling pathway.

5.4.6 Renal cell carcinoma
The development of renal cell carcinoma (RCC) is thought to be

associated with the epigenetic inactivation ofmultiple tumor suppressor
genes (TSGs) (Ibanez de Caceres et al., 2006). SLIT2 has been reported
to act as a tumor suppressor in a variety of tumors (Singh et al., 2007).
Promotermethylation is themainmechanism bywhich Slit2 expression
is downregulated in these cancers, and hypermethylation of the Slit2
promoter region has been detected in numerous cancers (Dallol et al.,
2003; Singh et al., 2007; Alvarez et al., 2013). The main focus here is on
the altered expression of SLIT2 in renal cell carcinoma and the possible
mechanisms. A study found that the protein levels of SLIT2 were
significantly reduced in renal cell carcinoma, with a possiblemechanism
being hypermethylation of the promoter region of the Slit2 gene, as the
protein levels of SLIT2 were restored following the use of methylation
inhibitors (Ma et al., 2014). SLIT2may therefore play a role in inhibiting
tumor progression in renal cell carcinoma. Continued in-depth study of
the mechanism of SLIT2 development in renal cell carcinoma will help
to understand renal cell carcinogenesis and further search for new
therapeutic strategies for renal cell carcinoma.

6 Conclusion

SLIT ligands and their major receptor ROBO were initially
discovered in the developing neural structure and are involved in

axonal repulsion and neuronal migration. With further research
on this signaling pathway, its actions in nonneural areas, such as
cell migration, angiogenesis, tumor progression and modulation
of bone metabolism, have gradually been discovered. In addition
to their key roles in the developing kidney, SLIT and ROBO
family members have been found to be highly expressed in the
glomeruli and tubules of the mature kidney in recent years,
especially in kidney tubular epithelial cells, glomerular
endothelial cells, and podocytes. The special location must
have a specific function, and the expression of the SLIT-
ROBO molecule in mature kidneys suggests its specific role in
various renal pathophysiological processes. The SLIT-ROBO
signaling pathway can regulate actin cytoskeleton
rearrangement by inhibiting the activity of small Rho GTPase
family proteins. Reshaping of the actin cytoskeleton is involved in
the migration of renal inflammatory cells, the development of
fibrosis, the formation of the normal structure of podocytes, and
their adhesion to the basement membrane.

In this review, we illustrate the role of SLIT-ROBO signaling in a
variety of renal diseases. For example, SLIT2 improved renal
function in IRI mouse models by inhibiting the adhesion of
neutrophils to endothelial cells; fusion proteins targeting
ROBO2 are in clinical trials in FSGS patients; and serum
SLIT2 levels are a new biological indicator of kidney damage in
SLE. Deletion of the ROBO2 gene promoted the occurrence of renal
cystic diseases. As a tumor suppressor gene, SLIT2 inhibits the
occurrence of renal cell carcinoma.

Although research on the SLIT-ROBO signaling pathway in
the kidney has a certain foundation, other functions of the
pathway in the kidney remain to be further explored. Current
studies lack clinical data on this component, making the SLIT-
ROBO signaling pathway particularly important in future studies
in renal clinical disease. In light of the existing studies, the SLIT-
ROBO pathway has great application prospects and therapeutic
potential in various physiological and pathological processes of
the kidney. Hence, there is a need to probe further into the
contribution of SLIT-ROBO to the pathogenesis of various renal
diseases.
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