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Early prediction of
atherosclerosis diagnosis with
medical ambient intelligence

Wen Yang, Qilin Nie, Yujie Sun, Danrong Zou, Jinmo Tang* and
Min Wang*

Xiamen Hospital of Traditional Chinese Medicine, Xiamen, China

Atherosclerosis is a chronic vascular disease that poses a significant threat to
human health. Common diagnostic methods mainly rely on active screening,
which often misses the opportunity for early detection. To overcome this
problem, this paper presents a novel medical ambient intelligence system
for the early detection of atherosclerosis by leveraging clinical data from
medical records. The system architecture includes clinical data extraction,
transformation, normalization, feature selection, medical ambient computation,
and predictive generation. However, the heterogeneity of examination items
from different patients can degrade prediction performance. To enhance
prediction performance, the “SEcond-order Classifier (SEC)” is proposed to
undertake the medical ambient computation task. The first-order component
and second-order cross-feature component are then consolidated and applied
to the chosen feature matrix to learn the associations between the physical
examination data, respectively. The prediction is lastly produced by aggregating
the representations. Extensive experimental results reveal that the proposed
method’s diagnostic prediction performance is superior to other state-of-the-art
methods. Specifically, the Vitamin B12 indicator exhibits the strongest correlation
with the early stage of atherosclerosis, while several known relevant biomarkers
also demonstrate significant correlation in experimental data. The method
proposed in this paper is a standalone tool, and its source code will be released
in the future.

KEYWORDS

atherosclerosis diagnosis, early prediction, clinical data, medical ambient intelligence,
incomplete examination item

1 Introduction

Atherosclerosis is lipid accumulation and inflammation of the large arteries
buildup, the risk pathological state of cardiovascular diseases. Cardiovascular diseases
represent the major cause of mortality worldwide (Björkegren and Lusis, 2022).
Atherosclerosis is a chronic vascular disease that poses a significant risk to people’s
health. Early detection and active management are required to prevent its severe
effects. Subclinical atherosclerosis (SA) refers to the early stage of atherosclerosis, in
the aspect of clinical settings, not only signs and symptoms are subtle, but also routine
examinations can not directly carry out the detection task. It makes atherosclerosis
management in medicine even more challenging. Early atherosclerosis identification
helps to prevent its development and lowers the risk of atherosclerosis-related diseases.
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Active screening techniques are used for disease screening
when a visitor requires certainspecific examinations. According
to the nature of clinical atherosclerosis diagnosis, these methods
are grouped into image-based, blood-testing, and biomarker-based
methods. The image-based methods use images to identify the
detailed statuses of vessels, such as doppler ultrasound (Latha et al.,
2020), cardiac computed tomography angiography (Garg et al.,
2022), and magnetic resonance angiography (Weinreich et al.,
2017). These methods are chosen when the patient is clinically
symptomatic or has risk factors. The blood-testing methods
are the collection of blood from the vein, then analyzed in
the laboratory to measure various components, such as plasma
lipid levels (Graham et al., 2021) and coagulation tests (Koenen
and Binder, 2020). Monitoring of atherosclerosis and its related
complications is the purpose of these methods. The biomarker-
based methods can quantify and examine the frequently particular
chemicals or substances made by cells or tissues in response
to the atherosclerotic process. Inflammatory biomarkers such
as C-reactive protein, interleukin-6, and tumor necrosis factor-
alpha, endothelial dysfunction markers such as endothelin-1
and intercellular adhesion molecule-1 (Martinez et al., 2020), but
clinical settings have not yet seen the utilization of these techniques.
However, in the clinical environment, these methods are frequently
ignored by almost all outpatient visitors, which limits the ability to
diagnose atherosclerosis early.

Computer-aided predictive methods are an emerging field of
diagnostic research for disease. They not only provide decision
support for diagnosing and predicting diseases (Wang et al., 2021;
Huang et al., 2022), but also reveal potential factors and patterns
related to disease (Zhang et al., 2022; Wang et al., 2022), which
promote the innovation and development of medical knowledge.
According to the nature of these methods, they are categorized
into model-driven methods, data-driven methods and decision
support systems (DSS). Model-driven methods apply the principles
of biophysics and fluid dynamics of atherosclerosis to construct
predictive models, which require a good understanding of the
disease mechanisms and processes. For example, Bahloul et al.
(2022) use fractional order methods to model the global and
regional vessel apparent wall compliance, a biomarker of arterial
stiffness, and then combined the model with carotid-to-femoral
pulse wave velocity to obtain predictions. The limited knowledge
of diseases and their intricacy make it challenging for researchers
to set up parameters for the models. To address this issue, many
studies use data-driven methods to predict atherosclerosis in its
early stage. These methods rely on large-scale medical data to
construct predictive models, without needing a deep knowledge of
the disease mechanisms and processes. Various single or combined
classification algorithms are employed to predict and diagnose
atherosclerosis, such as support vector machine (SVM) (Fan et al.,
2021), artificial neural network (ANN) (Terrada et al., 2019), K-
nearest neighbors (KNN) (Cherradi et al., 2021), XGBoost (XGB)
(Yu et al., 2021), decision tree (DT) (Chen et al., 2022) and random
forest (RF) (Ward et al., 2020).However, thesemethods trainmodels
on specific biomarkers, which limits the generalization ability of
the models. Moreover, the imbalance of medical diagnosis data
of patients may impair their ability to capture existing patterns
and associations in the data. DSS are systems that use computer
technology and artificial intelligence methods to assist doctors or

patients inmaking bettermedical decisions (Terrada et al., 2020). To
apply the system to real clinical scenarios, DSS should not only use
existing data for training and validation, but also consider adapting
the system to clinical data, which is necessary.

The goal is to make an accurate early prediction of
atherosclerosis risk, by leveraging data- and model-driven methods.
There are two challenges: 1) the lack of this data type limits the
performance of traditional machine learning methods. Traditional
machine learning methods rely on large, diverse datasets to train
models, but the lack of atherosclerosis-specific data makes it
challenging to develop effective models. 2) the public or private
available clinical examination data collections are quite different
among patients. Since different patients may have different
examination items, machine learning models that rely on these
items may need to account for this variability.

To overcome the above two issues, this paper proposes an
medical ambient intelligence system (MAIS) for the early detection
of atherosclerosis. The system architecture consists of clinical record
collection, data processing, model adoption, model evaluation, and
decision visualization. Moreover, the SEcond-order Classifier (SEC)
model is proposed to enhance the performance of the diagnosis
task. The first-order component and second-order cross-feature
component are then consolidated and applied to the chosen feature
matrix in order to learn the associations between the physical
examination data, respectively. The prediction is lastly produced by
aggregating the representations.

The main contributions are summarized below:

1) The MAIS is proposed to predict early atherosclerosis using
clinical data in medical records. The system covers the whole
process of clinical application, including data processing, model
adoption and system output.

2) The SEC is proposed to learn representations from sparse
examined clinical items, which is suitable for common patients.

3) Experiments on clinical datasets show that the proposed SEC
model achieves the performance of six state-of-the-art methods.

4) The Vitamin B12 indicator exhibits the strongest correlation
with the early stage of atherosclerosis, while several known
relevant biomarkers also demonstrate a significant correlation in
experimental data.

The remains of this paper are organized as follows. Section 2
graphically illustrates the proposed system and the innovated
diagnosis method. Section 3 gives the experimental results and their
analyses. Finally, section 4 concludes this research.

2 Materials and methodology

2.1 Materials

To build a database for early prediction of atherosclerosis,
it is inefficient to collect data on each patient indiscriminately
and there is a lot of redundancy. Therefore, it is crucial that we
precisely identify people who have a high probability of having
atherosclerosis.

Nonalcoholic fatty liver disease (NAFLD) is a common chronic
liver disease. It affects approximately 25{%} of the world’s population
and is characterized by excessive accumulation of fat in the
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liver (Stols-Gonçalves et al., 2019). NAFLD can cause metabolic
disorders such as insulin resistance, dyslipidemia, hypertension,
oxidative stress, and inflammation.These are keymechanisms in the
development and progression of atherosclerosis (VanWagner, 2018).
People with NAFLD have been shown to have a high probability
of atherosclerosis (Cattazzo et al., 2022). They often go to the liver
disease centers of various hospitals for treatment.The atherosclerosis
diagnosis dataset was collected from and contributed by Xiamen
Hospital of Traditional Chinese Medicine Liver Disease Center.

The inclusion criteria included: First, those who signed the
informed consent form, voluntarily participated in this subject, and
cooperated in the completion of relevant examinations. Second,
between the ages of 18 and 65 years.Third, meet the aforementioned
Western diagnostic criteria for patients with NAFLD combined with
SA.

Subjects who did not fit the criteria above were eliminated. The
most recent report was used if a subject has undergone more than
one examination because it would bemore pertinent to their present
condition of health.

These records contain over 1800 patients, which range from 1
January 2018, and 30 June 2022. After data extract-transform-load,
the private information of patients is filtered out, and amounting
to 350 examination items are picked out. Specifically, physiological
information consists of urine tests, blood tests, and biochemical
tests. The system automatically generates labels, using the diagnosis

of SA as the basis for early detection of atherosclerosis. Subjects
are labeled into two groups: positive samples with early-stage
atherosclerosis (357) and negative samples without any symptoms
of the disease (1491). To prevent data imbalances due to inconsistent
group sizes that can affect system performance, the system selects an
equal number of cases from each group: 357.

2.2 MAIS system

The proposed system is a novel medical ambient intelligence
system that aims to provide early prediction of atherosclerosis. The
system uses clinical data from medical records, such as physical and
biological examinations, to build an intelligent platform compatible
with various examination indicators that can classify health and
pathological patterns.

According to the sequence of system execution, the system
mainly consists of data processing, model adoption and system
output.

The system architecture of the proposed MAIS is graphically
displayed in Figure 1.

2.2.1 Data processing
In order to provide executable data to the model, the system

first performs data processing. The system needs data inreal

FIGURE 1
The system architecture of the medical ambient intelligence system (MAIS).
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clinical scenarios, which can be obtained by connecting to the
database of the medical system. The data of patients’ clinical
routine examination items are both structured and unstructured,
including patient demographics, medical history, laboratory test
results, imaging reports, and other relevant clinical information.

The system automatically performs data extract, transform,
load (ETL) (Manickam and Indra, 2021) processing and data
recognition in the data collection stage. It uses natural language
processing (NLP) (Galassi et al., 2021) techniques to extract relevant
information from unstructured data, such as personal details,
medical records, risk factors, symptoms, diagnoses and treatments.
The system also applies named entity recognition (NER) (Li et al.,
2022) and coreference resolution (CR) (Stylianou and Vlahavas,
2021) to deal with inconsistent representations in unstructured text
data. For structured data, the system uses data manipulation tools
to extract the necessary fields or tables from the data. Then, it
transforms the extracted data into a common representation that can
be used by the subsequent modules, and loads it into a centralized
data repository.

In the data preprocessing stage, the diagnosis label for each
patient is automatically generated in the system, using the diagnosis
of subclinical atherosclerosis as the basis for early detection of
atherosclerosis. The system then performs normalization, feature
selection, and splits the data into training and testing sets.

2.2.2 Model adoption
As an important part of the medical ambient computation,

model adoption is to select the best model for the given data
and task. The system applies ten traditional machine learning
models and three deep learning models for the early prediction of
atherosclerosis.

The baseline methods used to evaluate the effectiveness of the
SEC. Some typical machine learning methods are adopted as parts
of baseline methods:

1) Support vector machine (SVM) (Dudzik et al., 2021) projects
the features into high dimensionality and finds the optimal
hyperplane to generate classifications.

2) Random forest (RF) (Probst and Boulesteix, 2018) builds
multiple decision trees via randomly selecting features and
generating classification results by tree voting.

3) Logistic regression (LG) (Shipe et al., 2019) is a type of statistical
model that estimates the probability of an event occurring.

4) K-nearest neighbors (KNN) (Cherradi et al., 2021) is a non-
parametric method, which uses the proximity of the k closest
training examples in a data set to classify.

5) Gradient boost decision tree (GBDT) (Si et al., 2017) is an
iterative decision tree algorithm that generates classifications via
multiple decision trees.

6) XGBoost (XGB) (Munkhdalai et al., 2020) optimizes the loss
function by fitting the annotations and the residuals.

7) Gaussian naive bayes (GNB), multinomial naive bayes (MNB)
and Bernoulli naive bayes (BNB) (Dou et al., 2022) are all
Bayes-based methods, and the differences between them are the
likelihood estimation of features.

8) Adaboost (AdaB) (Shihua et al., 2020) adds a new weak classifier
in each round until a predetermined small enough error rate is
reached.

Some classical deep learning methods are adopted as parts of
baseline methods as well:

9) Multilayer perceptron (MLP) (Okanoue et al., 2021) maps the
features through the multi-layer hidden neural to minimize the
loss function.

10) Transformer (TRMF) (Vaswani et al., 2017) is a variation of the
encoder-decoder structure, which replaces the recurrent layer
with the attention mechanism.

2.2.3 System output
The system output has two main components: performance

evaluation and decision support. The performance evaluation
measures the accuracy and reliability of the system model on
various metrics. The decision support offers useful information and
guidance to clinicians, such as data and results in visualization,
disease pattern and correlation discovery, and personalized
treatment suggestions.

2.3 SEcond-order classifier

2.3.1 Problem definition
The SA diagnosis problem can be considered a binary

classification problem. Let symbolX ∈ ℝN×M represent the test items
matrix, where N represents the number of samples, and symbol M
is the number of test items. The binary classification problem can be
formulated as follows:

Y ← F (X) (1)

where Y ∈ ℝN is the classification target, F (⋅) is a mapping.

2.3.2 Overview
Firstly, the inputted data are compressed into [0,1] by the

normalization layer in the proposed SEC. And it was then passed
through a feature selection layer for dimension reduction. After that,
the selected featurematrix is fed to the proposed SEC to connectwith
classification targets. Finally, a sigmoid function and a binarization
function are employed on the outputs to generate classifications.The
graphical illustration of the proposed SEC is plotted in Figure 2.

2.3.3 Data preprocessing
The MinMax-normalization (Singh and Singh, 2020) is

employed to compress the inputted features into [0,1]. The
mathematical process of normalization is formulated as follows:

Z =
X −min (X)

max (X) −min (X)
(2)

where Z is the normalized feature matrix, X is the inputted feature
matrix, min(⋅) is the minimum values, and max(⋅) is the maximum
values.

The feature selection (Dhal and Azad, 2021) is utilized for
dimension reduction. The “ANOVA F-value” is chosen as the
ranking criteria for feature selection. The mathematical process is
formulated as follows:

f ∝
(∑N

i
Z0
i −∑
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FIGURE 2
The schematic illustration of the proposed SEC. (A) The workflow. (B) The proposed SEC.

where f ∈ ℝM is the F-value matrix of inputted features, Z0 is the
samples without SA,Z1 is the samples diagnosed with SA. And then,
the F-value matrix is consolidated with the survival function to rank
and select the best L features. Let symbol S ∈ ℝN×L represent the
selected feature matrix.

2.3.4 Workflow
The proposed SEC is constituted of two parts. The first

component is first-order linear regression, designed to capture
associations between prediction and input features. Another part is
the cross-association component, which captures the associations
between features. The outputs come from the combinations of the
two components.

Given an inputted feature matrix S ∈ ℝN×L, the mathematical
process of the first-order linear regression is formulated as follows:

E =∑(S ⊙We) +Be (4)

whereE ∈ ℝN×1 is the outputs of linear layer,We is theweightmatrix,
Be is a bias term, ⊙ is Hadamard product.

The given inputted feature matrix S collaborates with a
learnable hidden feature matrix Wv to calculate the second-order
cross features to learn the feature associations. The mathematical
processes are formulated as follows:

C1 = (S ⋅Wv) ⊙ (S ⋅Wv) (5)

C2 = (S ⊙ S) ⋅ (Wv ⊙Wv) (6)

where C1 ∈ ℝN×K is the square of cross feature matrix, C2 ∈ ℝN×K

is the square-cross feature matrix, Wv ∈ ℝL×K, K is the number of
hidden features.

C1 and C2 are subtracted to generate hidden feature
representations, and the different hidden features are summed
to generate second-order outputs. The mathematical process is
formulated as follows:

R = 1
2

K

∑
i
(C1

n,i −C
2
n,i) (7)

where R ∈ ℝN×1 is the hidden feature representations.
The T and R are integrated to generate model outputs. The

mathematical process is formulated as follows:

O = E +R (8)

where O ∈ ℝN×1 is the outputs of the model.
Finally, the output matrix O is passed through a sigmoid layer

and a binarization layer to generate classifications.Themathematical
process can be formulated as follows:

Pi =
1

1+ exp(−Oi)
(9)

Yi = {
0, Pi < 0.5

1, Pi ≥ 0.5
(10)

where P ∈ ℝN×1 is the probability matrix, Y ∈ ℝN×1 is the binary
output matrix.

2.4 Performance criteria

The accuracy, precision, recall, and F1 are chosen as the metrics
for assessing the effectiveness of the proposed SEC and baseline
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TABLE 1 Confusionmatrix for binary classification.

Real False True

Predicted

False FP TN

True FN TP

TABLE 2 Evaluationmetrics of classification performance for the proposed
method and benchmarks.

Metrics Formula

Accuracy (ACC) TP+TN
TP+TN+FP+FN

Precision TP
TP+FP

Recall TP
TP+TN

F1-Means (F1) 2⋅Precision ⋅ Recall
Precision + Recall

methods. The mathematical formulation of these methods and
corresponding formulations are listed in Table 1 and Table 2:

2.5 Model configurations

Data processed in the same way is fed to different models to
ensure a fair and unbiased comparison between them. The data
are all compressed into [0, 1] using the MinMax normalization
technique. The ANOVA F-value is used as the ranking criterion
for feature selection, and the best L features are selected according
to their F-value. The 80% data is utilized for training the models,
and the remains are used to test the trained models. The five-fold
cross-validation strategy is employed to validate the performance of
baseline methods and the proposed SEC. The “Adam” is chosen as
the optimizer for all neural models. The batch size is set to 32, and
the learning rate is set to 0.01. The “binary cross entropy loss with
logits” (BCELosswithLogits) is selected as the loss function. For the
ensemble learning-based methods, the number of base estimators is
set to 200.

3 Results and discussion

3.1 Performance comparison

Extensive experiments are carried out to examine the
effectiveness of the suggested SEC. For all models, the constant
parameters are set to be the same, and the other parameter is
well-tuned. The experimental results are plotted in Figure 3.

Here is a summary of some findings from the experiments:

1) The proposed SEC outperforms the baseline methods.
2) Among baseline approaches, the Bayes-based methods produce

the worst results.
3) SVM outperforms other machine learning techniques in terms

of performance.
4) When compared to machine learning methods, deep learning

techniques offer tremendous advances.

The Bayes-based methods achieve worse performance. A
possible reason is that these methods decide a specific joint
probability distribution. However, due to some effects, such as
missing value or sparsity, the distribution of the inputted features
does not follow the Gaussian or Bernoulli distribution.

The SVM obtains the highest mean average values of Accuray,
Recall, and F1. Moreover, it obtains a smaller interquartile range
compared with other machine learning methods. A possible reason
is that this method gets the final classification via a few support
vectors. It is beneficial for the model to learn key associations from
inputted features.

The deep learning methods outperform machine learning
methods. The multilayer perceptron (MLP) and transformer
(TRMF) have higher average values of ACC, P, R, and F1. Moreover,
they have a smaller interquartile range compared with machine
learning methods. It demonstrates that these methods have robust
performance. A significant reason is that machine learning methods
usually get classification via a few key features or representations.
However, these may ignore some beneficial effects of some features.

The proposed SEC has significant improvements compared with
the baseline methods. Compared with the optimal performance
of baseline methods, the ACC, Precision, Recall, and F1 value is
increased by 7.12{%}, 7.12{%}, 0.81{%}, 8.74{%} at least, respectively.
Moreover, the SEC has the smallest interquartile range among all
comparable methods, which shows the robustness of the proposed
method.

3.2 Parameter sensitiveness

To investigate how these features affect the classification
performance, the proposed SEC are measured by ACC, Precision,
Recall, and F1 by varying the number of selected features. There is
an extensive range of feature numbers. To avoid searching for all
situations, the coarse-tune and fine-tune are combined to search
for the optimal L. Technically, the parameter first adds 10 features
per varying until the model shows a noticeable decrease. And
then, the parameter adds one feature per varying until the optimal
performance is found. The experimental results are plotted in
Figure 4. And the selected features are listed in Table 3.

Some observations from the experimental results are
summarized as follows:

1) Vitamin B12 is the most correlated with SA.
2) Several conventional related biomarkers show strong

correlations in the experiments.
3) Some pathogen-related metrics show associations with SA.
4) Some NAFLD-related metrics exhibit correlations with SA.

Vitamin B12 correlates significantly with the SA. Besides, several
studies have reported that vitamin B can alleviate the burden of the
SA (Hodis et al., 2009) It implies that vitamin B may be a criterion
for the SA diagnosis within NAFLD patients.

Some established metrics have been identified, including
thrombus-related biomarkers and markers of platelet reactivity.
However, as shown in Figure 4, the model cannot achieve
optimal performance solely using these metrics. It demonstrates
that these metrics can not wholly represent the effects of SA.
Biomarkers for viral hepatitis and measures for HIV are two
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FIGURE 3
Five-fold cross-validation of eleven methods in terms of four metrics.

FIGURE 4
The performance of the proposed SEC with varying the feature number N in terms of ACC, Precision, Recall, and F1.
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TABLE 3 The selected physical examination items and their average values.

Category Name Unit Abbr Mean

Viral hepatitis

Hepatitis B virus e antibody PEIU/mL anti-HBe 0.0303

Hepatitis B virus core antibody PEIU/mL anti-HBc 0.3748

Hepatitis B virus surface antibody mIU/mL anti-HBs 5.4965

Hepatitis B virus DeoxyriboNucleicAcid IU/mL HBV-DNA 2880.0767

Hepatitis C virus antibody COI anti-HCV 0.0013

Hepatitis A virus antibody Immunoglobulin M S/CO HAV-IgM 0.0157

Glucose tolerance test

Half of hour blood glucose mmol/L 0.5 h BG 0.1670

One hour blood glucose mmol/L 1 h BG 0.1899

Two hour blood glucose mmol/L 2 h BG 0.3355

Inflammation Procalcitonin ng/mL PCT 0.0392

Thromboela-stogram

Fibrin polymerization time s Fbg-time 0.1093

Coagulation factor response time s Cfr-time 0.3940

Residual blood clots after drug use mm Rbc-adu 1.6047

Maximum platelet aggregation rate % PAGM 0.5707

Mean platelet aggregation rate % PARM 0.5360

Mean platelet aggregation time s PATM 4.2400

Platelet mm MA 4.1583

Clot ablation ratio % CAR 0.0383

Predicted clot ablation rate % PCAR 0.0430

Platelet effective inhibition rate % PRU 0.4293

Instantaneous amplitude on trace mm A 4.1453

Conductivity S/m Gt 11.1207

Fubction of Fibrin Monomer deg 4.4740

Blood routine examination

Neutrophil granulocyte % NEUT% 55.5910

Erythrocyte/Red Blood Cell km RBC 6.3503

Leukocyte, white blood cell /L WBC 10.1733

Hemoglobin/Haemoglobin g/L HGB 124.3500

*Erythrocyte Count (×1012) /L RBC 4.1514

Erythrocyte Count (×1010) /L RBC 3.8233

Mean corpuscular volume FL MCV 0.9643

Mean platelet volume fl MPV 9.3843

Initial mean volume of platelets fl IMPV 0.0819

Mean corpuscular volume FL MCV 0.9643

Packed cell volume % PCV 36.5337

Mean red blood cell hemoglobin concentration g/L MCHC 307.1667

Routine blood biochemical

Triglyceride mmol/L TG 2.2369

Albumin g/L Alb 37.1433

Total Protein g/L TP 64.3200

Uric acid mg UA 328.5420

γ-glutamyl transpeptidase U/L γ-GT 59.8733

Liver function leukocyte ratio None A/G 1.2977

(Continued on the following page)
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TABLE 3 (Continued) The selected physical examination items and their average values.

Category Name Unit Abbr Mean

haptoglobin haptoglobin HP 0.0173

a1_acid glycoprotein mg/L a1-AG 0.0077

Carbohydrate antigen u/mL CA 6602.2316

Thyroglobulin ug/L Tg 0.1275

ImmunoglobulinM g/L IgM 0.0338

Vitamin B mg VB 82.2867

Sodium mmol/L Na 0.8883

Potassium Kalium mmol/L K 0.2110

Blood gas analysis
Carbon dioxide g/L CO2 21.7383

2-Hydroxypropanoic acid mmol/L HL 0.1675

Adrenocortical
Angiotensin II ng/dL Ang II 0.5947

Aldosterone ng/dL ALD,ALS 1.2386

HIV
HIV antigens/antibodies COI HIV-Ag/HIV-Ab 0.0410

HIV antigens/antibodies COI HIV-Ag/HIV-Ab 0.0002

Antiphospholipid syndrome

Anti-beta 2 glycoprotein 1 antibody RU/mL anti-B2-GPI ab 0.0074

Anti cardiolipin antibody Immunoglobulin M MPLU/mL ACA-IgM 0.0361

Anti-dsDNA antibody IU/mL Anti-dsDNA ab 0.1024

Heart failure N-terminal pro-brain natriuretic peptide PGml NT-pro BNP 26.9633

Myocardial damage Myoglobin g/L Mb 31.5280

Urine test Erythrocyte HPF RBC 1.1430

Urine culture
Urine culture HPF UC-CJ 53.2273

Urine culture uL UC 295.7010

examples of pathogen-related metrics that have a good correlation
with model performance. There are two potential reasons: First,
the patients infected with these infectious diseases may have a
higher risk of suffering from SA. For example, the incidence
of coronary plaque in people infected with HIV is 2–3 times
higher than in healthy people (Boldeanu et al., 2021). On the
other hand, a possible reason is the collected dataset. SA
commonly has no significant symptoms. Some patients may
be diagnosed with atherosclerosis incidentally due to infectious
diseases.

Several glucose-tolerance-test metrics have been selected, such
as half-hour, 1-h, and 2-h blood glucose. It demonstrates that the
anomaly of these factors would bring a higher risk for SA. These
factors are also risky for the NAFLD. The balance of lipid-glucose
metabolism may be destroyed by NAFLD, which increases the risk
of SA. This experiment might support this assertion further.

3.3 N-order analyses

They are solely employed for the classification task to study how
each order affects performance. The experimental results are shown
in Table 4.

TABLE 4 The experimental results of different order in terms of four
metrics.

Model ACC P R F1

First-Order linear regression 0.8067 0.8022 0.8606 0.8303

Second-Order cross feature 0.8167 0.8362 0.8303 0.8327

Full SEC 0.8900 0.8837 0.9212 0.9020

As shown in Table 4, solely using one of the components
cannot achieve the optimal prediction performance. These two
components obtain similar prediction accuracy. The first-order
linear regression is mainly employed to learn the associations
between inputted features and the prediction targets. And the
second-order cross-feature component is mainly utilized to learn
the associations between inputted features. The combination of the
two-component has a significant increase in prediction accuracy.
Compared with the optimal performance of component, the ACC,
Precision, Recall and F1 values are increased by 8.98%, 5.68%,
10.95% and 8.32%, respectively. It shows that the full SEC can learn
the correlations between inputted features and prediction targets
well.
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4 Conclusion

This paper proposed the MAIS for the early prediction of
atherosclerosis disease. This system supports the early screening
and discovery of outpatients in the real environment. Moreover, the
SEC model is proposed to enhance the prediction performance
of atherosclerosis diagnosis under the heterogeneity of clinical
data. The proposed combination of first-order components
and second-order cross-feature components learns effective
associations and representations from sparsely examined clinical
items.

Extensive experiments are conducted on real atherosclerosis
check item datasets to explore the effectiveness of the proposed
method. Compared with baseline, ACC, Precision, Recall, and
F1 values increased by at least 7.12%, 7.12%, 0.81%, 8.74%,
respectively. Furthermore, each order in SEC is divided to perform
the classification tasks independently. The results demonstrate that
the full SEC is capable of learning the relationships between
input features and prediction targets, and when compared to
the component’s optimal performance, the ACC, Precision, Recall,
and F1 values all show increases of 8.98%, 5.68%, 10.95%, and
8.32%, respectively. In addition, the experimental analysis showed
that the Vitamin B12 indicator exhibits the strongest correlation
with the early stage of atherosclerosis, while several known
relevant biomarkers also demonstrate a significant correlation in
experimental data.

There are several directions for future work. First, the validation
data utilized in this study are somewhat constrained. Our intended
strategy involves gathering a more diverse array of data spanning
various geographical regions and demographic profiles. This
could significantly enhance the universal applicability of the
system and improve its generalizability to disparate demographics
and locales. Second, we aspire to elucidate the relevance of
exogenous features by incorporating efficacious feature selection
and fusion methodologies. This approach might strengthen
interpretability during the process of feature learning. Third, the
purview of the system should extend beyond atherosclerosis,
encompassing additional diseases. Concurrently, there is a
need to investigate how medical environmental intelligence
can be systematically exploited to predict and diagnose various
diseases.
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